Skip to main content

Upper Secondary Perspectives on Applications and Modelling

  • Chapter
Modelling and Applications in Mathematics Education

Part of the book series: New ICMI Study Series ((NISS,volume 10))

Abstract

Several issues raised in this study are of heightened importance at the upper secondary level. There are many tensions at this level of schooling contributing to a reluctance by teachers to teach mathematics by modelling and a scepticism by many students that modelling is central to their mathematical learning. Several of these tensions are raised as the issues are discussed in this chapter. The challenge is for modelling to be seen as an essential embedded element of mathematics, mathematics teaching and assessment whether students are in academic, technical or general education courses.

Valued contributions to a discussion provided by: Michèle Artaud, Ferdinando Arzarello, Olive Chapman, Dirk De Bock, Solomon Garfunkel, Jerry Legé, Vimolan Mudaly, Geoffrey Roulet, Akihiko Saeki, and Rudolf Strässer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonius, S. (2004). Validity and competencies in modelling based project examination. In H.-W. Henn & W. Blum (Eds.), ICMI Study 14: Applications and Modelling in Mathematics Education, (pp. 9–16). Dortmund: University of Dortmund.

    Google Scholar 

  • Artaud, M. (2004). Contributions from the anthropological theory of didactics. In H.-W. Henn & W. Blum (Eds.), ICMI Study 14: Applications and Modelling in Mathematics Education, (pp. 17–22). Dortmund: University of Dortmund.

    Google Scholar 

  • Arzaello, F., Pezzi, G., & Robutti, O. (2004). Modelling body motion: An approach to functions using measure instruments. In H.-W. Henn & W. Blum (Eds.), ICMI Study 14: Applications and Modelling in Mathematics Education, (pp. 23–28). Dortmund: University of Dortmund.

    Google Scholar 

  • Burkhardt, H. (2004). Establishing modelling in the curriculum: Barriers and levers. In H.-W. Henn & W. Blum (Eds.), ICMI Study 14: Applications and Modelling in Mathematics Education, (pp. 53–58). Dortmund: University of Dortmund.

    Google Scholar 

  • Chapman, O. (2004). Teachers’ conceptions and teaching strategies that facilitate mathematical modelling. In H.-W. Henn & W. Blum (Eds.), ICMI Study 14: Applications and Modelling in Mathematics Education, (pp. 65–70). Dortmund: University of Dortmund.

    Google Scholar 

  • Clatworthy, N.J. & Galbraith, P.J. (1989). Mathematical modelling: An attack on conformity. Australian Senior Mathematics Journal 3(2), 88–106.

    Google Scholar 

  • Henning, H. & Keune, M. (2004). Levels of modelling competencies. In H.-W. Henn & W. Blum (Eds.), ICMI Study 14: Applications and Modelling in Mathematics Education, (pp. 115–120). Dortmund: University of Dortmund.

    Google Scholar 

  • Kadijevich, D. (2004). How to attain a wider implementation of mathematical modelling in everyday mathematics education?. In H.-W. Henn & W. Blum (Eds.), ICMI Study 14: Applications and Modelling in Mathematics Education, (pp. 133–138). Dortmund: University of Dortmund.

    Google Scholar 

  • Kutzler, B. (2000). The algebraic calculator as a pedagogical tool for teaching mathematics. In A. Gagatsis & G. Makrides (Eds.), Proceedings of the 2 nd Mediterranean Conference on Mathematics Education, (pp. 142–160). Nicosia, Cyprus.

    Google Scholar 

  • Lakoma, E. (2004). Modelling in mathematics education — The case of probability and statistics teaching. In H.-W. Henn & W. Blum (Eds.), ICMI Study 14: Applications and Modelling in Mathematics Education, (pp. 139–144). Dortmund: University of Dortmund.

    Google Scholar 

  • Lamon, S., Parker, W., & Houston, K. (2003). Mathematical modelling: A way of life. In S. Lamon, W. Parker, & K. Houston (Eds.), Mathematical Modelling: A Way of Life, (pp. ix–x). Chichester: Horwood Publishing.

    Google Scholar 

  • Legé J. (2004). “To model, or let them model?” That is the question! In H.-W. Henn & W. Blum (Eds.), ICMI Study 14: Applications and Modelling in Mathematics Education, (pp. 145–150). Dortmund: University of Dortmund.

    Google Scholar 

  • Ontario Ministry of Education (2000). The Ontario curriculum: Grades 11 and 12 Mathematics 2000. Toronto.

    Google Scholar 

  • Palm, T. (2002). The Realism of Mathematical School Tasks — Features and Consequences (Research reports, No. 2, in Mathematics Education). Umeå, Sweden: Department of Mathematics.

    Google Scholar 

  • Palm, T. & Burman, L. (2004). Reality in mathematics assessment: An analysis of task-reality concordance in Finnish and Swedish national assessments. Nordic Studies in Mathematics Education 9(3), 1–33.

    Google Scholar 

  • Roulet, G. & Suurtamm, C. (2004). Modelling: Subject images and teacher practice. In H.-W. Henn & W. Blum (Eds.), ICMI Study 14: Applications and Modelling in Mathematics Education, (pp. 229–234). Dortmund: University of Dortmund.

    Google Scholar 

  • Stillman, G. (2001). The impact of school-based assessment on the implementation of a modelling/applications-based curriculum: An Australian example. Teaching Mathematics and Its Applications 20(3), 101–107.

    Article  Google Scholar 

  • Stillman, G. (2002). Assessing Higher Order Mathematical Thinking through Applications. Unpublished doctoral dissertation, University of Queensland, Australia.

    Google Scholar 

  • Stillman, G. (2004). Sustained curriculum change: The example of the implementation of applications and modelling curricula in two Australian states. In H.-W. Henn & W. Blum (Eds.), ICMI Study 14: Applications and Modelling in Mathematics Education, (pp. 261–266). Dortmund: University of Dortmund.

    Google Scholar 

  • Strässer, R. (2004). Everyday instruments: On the use of mathematics. In H.-W. Henn & W. Blum (Eds.), ICMI Study 14: Applications and Modelling in Mathematics Education, (pp. 267–272). Dortmund: University of Dortmund.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stillman, G. (2007). Upper Secondary Perspectives on Applications and Modelling. In: Blum, W., Galbraith, P.L., Henn, HW., Niss, M. (eds) Modelling and Applications in Mathematics Education. New ICMI Study Series, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-29822-1_52

Download citation

Publish with us

Policies and ethics