Skip to main content

Controlling the Fragmentation Behavior of Stressed Glass

  • Conference paper
Fracture Mechanics of Ceramics

Part of the book series: Fracture Mechanics of Ceramics ((FMOC,volume 14))

Abstract

Inducing compressive surface stress profiles in brittle materials is a well-known approach for strengthening. The compressive stress inhibits crack initiation and propagation. The effect has been observed for tempered and ion-exchanged glasses,14 and for oxide ceramics.5,6 While it is generally accepted that the magnitude of the stress and its depth determine the strength response, it has recently been demonstrated that the shape of the compressive stress profile can radically alter the strength distribution.7 For tempered glasses, the role of the internal tensile stress in causing fragmentation is well known,8 although it is not possible to predict the extent of fragmentation.9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. P. Kirchner, Strengthening of Ceramics, Treatments, Tests, and Design Applications. Marcel-Dekker, New York, (1979)

    Google Scholar 

  2. R. Gardon, Thermal Tempering of Glass, Glass: Science and Technology V. Academic Press, New York. (1980)

    Google Scholar 

  3. S. Kistler, Stresses in Glass Produced by Nonuniform Exchange of Monovalent Ions, J. Am. Ceram. Soc., 45 [2] 59–68 (1962)

    Article  CAS  Google Scholar 

  4. M. E. Nordberg, E. L. Mochel, H. M. Garfinkel, and J. S. Olcott, Strengthening by Ion Exchange, J. Am. Ceram. Soc., 47 [5] 215–219 (1964)

    Article  CAS  Google Scholar 

  5. D. J. Green, A Technique for Introducing Surface Compression into Zirconia Ceramics, J. Am. Ceram. Soc., 66 [9] C178–C179 (1983)

    Article  CAS  Google Scholar 

  6. A. V. Virkar, J. L. Huang, and R. A. Cutler, Strengthening of Oxide Ceramics by Transformation-Induced Stresses, J. Am. Ceram. Soc., 70 [3] 164–170 (1987)

    Article  CAS  Google Scholar 

  7. D. J. Green, R. Tandon, and V. M. Sglavo, Crack Arrest and Multiple Cracking in Glass through the Use of Designed Residual Stress Profiles, Science, 283, 1295–1297 (1999)

    Article  ADS  PubMed  Google Scholar 

  8. J. M. Barsom, Fracture of Tempered Glass, J. Am. Ceram. Soc., 51 [2] 75–78 (1968)

    Article  CAS  Google Scholar 

  9. P. D. Warren, Fractography of Glasses and Ceramics IV, 389–400, The American Ceramic Society, Ohio (2001)

    Google Scholar 

  10. A. L. Zijlstra and A. J. Burggraaf, Strength and Fracture behavior of Chemically Strengthened Glass in Connection with the Stress Profile, Part II, J. Non-Cryst. Solids, 1, 163–185 (1969)

    Article  CAS  ADS  Google Scholar 

  11. M. Bakioglu, F. Erdogan, and D. P. H. Hasselman, Fracture Mechanical Analysis of Self-fatigue in Surface Compression Strengthened Glasses, J. Mat. Sci., 11, 1826–1834 (1976)

    Article  ADS  Google Scholar 

  12. I. W. Donald and M. J. C. Hill, Preparation and Mechanical Behavior of some Chemically Strengthened Lithium Magnesium Alumino-Silicate Glasses, J. Mat. Sci., 11, 1826–1834 (1976)

    Article  Google Scholar 

  13. E. Bouyne and O. Gaume, Fragmentation of Thin Chemically Tempered Glass Plates, Proc. Int. Congr. Glass Volume 2, Extended Abstracts, Scotland, (2001)

    Google Scholar 

  14. S. J. Glass, E. K. Beauchamp, C. S. Newton, R. G. Stone, W. N. Sullivan, R. T. Reese, S. D. Nicolaysen, and R. J. Kipp, Controlled Fracture of Ion-Exchanged Glass Rupture Disk, Sandia National Laboratories Report, SAND2000-0828 (2000)

    Google Scholar 

  15. H. W. McKenzie and R. J. Hand. Basic Optical Stress Measurements, Society of Glass Technology, Sheffield, U.K., 1999

    Google Scholar 

  16. R. Tandon, D. J. Green, and R. F. Cook, Surface Stress Effects on Indentation Fracture Sequences, J. Am. Ceram. Soc., 73 [9] 2619–27 (1990).

    Article  CAS  Google Scholar 

  17. A. Y. Sane and A. R. Cooper, Stress Buildup and Relaxation During Ion Exchange Strengthening of Glass, J. Am. Ceram. Soc., 70 [2] 86–89

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Tandon, R., Glass, S.J. (2005). Controlling the Fragmentation Behavior of Stressed Glass. In: Bradt, R.C., Munz, D., Sakai, M., White, K.W. (eds) Fracture Mechanics of Ceramics. Fracture Mechanics of Ceramics, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-28920-5_7

Download citation

Publish with us

Policies and ethics