Skip to main content

Nanowires as Building Blocks for Nanoscale Science and Technology

  • Chapter
Nanowires and Nanobelts

Abstract

The field of nanotechnology represents an exciting and rapidly expanding research area that crosses the borders between the physical, life and engineering sciences [1, 2]. Much of the excitement in this area of research has arisen from recognition that new phenomena and unprecedented integration density are possible with nanometer scale structures. Correspondingly, these ideas have driven scientists to develop methods for making nanostructures. In general, there are two philosophically distinct approaches for creating small objects, which can be characterized as top-down and bottom-up. In the top-down approach, small features are patterned in bulk materials by a combination of lithography, etching and deposition to form functional devices. The top-down approach has been exceedingly successful in many venues with microelectronics being perhaps the best example today. While developments continue to push the resolution limits of the top-down approach, these improvements in resolution are associated with a near exponential increase in cost associated with each new level manufacturing facility. This economic limitation and other scientific issues with the top-down approach have motivated efforts worldwide to search for new strategies to meet the demand for nanoscale structures today and in the future [3–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Timp, Nanotechnology, Springer-Verlag, New York (1999).

    Book  Google Scholar 

  2. For introduction see: Sci. Am., September (2001).

    Google Scholar 

  3. J. D. Meindl, Q. Chen and J. A. Davis, Science 293 (2001) 2044.

    Article  CAS  Google Scholar 

  4. C. M. Lieber, Sci. Am. September (2001) 58.

    Google Scholar 

  5. S. Polyviou and M. Levas, The future of Moore’s law http://www.iis.ee.ic.ac.uk/-frank/surp98/report/sp24/.

  6. R. Dagani, Chem. Eng. News (October 16, 2000 ) 27.

    Google Scholar 

  7. J. R. Heath, P. J. Kuekes, G. S. Snider and R. S. Williams, Science 280, 1716 (1998).

    Article  CAS  Google Scholar 

  8. M. A. Reed and J. A. Tour, Sci. Am. June (2000) 86.

    Google Scholar 

  9. C. Joachim, J. K. Gimzewski and A. Aviram, Nature 408 (2000) 541.

    Article  CAS  Google Scholar 

  10. C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams and J. R. Heath, Science 285 (1999) 391.

    Article  CAS  Google Scholar 

  11. C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K Beverly, J. Sampaio, F. M. Raymo. J. F. Stoddart and J. R. Heath, Science 289 (2000) 1172.

    Article  CAS  Google Scholar 

  12. M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price and J. M. Tour, Appl. Phys. Lett. 286 (2001) 1550.

    Google Scholar 

  13. A. P. Alivisatos, Science 271 (1996) 933.

    Article  CAS  Google Scholar 

  14. David L. Klein, Richard Roth, Andrew K. L. Lim, A. Paul Alivisatos and Paul L. McEuen, Nature 389 (1997) 699.

    Article  CAS  Google Scholar 

  15. M. H. Devoret and R. J. Schoelkopf, Nature 406 (2000) 1039.

    Article  CAS  Google Scholar 

  16. P. G. Collins and P. Avouris, Sci. Am., December (2000) 62.

    Google Scholar 

  17. T. W. Odom, J.-L. Huang, P. Kim and C. M. Lieber, Nature 391 (1998) 62.

    Article  CAS  Google Scholar 

  18. T. Odom, J. Huang, R Kim and C. M. Lieber, J. Phys. Chem. B 104 (2000) 2794–2809.

    Article  CAS  Google Scholar 

  19. C. Dekker, Phys. Today 52 (5) (1999) 22.

    Article  CAS  Google Scholar 

  20. H. Dai, J. Kong, C. Zhou, N. Franklin, T. Tmobler, A. Cassell, S. Fan and M. Chapline, J. Phys. Chem. B 103 (1999) 11246.

    Article  CAS  Google Scholar 

  21. S. J. Tans, R. M. Verschueren and C. Dekker, Nature 393 (1998) 49.

    Article  CAS  Google Scholar 

  22. R. Martel, T. Schmidt, H. R. Shea, T. Hertel and R Avouris, Appl. Phys. Lett. 73 (1998) 2447.

    Article  CAS  Google Scholar 

  23. Z. Yao, H. W. C. Postma, L. Balents and C. Dekker, Nature 402 (1999) 273.

    Article  CAS  Google Scholar 

  24. M. S. Fuhrer, J. Nygrad, L. Shih, M. Forero, Y. G. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl and P. L. McEuen, Science 288 (2000) 494.

    Article  CAS  Google Scholar 

  25. V. Derycke, R. Martel, J. Appenzeller and R. Avouris, Nano Letters 1 (2001) 453.

    Article  CAS  Google Scholar 

  26. A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker, Science 294 (2001) 1317.

    Article  CAS  Google Scholar 

  27. R G. Collins, M. S. Arnold and P. Avouris, Science 292 (2001) 706.

    Article  CAS  Google Scholar 

  28. C. M. Lieber, Solid State Commun. 107 (1998) 106.

    Article  Google Scholar 

  29. J. Hu, T. W. Odom and C. M. Lieber, Acc. Chem. Res. 32 (1999) 435.

    Article  CAS  Google Scholar 

  30. X. Duan and C. M. Lieber, Adv. Mater. 12 (2001) 298.

    Article  Google Scholar 

  31. M. S. Gudiksen, J. Wang and C. M. Lieber, J. Phys. Chem. B 105 (2001) 4062–4064.

    Article  CAS  Google Scholar 

  32. Y. Cui, X. Duan, J. Hu and C. M. Lieber, J. Phys. Chem. B 104 (2001) 5213.

    Article  Google Scholar 

  33. X. Duan, Y Huang, Y. Cui, J. Wang and C. M. Lieber, Nature 409 (2001) 66.

    Article  CAS  Google Scholar 

  34. Y. Cui and C. M. Lieber, Science 291 (2001) 851.

    Article  CAS  Google Scholar 

  35. Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim and C. M. Lieber, Science 294 (2001) 1313.

    Article  CAS  Google Scholar 

  36. Y. Huang, X. Duan, Q. Wei and C. M. Lieber, Science 291 (2001) 630.

    Article  CAS  Google Scholar 

  37. F. Seker, K. Meeker, T. F. Kuech and A. B. Ellis, Chem. Rev. 100 (2000) 2505.

    Article  CAS  Google Scholar 

  38. R. K. Iler, The Chemistry of Silica, Wiley, New York (1979).

    Google Scholar 

  39. C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc. 115 (1993) 8706–8715.

    Article  CAS  Google Scholar 

  40. L. Esaki, Science and Technology for Mesoscopic Structures, Edited by S. Namba, C. Hamaguchi and T. Audio, Springer Verlag, Tokyo (1992).

    Google Scholar 

  41. E J. Himpsel, T. Jung, A. Kirakosian, J. L. Lin, D. Y. Petrovykh, H. Rausher and J. Viernow, MRS Bulletin 24 (8) (1999) 20.

    CAS  Google Scholar 

  42. H. Dai, E. W. Wong, Y. Z. Lu, S. Fan and C. M. Lieber, Nature 375 (1995) 769.

    Article  CAS  Google Scholar 

  43. W. Han, S. Fan, W. Li and Y. Hu, Science 277 (1997) 1287.

    Article  CAS  Google Scholar 

  44. C. R. Martin, Science 266 (1994) 1961.

    Google Scholar 

  45. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4 (1964) 89.

    Article  CAS  Google Scholar 

  46. R. S. Wagner, in Whisker Technology, Edited by A. P. Levitt, Wiley, New York (1970).

    Google Scholar 

  47. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons and W. E. Buhro, Science 270 (1995) 1791.

    Article  CAS  Google Scholar 

  48. T. J. Trentler, S. C. Goel, K. M. Hickman, A. M. Viano, M. Y. Chiang, A. M. Beatty, P. C. Gibbons and W. E. Buhro, J. Am. Chem. Soc. 119 (1997) 2172.

    Article  CAS  Google Scholar 

  49. P. Yang and C. M. Lieber, Science 273 (1996) 1836.

    Article  CAS  Google Scholar 

  50. P. Yang and C. M. Lieber, J Mater. Res. 12 (1997) 2981.

    Google Scholar 

  51. M. S. El-Shall and A. S. Edelstein, in Nanomaterials: Synthesis, Properties and Applications, Edited by A. S. Sedelstein and R. C. Cammarata, Institute of Physics, Philadephia (1996).

    Google Scholar 

  52. A. M. Morales and C. M. Lieber, Science 279 (1998) 208.

    Article  CAS  Google Scholar 

  53. X. Duan, J. Wang and C. M. Lieber, Appl. Phys. Lett. 76 (2000) 1116.

    Article  CAS  Google Scholar 

  54. X. Duan and C. M. Lieber, J. Am. Chem. Soc. 122 (2000) 188.

    Article  CAS  Google Scholar 

  55. Q. Wei and C. M. Lieber, Mat. Res. Soc. Symp. Proc. 581 (2000) 219–223.

    Article  CAS  Google Scholar 

  56. M. B. Panish, J. Electrochem. Soc. 114 (1969) 517.

    Google Scholar 

  57. M. S. Gudiksen and C. M. Lieber, J. Am. Chem. Soc. 122 (2000) 8801.

    Article  CAS  Google Scholar 

  58. Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang and C. M. Lieber, Appl. Phys. Lett. 78 (2001) 2214.

    Article  CAS  Google Scholar 

  59. Y. Cui and C. M. Lieber et al. (unpublished results).

    Google Scholar 

  60. J. Hu, M. Ouyang, P. Yang and C. M. Lieber, Nature 399 (1999) 48–51.

    Article  CAS  Google Scholar 

  61. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. Smith and C. M. Lieber, Nature 415 (2002) 617–620.

    Article  CAS  Google Scholar 

  62. Y. Wu, R. Fan and R. Yang, Nano Lett. 2 (2002) 83.

    Article  CAS  Google Scholar 

  63. M. T. Bjork, B. J. Ohlosson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg and L. Samuelson, Nano Lett. 2 (2002) 87.

    Article  Google Scholar 

  64. L. Lauhon, M. S. Gudiksen, D. Wang and C. M. Lieber, Nature 420 (2002) 57.

    Article  CAS  Google Scholar 

  65. S. M. Sze, Semiconductor Devices, Physics and Technology, Wiley, New York (1985) pp. 208–210.

    Google Scholar 

  66. O. Madelung, in LANDOLT-BORNSTEIN New Series: Vol III/22a, Semiconductors: Intrinsic properties of Group IV Elements and III-V and II-VI and I-VII Compounds, Edited by O. Madelung, Springer-Berlin, Heidelberg (1987).

    Google Scholar 

  67. Y. Huang, X. Duan, Y. Cui and C. M. Lieber, Nano Lett. 2 (2002) 101.

    Article  CAS  Google Scholar 

  68. C. M. Lieber et al. (unpublished results).

    Google Scholar 

  69. Y. Cui, Z. Zhong, D. Wang, W. U. Wang and C. M. Lieber (submitted).

    Google Scholar 

  70. R. Chau, Proc. IEDM 2001, 621.

    Google Scholar 

  71. X. Duan, Y. Huang and C. M. Lieber, Nano Lett. 2 (2002) 487.

    Article  CAS  Google Scholar 

  72. G. Goldoni, F. Rossi and E. Molinari, Phys. Rev. Lett. 80 (1998) 4995.

    Article  CAS  Google Scholar 

  73. M. S. Gudiksen, J. Wang and C. M. Lieber, J. Phys. Chem. B 106 (2002) 4036.

    Article  CAS  Google Scholar 

  74. H. Fu and A. Zunger, Phys. Rev. B 55 (1997) 1642.

    Article  CAS  Google Scholar 

  75. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui and C. M. Lieber, Science 293 (2001) 1455.

    Article  CAS  Google Scholar 

  76. S. Ura, H. Sunagawa, T. Suhara and H. Nishihara, J. Lightwave Tech. 6 (1988) 1028.

    Article  Google Scholar 

  77. C. J. Chen, K. K. Choi, L. Rokhinson, W. H. Chang and D. C. Tsui, Appl. Phys. Lett. 74 (1999) 862.

    Article  CAS  Google Scholar 

  78. Y.Cui, Q. Wei, H. Park and C. M. Lieber, Science 293 (2001) 1289.

    Google Scholar 

  79. P. Bergveld, IEEE Trans. Biomed. Eng. BME-19 (1972) 342.

    Google Scholar 

  80. G. F. Blackburn, in Biosensors: Fundamentals and Applications, Edited by A. P. F. Turner, I. Karube and G. S. Wilson, Oxford University Press, Oxford (1987) pp. 481–530.

    Google Scholar 

  81. D. V. Vezenov, A. Noy, L. F. Rozsnyai and C. M. Lieber, J. Am. Chem. Soc. 119 (1997) 2006.

    Article  Google Scholar 

  82. G. H. Bolt, J. Phys. Chem. 61 (1957) 1166.

    Article  Google Scholar 

  83. C. B. Klee and T. C. Vanaman, Adv. Protein Chem. 35 (1982) 213.

    Article  CAS  Google Scholar 

  84. M. Wilchek and E. A. Bayer, Methods Enzymol. 184 (1990) 49.

    Article  Google Scholar 

  85. L. Movileanu, S. Howorka, O. Braha and H. Bayley, Nature Biotechnol. 18 (2000) 109.

    Google Scholar 

  86. H. Bagci, E Kohen, U. Kuscuoglu, E. A. Bayer and M. Wilchek, FEBS Lett. 322 (1993) 47.

    Article  CAS  Google Scholar 

  87. R. C. Blake II, A. R. Pavlov and D. A. Blake, Anal. Biochem. 272 (1999) 123.

    Article  CAS  Google Scholar 

  88. M. D. Abeloff, J. O. Armitage, A. S. Licbter and J. E. Niederbuber, Clinical Oncology, Churchill Livingstone, New York (2000).

    Google Scholar 

  89. A. M. Ward, J. W. E Catto and F. C. Hamdy, Ann. Clin. Biochem. 38 (2001) 633.

    Article  CAS  Google Scholar 

  90. Y. Cui, W. U. Wang, L. Huynh and C. M. Lieber (submitted).

    Google Scholar 

  91. J. T. Wu, B. W. Lyons, G. H. Liu and L. L. Wu, J. Clin. Lab. Anal. 12 (1998) 6.

    Article  CAS  Google Scholar 

  92. C. A. Stover, D. L. Koch and C. Cohen, J. Fluid Mech. 238 (1992) 277.

    Article  CAS  Google Scholar 

  93. D. L. Koch and E. S. G. Shaqfeh, Phys. Fluids A 2 (1990) 2093.

    Article  CAS  Google Scholar 

  94. Y. Huang, X. Duan and C. M. Lieber (unpublished results).

    Google Scholar 

  95. J. Hahm, Y. Huang and C. M. Lieber (unpublished results).

    Google Scholar 

  96. D. Whang, Y. Wu and C. M. Lieber (unpublished results).

    Google Scholar 

  97. S. M. Sze, Physics of Semiconductor Devices, Wiley, New York (1981).

    Google Scholar 

  98. Y. Huang, X. Duan and C. M. Lieber (unpublished results).

    Google Scholar 

  99. Y. Huang, X. Duan and C. M. Lieber (unpublished results).

    Google Scholar 

  100. M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292 (2001) 1897.

    Article  CAS  Google Scholar 

  101. P. Horowitz and W. Hill, The Art of Electronics, Cambridge University Press, Cambridge (1989).

    Google Scholar 

  102. D. Wang, Z. Zhong and C. M. Lieber (unpublished results).

    Google Scholar 

  103. Y. Huang, X. Duan and C. M. Lieber (unpublished results).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cui, Y., Duan, X., Huang, Y., Lieber, C.M. (2003). Nanowires as Building Blocks for Nanoscale Science and Technology. In: Wang, Z.L. (eds) Nanowires and Nanobelts. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-28745-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-28745-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28705-8

  • Online ISBN: 978-0-387-28745-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics