Skip to main content

Eye Design and Vision in Deep-Sea Fishes

  • Chapter
Sensory Processing in Aquatic Environments

Abstract

The three great faunal zones of the deep-sea—the twilight mesopelagic zone, the numbingly dark bathypelagic zone, and the vast flat expanses of the benthic zone—are home to an enormous variety of fishes. In each of these zones, the light environment is unique and highly predictable. In the mesopelagic zone (150-l,000m), the downwelling daylight creates an extended scene that becomes increasingly dimmer with depth. Bioluminescent point-source flashes, on the other hand, become increasingly visible. Upon entry to the bathypelagic zone at 1,000 m no daylight remains, and the scene becomes entirely dominated by point-like bioluminescence. This changing nature of visual scenes with depth—from extended source to point source—has had a profound effect on the eyes and visual capacities of deep-sea fishes. So too has the wide and dim horizon seen by benthic fishes as they cruise over the ocean floor. An exploration of these effects is the topic of this review. The eyes of fishes living at different depths in all three zones are compared, and their eye designs related to what is known of their natural histories. This analysis leads to the conclusion that the intensity, direction, and particularly the spatial organization of light into extended and point-like sources have been the dominant players in the evolution of deep-sea visual systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aho, A.-C., Donner, K., Helenius, S., Larsen, L.O., and Reuter, T. (1993). Visual performance of the toad (Bufo bufo) at low light levels: Retinal ganglion cell responses and prey-catching accuracy. J. Comp. Physiol. A. 172:671–682.

    Article  PubMed  CAS  Google Scholar 

  • Aho, A.-C., Donner, K., Hydén, C., Larsen, L.O., and Reuter, T. (1988). Low retinal noise in animals with low body temperature allows high visual sensitivity. Nature 334:348–350.

    Article  PubMed  CAS  Google Scholar 

  • Bozzano, A., and Collin, S.P. (dy2000). Retinal ganglion cell topography in elasmobranchs. Brain. Behav. Evol. 55:191–208.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, G.L., and Denton, E.J. (1962). Light and animal life. In: The Sea (Hill, M.N., ed.), pp. 456–468. New York, London: Wiley-Interscience.

    Google Scholar 

  • Clarke, G.L., and Hubbard, C.J. (1959). Quantitative records of the luminescent flashing of oceanic animals at great depths. Limn. Oceanog. 4:173–180.

    Google Scholar 

  • Cohen, J.E. (1994). Marine and continental food webs: Three paradoxes? Phil. Trans. R. Soc. Lond. B. 343:57–69.

    Article  Google Scholar 

  • Collin, S.P. (1997). Specialisations of the teleost visual system: Adaptive diversity from shallowwater to deep-sea. Acta. Physiol. Scand. 161,Suppl. 638:5–24.

    Google Scholar 

  • Collin, S.P., and Partridge, J.C. (1996). Fish vision: Retinal specialisations in the eyes of deep-sea teleosts. J. Fish Biol. 49A:157–174.

    Google Scholar 

  • Collin, S.P., and Pettigrew, J.D. (1988). Retinal topography in reef teleosts. II. Some species with prominent horizontal visual streaks and high density. Brain Behav. Evol. 31:283–295.

    Article  PubMed  CAS  Google Scholar 

  • Collin, S.P., Hoskins, R.V., and Partridge, J.C. (1997). Tubular eyes of deep-sea fishes: A comparative study of retinal topography. Brain Behav. Evol. 50:335–357.

    Article  PubMed  CAS  Google Scholar 

  • Collin, S.P., Hoskins, R.V., and Partridge, J.C. (1998). Seven retinal specialisations in the tubular eyes of the deep-sea pearleye Scopelarchus michaeisarsi: A case study in visual optimisation. Brain Behav. Evol. 51:291–314.

    Article  PubMed  CAS  Google Scholar 

  • Collin, S.R, Lloyd, D.J., and Wagner, H.-J. (2000). Foveate vision in deep-sea teleosts: A comparison of primary visual and olfactory inputs. Phil. Trans. R. Soc. Lond. B. 355:1315–1320.

    Article  CAS  Google Scholar 

  • Denton, E.J. (1990). Light and vision at depths greater than 200 metres. In: Light and Life in the Sea (Herring, P.J., Campbell, A.K., Whitfield, M., and Maddock, L., eds.), pp. 127–148. Cambridge: Cambridge University Press.

    Google Scholar 

  • Denton, E.J., Gilpin-Brown, J.B., and Wright, P.G. (1972). The angular distribution of the light produced by some mesopelagic fish in relation to their camouflage. Proc. R. Soc. Lond. B. 182:145–158.

    Google Scholar 

  • Douglas, R.H., and Thorpe, A. (1992). Shortwave absorbing pigments in the ocular lenses of deepsea teleosts. J. Mar. Biol. Assoc. U.K. 72:93–112.

    Article  Google Scholar 

  • Ellis, R. (1996). Deep Atlantic. New York: Lyons Press.

    Google Scholar 

  • Frank, T.M., and Widder, E.A. (1996). UV light in the deep sea: In situ measurements of downwelling irradiance in relation to the visual threshold sensitivity of UV-sensitive crustaceans. Mar. Fresh. Behav. Physiol. 27:189–197.

    Google Scholar 

  • Herring, P.J. (1978). Bioluminescence in invertebrates other than insects. In: Bioluminescence in Action (Herring, RE, ed.), pp. 199–200. London: Academic Press.

    Google Scholar 

  • Herring, P.J. (2000). Species abundance, sexual encounter and bioluminescent signalling in the deep sea. Phil. Trans. R. Soc. Lond. B. 355:1273–1276.

    Article  CAS  Google Scholar 

  • Jagger, W.S., and Muntz, W.R.A. (1993). Aquatic vision and the modulation transfer properties of unlighted and diffusely lighted natural waters. Vision Res. 33:1755–1763.

    Article  PubMed  CAS  Google Scholar 

  • Jerlov, N.G. (1976). Marine Optics. Amsterdam: Elsevier Scientific.

    Google Scholar 

  • Kirschfeld, K. (1974). The absolute sensitivity of lens and compound eyes. Z. Naturforsch. 29C:592–596.

    CAS  Google Scholar 

  • Land, M.F. (1981). Optics and vision in invertebrates. In: Handbook of Sensory Physiology, Vol. VII/6B (Autrum, H., ed.), pp. 471–592. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Land, M.F. (2000). On the functions of double eyes in midwater animals. Phil. Trans. R. Soc. Lond. B. 355:1147–1150.

    Article  CAS  Google Scholar 

  • Laughlin, S.B., de Ruyter van Steveninck, R.R., and Anderson, J.C. (1998). The metabolic cost of neural information. Nature Neurosci. 1:36–41.

    Article  PubMed  CAS  Google Scholar 

  • Locket, N.A. (1971). Retinal anatomy in some scopelarchid deep-sea fishes. Proc. R. Soc. Lond. B. 178:161–184.

    PubMed  CAS  Google Scholar 

  • Locket, N.A. (1977). Adaptations to the deep-sea environment. In: Handbook of Sensory Physiology, Vol. VII/5 (Crescitelli, F., ed.), pp. 67–192. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Locket, N.A. (1985). The multiple bank rod foveae of Bajacalifornia drakei, an alepocephalid deep-sea teleost. Proc. R. Soc. Lond. B. 224:7–22.

    Google Scholar 

  • Locket, N.A. (1992). Problems of deep foveas. Aust. NZ. J. Ophthalm. 20:281–295.

    Article  CAS  Google Scholar 

  • Locket, N.A. (1999). Vertebrate photoreceptors. In: Adaptive Mechanisms in the Ecology of Vision (Archer, S.N, Djamgoz, M.B.A., Loew, E.R., Partridge, J.C., and Vallerga, S., eds.), pp. 51–71. Dordrecht, Boston, London: Kluwer Academic.

    Google Scholar 

  • Locket, N.A. (2000). On the lens pad of Benthalbella infans, a scopelarchid deep-sea teleost. Phil. Trans. R. Soc. Lond. B. 355:1167–1169.

    Article  CAS  Google Scholar 

  • Losey, G.S., Cronin, T.W., Goldsmith, TH., Hyde, D., Marshall, N.J., and McFarland, W.N. (1999). The UV visual world of fishes: A review. J. Fish. Biol. 54:921–943.

    Article  Google Scholar 

  • Lythgoe, J.N. (1979). The Ecology of Vision. Oxford: Clarendon Press.

    Google Scholar 

  • Lythgoe, J.N. (1988). Light and vision in the aquatic environment. In: Sensory Biology of Aquatic Animals (Atema, J., Fay, R.R., Popper, A.N., and Tavolga, W.N, eds.), pp. 57–82. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Marshall, N.B. (1954). Aspects of Deep-Sea Biology. London: Hutchinson.

    Google Scholar 

  • Marshall, N.B. (1971). Explorations in the Life of Fishes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Marshall, N.B. (1979). Developments in Deep-Sea Biology. Poole: Blandford.

    Google Scholar 

  • Matthiessen, L. (1882). Über die Beziehungen, welche zwischen dem Brechungsindex des Kernzentrums der Krystalllinse und den Dimensionen des Auges bestehen. Pflügers Arch. ges. Physiol. 27:510–523.

    Article  Google Scholar 

  • Munk, O. (1959). The eyes of Ipnops murrayi Gunther 1887. Galathea Rep. 3:79–87.

    Google Scholar 

  • Munk, O. (1966). Ocular anatomy of some deep-sea teleosts. Dana Rep. 70:1–62.

    Google Scholar 

  • Munk, O. (dy1980). Hvirveldyrøjet: Bygning, funktion og tilpasning. Copenhagen: Berlingske Forlag.

    Google Scholar 

  • Munk, O., and Frederiksen, R.D. (1974). On the function of aphakic apertures in teleosts. Vidensk Meddr. Dansk. Naturh. Foren. 137:65–94.

    Google Scholar 

  • Muntz, W.R.A. (1976). On yellow lenses in mesopelagic animals. J. Mar. Biol. Assoc. U.K. 56:963–976.

    Google Scholar 

  • Murray, I, and Hjort, J. (1912). The Depths of the Ocean. London: Macmillan.

    Google Scholar 

  • Nilsson, D.-E. (1997). Eye design, vision and invisibility in planktonic invertebrates. In: Zooplankton: Sensory Ecology and Physiology (Lenz, EH., Hartline, D.K., and Purcell, J.E, eds.), pp. 149–162. Newark: Gordon & Breach.

    Google Scholar 

  • Partridge, J.C., Shand, I, Archer, S.N., Lythgoe, J.N., and van Groningen-Luyben, W.A.H.M. (1989). Interspecific variation in the visual pigments of deep-sea fishes. J. Comp. Physiol. A. 164:513–529.

    Article  PubMed  CAS  Google Scholar 

  • Somiya, H. (1976). Functional significance of the yellow lens in the eyes of Argyropelecus affinis. Mar. Biol. 34:93–99.

    Article  Google Scholar 

  • Tyler, J.E., and Smith, R.C. (1970). Measurement of Spectral Irradiance Underwater. New York: Gordon & Breach.

    Google Scholar 

  • Wagner, H.-J., Fröhlich, E., Negishi, K., and Collin, S.P. (1998). The eyes of deep sea fish. II. Functional morphology of the retina. Prog. Retin. Eye. Res. 17:637–685.

    Article  PubMed  CAS  Google Scholar 

  • Walls, G.L. (1942). The Vertebrate Eye and its Adaptive Radiation. Bloomfield Hills, Michigan: Cranbrook Press.

    Google Scholar 

  • Warrant, E.J. (2000). The eyes of deep-sea fishes and the changing nature of visual scenes with depth. Phil. Trans. R. Soc. Lond. B. 355:1155–1159.

    Article  CAS  Google Scholar 

  • Warrant, E.J., and Nilsson, D.-E. (1998). Absorption of white light in photoreceptors. Vision Res. 38:195–207.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Warrant, E.J., Collin, S.P., Locket, N.A. (2003). Eye Design and Vision in Deep-Sea Fishes. In: Collin, S.P., Marshall, N.J. (eds) Sensory Processing in Aquatic Environments. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22628-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22628-6_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95527-8

  • Online ISBN: 978-0-387-22628-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics