Skip to main content

Chemically Mediated Strategies to Counter Predation

  • Chapter
Sensory Processing in Aquatic Environments

Abstract

Predator-prey interactions govern the evolution of many behavioral and morphological traits of aquatic animals. In aquatic environments, chemical cues reliably allow prey to assess and avoid predation risk. In this chapter, I review the classes of chemical cues involved in a predation event and ways in which these cues mediate predator-prey interactions. Predators release signature odors that prey use to detect risk of predation. Prey release several types of cues. Chemical deterrents are noxious substances that are either synthesized de novo or acquired from the diet. Disturbance cues are released by startled but noninjured prey. Alarm cues are chemicals released by damaged tissue injured by a predator’s attack, or after passage through the digestive system of a predator (dietary alarm cues). Prey species are adept at detecting the odor of predators. Experience plays a role in allowing prey to learn to associate risk with visual and chemical correlates of predation risk. Prey respond to chemical cues of predation risk by adopting antipredator behaviors, shifting foraging and reproductive behaviors in a risksensitive fashion, producing morphological defences, and by shifting life-history traits. Future work should be directed at a more precise knowledge of the mechanisms of chemical communication (the chemical nature of the cues and the physiology of olfactory receptors) and better understanding of the role of chemical cues in shaping multispecies ecosystems, preferably from field experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aabjörnsson, K., Wagner, B.M.A., Axelsson, A., Bjerselius, R., and Olsen. (1997). Responses of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis). Oecologia 111:166–171.

    Article  Google Scholar 

  • Adams, M.J., and Claeson, S. (1998). Field response of tadpoles to conspecific and heterospecific alarm. Ethology 104:955–961.

    Google Scholar 

  • Agrawal, A.A., Laforsch, C., and Tollrian, R. (1999). Transgenerational induction of defences in animals and plants. Nature 401:60–63.

    Article  CAS  Google Scholar 

  • Al-Hassen, J.M., Thompson, M., Criddle, K.R., Summers, B., and Criddle, R.S. (1985). Catfish epidermal secretions in response to threat or injury: A novel defense response. Mar. Biol. 88: 117–123.

    Article  Google Scholar 

  • Appelberg, M., Soederbaeck, B., and Odelstroem, T. (1993). Predator detection and perception of predation risk in the crayfish Astacus astacus L. Nord. J. Fresh. Res. 68:55–62.

    Google Scholar 

  • Appleton, R.D., and Palmer, A.R. (1988). Waterborne stimuli released by predatory crabs and damaged prey induce more predator-resistant shells in a marine gastropod. Proc. Natl. Acad. Sci. USA 85:4387–4391.

    Article  PubMed  CAS  Google Scholar 

  • Atema, J., and Stenzler, D. (1977). Alarm substance of the marine mud snail, Nassarius obsoletus: Biological characterization and possible evolution. J. Chem. Ecol. 3:173–187.

    Article  Google Scholar 

  • Beiden, L.K., Wildy, E.L., Hatch, A.C., and Blaustein, A.R. (2000). Juvenile western toads, Bufo boreas, avoid chemical cues of snakes fed juvenile, but not larval, conspecifics. Anim. Behav. 59:871–875.

    Article  Google Scholar 

  • Blazer, V.S., Fabacher, D.L., Little, E.E., Ewing, M.S., and Kocan, K.M. (1997). Effects of ultraviolet-B radiation on fish: Histological comparison of a UVB-sensitive and a UVB-tolerant species. J. Aquat. Anim. Health. 9:132–143.

    Article  Google Scholar 

  • Boiser, R.C., and Hay, M.E. (1996). Are tropical plants better defended? Palatability and defences of temperate vs. tropical seaweeds. Ecology 77: 2269–2286

    Article  Google Scholar 

  • Brönmark, C., and Miner, L.B. (1992). Predatorinduced phenotypical change in body morphology in crucian carp. Science 258:1348–1350.

    Article  PubMed  Google Scholar 

  • Brooks, W.R. (1989). Hermit crabs alter sea anemone placement patterns for shell balance and reduced predation. J. Exp. Mar. Biol. Ecol. 132:109–121.

    Article  Google Scholar 

  • Brown, G.E., and Godin, J.-G.J. (1997). Antipredator responses to conspecific and heterospecific skin extracts by threespine sticklebacks: Alarm pheromones revisited. Behaviour 134: 1123–1134.

    Article  Google Scholar 

  • Brown, G.E., and Godin, J.-G.J. (1999a). Chemical alarm signals in wild Trinidadian guppies (Poecilia reticulata). Can. J. Zool. 77:562–570.

    Article  CAS  Google Scholar 

  • Brown, G.E., and Godin, J.-G.J. (1999b). Who dares, learns: Chemical inspection behaviour and acquired predator recognition in a characin fish. Anim. Behav. 57:475–481.

    Article  PubMed  Google Scholar 

  • Brown, G.E., and Smith, R.J.F. (1996). Foraging trade-offs in fathead minnows (Pimephales promelas, Osteichthyes, Cyprinidae): Acquired predator recognition in the absence of an alarm response. Ethology 102:776–785.

    Google Scholar 

  • Brown, G.E., Adrian, J.C. Jr., and Shih, M.L. (2001). Behavioural responses of fathead minnows to hypoxanthine-3-N-oxide at varying concentrations. J. Fish Biol. 58:1465–1470.

    Google Scholar 

  • Brown, G.E., Chivers, D.P., and Smith, R.J.F. (1995). Fathead minnows avoid conspecific and heterospecific alarm pheromones in the faeces of northern pike. J. Fish Biol. 47:387–393.

    Google Scholar 

  • Brown, G.E., Adrian, J.C. Jr., Smyth, E., Leet, H., and Brennan, S. (2000). Ostariophysan alarm pheromones: Laboratory and field tests of the functional significance of nitrogen oxides. J. Chem. Ecol. 26:139–154.

    Article  CAS  Google Scholar 

  • Bryant, P.B. (1987). A study of the alarm system in selected fishes of Northern Mississippi. PhD dissertation, University of Mississippi.

    Google Scholar 

  • Bryer, P.J., Mirza, R.S., and Chivers, D.P. (2001). Chemosensory assessment of predation risk by slimy sculpins (Cottus cognatus): Responses to alarm, disturbance, and predator cues. J. Chem. Ecol. 27:533–546.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, G.B., and Johnson, E.G. (1997). An electron microscope study of intrusions into alarm substance cells of the channel catfish. J. Fish Biol. 51:503–514.

    Article  Google Scholar 

  • Chivers, D.P., and Smith, R.J.F. (1994a). Intraand interspecific avoidance of marked areas with skin extract from brook sticklebacks (Culaea inconstans). J. Chem. Ecol. 20:1517–1524.

    Article  Google Scholar 

  • Chivers, D.P., and Smith, R.J.F. (1994b). Fathead minnows, Pimephales promelas, acquire predator recognition when alarm substance is associated with the sight of unfamiliar fish. Anim. Behav. 48:597–605.

    Article  Google Scholar 

  • Olivers, D.P., and Smith, R.J.F. (1998). Chemical alarm signalling in aquatic predator-prey systems: A review and prospectus. Ecoscience 5:338–352.

    Google Scholar 

  • Chivers, D.P., Brown, G.E., and Smith, R.J.F. (1996a). The evolution of chemical alarm signals: Attracting predators benefits alarm signal senders. Am. Nat. 148:649–659.

    Article  Google Scholar 

  • Chivers, D.P., Puttlitz, M.H., and Blaustein, A.R. (2000). Chemical alarm signaling by reticulate sculpins, Cottus perplexus. Environ. Biol. Fish 57:347–352.

    Article  Google Scholar 

  • Chivers, D.P., Wisenden, B.D., and Smith, R.J.F. (1995). The role of experience in the response of fathead minnows (Pimephales promelas) to skin extract of Iowa darters (Etheostoma exile). Behaviour 132:665–674.

    Article  Google Scholar 

  • Chivers, D.P., Wisenden, B.D., and Smith, R.J.F. (1996b). Damselfiy larvae learn to recognize predators from chemical cues in the predator’s diet. Anim. Behav. 52:315–320.

    Article  Google Scholar 

  • Chivers, D.P., Kiesecker, J.M., Wildy, E.L., Anderson, M.T., and Blaustein, A.R. (1997). Chemical alarm signalling in terrestrial salamanders: Intraand interspecific responses. Ethology 103:599–613.

    Google Scholar 

  • Chivers, D.P., Kiesecker, J.M., Marco, A., Wildy, E.L., and Blaustein, A.R. (1999). Shifts in life history as a response to predation in western toads (Bufo boreas). J. Chem. Ecol. 25:2455–2464.

    Article  CAS  Google Scholar 

  • Christine, A., Utne, W., and Bacchi, B. (1997). The influence of visual and chemical stimuli from cod Gadus morhua on the distribution of two-spotted goby Gobiusculus flavescens (Fabricius). Sarsia 82:129–135.

    Google Scholar 

  • Cieri, M.D., and Stearns, D.E. (1999). Reduction of grazing activity of two estuarine copepods in response to the exudate of a visual predator. Mar. Ecol. Prog. Ser. 177:157–163.

    Article  Google Scholar 

  • Commens, A.M., and Mathis, A. (1999). Alarm pheromones of rainbow darters and responses to skin extracts of conspecifics and congeners. J. Fish Biol. 55:1359–1362.

    Article  Google Scholar 

  • Covich, A.P., Crowl, T.A., Alexander, J.E. Jr., and Vaughn, C.C. (1994). Predator-avoidance responses in freshwater decapod-gastropod interactions mediated by chemical stimuli. J. North Am. Benthol. Soc. 13:283–290.

    Article  Google Scholar 

  • Dawidowicz, P., and Loose, C.J. (1992). Metabolic costs during predator-induced diel vertical migration of Daphnia. Limnol. Oceanogr. 37: 1589–1595.

    Google Scholar 

  • Dawidowicz, P., Pijanowska, J., and Ciechomski, K. (1990). Vertical migration of Chaoborus larvae is induced by the presence of fish. Limnol. Oceanogr. 35:1631–1637.

    Google Scholar 

  • de Meester, L. (1993). Genotype, fish-mediated chemicals, and phototactic behavior in Daphnia magna. Ecology 74:1467–1474.

    Article  Google Scholar 

  • Dewitt, T.J., Sih, A., and Hucko, J.A. (1999). Trait compensation and cospecialization in a freshwater snail: Size, shape and antipredator behaviour. Anim. Behav. 58:397–407.

    Article  PubMed  Google Scholar 

  • d’Heursel, A., and Haddad, C.F.B. (1999). Unpalatability of Hyla semilineata tadpoles (Anura) to captive and free-ranging vertebrate predators. Ethol. Ecol. Evol. 11:339–348.

    Google Scholar 

  • Dodson, S.I. (1989). The ecological role of chemical stimuli for the Zooplankton: Predator-induced morphology in Daphnia. Oecologia 78:361–367.

    Article  Google Scholar 

  • Dodson, S.I., and Wagner, A.E. (1996). Temperature affects selectivity of Chaoborus larvae eating Daphnia. Hydrobiologia 325:157–161.

    Article  CAS  Google Scholar 

  • Ebel, R., Marin, A., and Proksch, P. (1999). Organ-specific distribution of dietary alkaloids in the marine opisthobranch Tylodina perversa. Biochem. Syst. Ecol. 27:769–777.

    Article  CAS  Google Scholar 

  • Eklöv, P. (2000). Chemical cues from multiple predator-prey interactions induce changes in behavior and growth of anuran larvae. Oecologia 123:192–199.

    Article  Google Scholar 

  • Elliott, J.K., Ross, D.M., Pathirana, C., Miao, S., Andersen, R.J., Singer, P., Kokke, W.C.M.C., and Ayer, W.A. (1989). Induction of swimming in Stomphia (Anthozoa: Actiniaria) by imbricatine, a metabolite of the asteroid Dermasterias imbricata. Biol. Bull. Mar. Biol. Lab. Woods Hole 176:73–78.

    Article  CAS  Google Scholar 

  • Epifanio, R.A., Martins, D.L., Villaca, R., and Gabriel, R. (1999). Chemical defenses against fish predation in three Brazilian octocorals: 11 beta, 12 beta-epoxypukalide as a feeding deterrent in Phyllogorgia dilatata. J. Chem. Ecol. 25:2255–2266.

    Article  CAS  Google Scholar 

  • Gelowitz, C.M., Mathis, A., and Smith, R.J.F. (1993). Chemosensory recognition of northern pike (Esox lucius) by brook stickleback (Culaea inconstans): Population differences and the influence of predator diet. Behaviour 127:105–118.

    Article  Google Scholar 

  • Gillette, R., Huang, R., Hatcher, N., and Moroz, L.L. (2000). Cost-benefit analysis potential in feeding behavior of a predatory snail by integration of hunger, taste, and pain. Proc. Natl. Acad. Sci. USA 97:3585–3590.

    Article  PubMed  CAS  Google Scholar 

  • Gochfeld, D. (1995). Evidence for predation-induced defenses in a hard coral. Twentythird Benthic Ecology Meeting, Rutgers State Univ. Inst. Marine Coastal Sciences, New Brunswick, NJ.

    Google Scholar 

  • Godard, R.D., Bowers, B.B., and Wannamaker, C. (1998). Responses of golden shiner minnows to chemical cues from snake predators. Behaviour 135:1213–1228.

    Google Scholar 

  • Griffiths, R.A., Schley, L., Sharp, P.E., Dennis, J.L., and Roman, A. (1998). Behavioural responses of Mallorcan midwife toad tadpoles to natural and unnatural snake predators. Anim. Behav. 55:207–214.

    Article  PubMed  Google Scholar 

  • Hall, D., and Suboski, M.D. (1995). Visual and olfactory stimuli in learned release of alarm reactions by zebra danio fish (Brachydanio rerio). Neurobiol. Learn. Mem. 63:229–240.

    Article  PubMed  CAS  Google Scholar 

  • Hanifin, C.T., Yotsu-Yamashita, M., Yasumoto, T., Brodie, E.D. III, and Brodie, E.D. Jr. (1999). Toxicity of dangerous prey: Variation of tetrodotoxin levels within and among populations of the newt Taricha granulose. J. Chem. Ecol. 25: 2161–2176.

    Article  CAS  Google Scholar 

  • Hartman, E.J., and Abrahams, M.V. (2000). Sensory compensation and the detection of predators: The interaction between chemical and visual information. Proc. R. Soc. Lond. B. 267:571–575.

    Article  CAS  Google Scholar 

  • Harvell, C.D., West, J.M., and Griggs, C. (1996). Chemical defense of embryos and larvae of a West Indian gorgonian coral, Briareum asbestinum. Invert. Reprod. Devel. 30:239–246.

    CAS  Google Scholar 

  • Hazlett, B.A. (1985). Disturbance pheromones in the crayfish Orconectes virilis Chem. Ecol. 11: 1695–1711.

    Article  CAS  Google Scholar 

  • Hazlett, B.A. (1990a). Disturbance pheromone in the hermit crab Calcinas laevimanus (Randall, 1840). Crustaceana 58:314–316.

    Article  Google Scholar 

  • Hazlatt, B.A. (1990b). Source and nature of disturbance-chemical system in crayfish. J. Chem. Ecol. 16:2263–2275.

    Article  Google Scholar 

  • Heckmann, K. (1995). Predator-induced defences in Protozoa. Naturwissenschaften 82:107–116.

    Article  Google Scholar 

  • Hedberg, T.S. (1981). A possible stress-warning marker in ambystomatid salamanders. J. Exp. Zool. 216:349–355.

    Article  Google Scholar 

  • Hews, D.K. (1988). Alarm response in larval western toads, Bufo boreas, release of larval chemicals by a natural predator and its effect on predator captue efficiency. Anim. Behav. 36:125–133.

    Article  Google Scholar 

  • Hirvonen, H., Ranta, E., Piironen, J., Laurila, A., and Peuhkuri, N. (2000). Behavioural responses of naive Arctic charr young to chemical cues from salmonid and non-salmonid fish. Oikos 88: 191–199.

    Article  Google Scholar 

  • Holopainen, I.J., Aho, J., Vornanen, M., and Huuskonen, H. (1997). Phenotypic plasticity and predator effects on morphology and physiology of crucian carp in nature and in the laboratory. J. Fish Biol. 50:781–798.

    Article  Google Scholar 

  • Hugie, D.M., Thuringer, P.L., and Smith, R.J.F. (1991). The response of the tidepool sculpin Oligocottus maculosus, to chemical stimuli from injured conspecifics and alarm signalling in the Cottidae (Pisces). Ethology 89:322–334.

    Google Scholar 

  • Huhta, A., Muotka, T., Juntunen, A., and Yrjoenen, M. (1999). Behavioural interactions in stream food webs: The case of drift-feeding fish, predatory invertebrates and grazing mayflies. J. Anim. Ecol. 68:917–927.

    Article  Google Scholar 

  • Huryn, A.D., and Chivers, D.P. (1999). Contrasting behavioral responses by detritivorous and predatory mayflies to chemicals released by injured conspecifics and their predators. J. Chem. Ecol. 25:2729–2740.

    Article  CAS  Google Scholar 

  • Jachner, A. (1997). The response of bleak to predator odour of unfed and recently fed pike. J. Fish Biol. 50:878–886.

    Article  Google Scholar 

  • Jacobsen, H.P., and Stabeil, O.B. (1999). Predatorinduced alarm responses in the common periwinkle, Littorina littorea. Dependence on season, light conditions, and chemical labelling of predators. Mar. Biol. 134:551–557.

    Article  Google Scholar 

  • Jakobsen, P.J., and Wedekind, C. (1998). Copepod reaction to odor stimuli influenced by cestode infection. Behav. Ecol. 9:414–418.

    Article  Google Scholar 

  • Jordão, L.C., and Volpato, G.L. (2000). Chemical transfer of warning information in non-injured fish. Behaviour 137:681–690.

    Article  Google Scholar 

  • Kats, L.B., and Dill, L.M. (1998). The scent of death: Chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394.

    Google Scholar 

  • Kats, L.B., Petranka, J.W., and Sih, A. (1988). Antipredator defences and the persistence of amphibian larvae with fishes. Ecology 69:1865–1870.

    Article  Google Scholar 

  • Kerby, J.L., and Kats, L.B. (1998). Modified interactions between salamander life stages caused by wildfire-induced sedimentation. Ecology 79:740–745.

    Google Scholar 

  • Kiesecker, J.M., Chivers, D.P., Marco, A., Quilchanos, C., Anderson, M.T., and Blaustein, A.R. (1999). Identification of a disturbance signal in larval red-legged frogs Rana aurora. Anim. Behav. 57:1295–1300.

    Article  PubMed  Google Scholar 

  • Korpi, N.L., and Wisenden, B.D. (2001). Learned recognition of novel predator odour by zebra danios, Danio rerio, following time-shifted presentation of alarm cue and predator odour. Environ. Biol. Fish 61:205–211.

    Article  Google Scholar 

  • Kusch, J. (1993a). Induction of defensive morphological changes in ciliates. Oecologia 94:571–575.

    Article  Google Scholar 

  • Kusch, J. (1993b). Behavioural and morphological changes in ciliates induced by the predator Amoeba proteus. Oecologia 96:354–359.

    Article  Google Scholar 

  • Kusch, J. (1999). Self-recognition as the original function of an amoeban defence-inducing kairomone. Ecology 80:715–720.

    Google Scholar 

  • Lam, F.L., Brown, G.B., and Parham, J.C. (1974). Purine N-oxides. LVI. Photoisomerization of 1-hydroxy-to 3-hydroxyxanthine: Photochemistry of related 1-hydroxypurines. J. Org. Chem. 39: 1391–1395.

    Article  CAS  Google Scholar 

  • Laurila, A. (2000). Behavioural responses to predator chemical cues and local variation in antipredator performance in Rana temporaria tadpoles. Oikos 88:159–168.

    Article  CAS  Google Scholar 

  • Lebedeva, N.Y., Malyukina, G.A., and Kasumyan, A.O. (1975). The natural repellent in the skin of cyprinids. J. Ichthyol. 15:472–480.

    Google Scholar 

  • Lefcort, H. (1996). Adaptive, chemically mediated fright response in tadpoles of the southern leopard frog, Rana utricularia. Copeia 1996:455–459.

    Article  Google Scholar 

  • Leonard, G.H., Bertness, M.D., and Yund, P.O. (1999). Crab predation, waterborne cues, and inducible defenses in the blue mussel, Mytilus edulis. Ecology 80:1–14.

    Google Scholar 

  • Lima, S.L., and Dill, L.M. (1990). Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68:619–540.

    Google Scholar 

  • Lüning, J. (1995). Life-history responses to Chaoborus of spined and unspined Daphnia pulex. J. Plankton Res. 17:71–84.

    Article  Google Scholar 

  • Lürling, M., and Beekman, W. (1999). Grazerinduced defenses in Scenedesmus (Chlorococcales; Chlorophyceae): Coenobium and spine formation. Phycologia 38:368–376.

    Article  Google Scholar 

  • Lutterschmidt, W.I., Marvin, G.A., and Hutchison, V.H. (1994). Alarm response by a plethodontid salamander (Desmognathus ochrophaeus): Conspecific and heterospecific “Schreckstoff.” J. Chem. Ecol. 20:2751–2760.

    Article  CAS  Google Scholar 

  • McClintock, J.B., and Janssen, J. (1990). Pteropod abduction as a chemical defence in a pelagic Antarctic amphipod. Nature 346:462–464.

    Article  Google Scholar 

  • McIntosh, A.R., and Peckarsky, B.L. (1999). Criteria determining behavioural responses to multiple predators by a stream mayfly. Oikos 85:554–564.

    Article  Google Scholar 

  • Madison, D.M., Maerz, J.C., and McDarby, J.H. (1999). Optimization of predator avoidance by salamanders using chemical cues: Diet and diel effects. Ethology 105:1073–1086.

    Article  Google Scholar 

  • Magurran, A.E., Irving, P.W., and Henderson, P.A. (1996). Is there a fish alarm pheromone? A wild study and critique. Proc. R. Soc. Lond. B. 263: 1551–1556.

    Article  Google Scholar 

  • Marin, A., Lopez, M.D., Esteban, M.A., Meseguer, J., Munoz, J., and Fontana, A. (1998). Anatomical and ultrastructural studies of chemical defence in the sponge Dysidea fragilis. Mar. Biol. 131: 639–645.

    Article  CAS  Google Scholar 

  • Marvin, G.A., and Hutchison, V.H. (1995). Avoidance response by adult newts (Cynops pyrrhogaster and Notophthalmus viridescens) to chemical alarm cues. Behaviour 132:95–106.

    Article  Google Scholar 

  • Mathis, A., and Hoback, W.W. (1997). The influence of chemical stimuli from predators on precopulatory pairing by the amphipod, Gammarus pseudolimnaeus. Ethology 103:33–40.

    Google Scholar 

  • Mathis, A., and Lancaster, D. (1998). Response of terrestrial salamanders to chemical stimuli from distressed conspecifics. Amphibia-Reptilia 19: 330–335.

    Article  Google Scholar 

  • Mathis, A., and Smith, R.J.F. (1992). Avoidance of areas marked with a chemical alarm substance by fathead minnows (Pimephales promelas) in a natural habitat. Can. J. Zool. 70:1473–1476.

    Google Scholar 

  • Mathis, A., and Smith, R.J.F. (1993a). Intraspecific and cross-superorder responses to chemical alarm signals by brood stickleback. Ecology 74:2395–2404.

    Article  Google Scholar 

  • Mathis, A., and Smith, R.J.F. (1993b). Chemical labeling of northern pike (Esox lucius) by the alarm pheromone of fathead minnows (Pimephales promelas). J. Chem. Ecol. 19:1967–1979.

    Article  Google Scholar 

  • Mathis, A., and Smith, R.J.F. (1993c). Fathead minnows, Pimephales promelas, learn to recognize northern pike, Esox lucius, as predators on the basis of chemical stimuli from minnows in the pike’s diet. Anim. Behav. 46:645–656.

    Article  Google Scholar 

  • Mathis, A., and Smith, R.J.F. (1993d). Chemical alarm signals increase the survival time of fathead minnows (Pimephales promelas) during encounters with northern pike (Esox lucius). Behav. Ecol. 4:260–265.

    Article  Google Scholar 

  • Mathis, A., and Vincent, F. (2000). Differential use of visual and chemical cues in predator recognition and threat-sensitive predator avoidance responses by larval newts (Notophthalmus viridescens). Can. J. Zool. 78:1646–1652.

    Article  CAS  Google Scholar 

  • Mathis, A., Chivers, D.P., and Smith, R.J.F. (1995). Chemical alarm signals: Predator deterrents or attractants? Am. Nat. 146:994–1005.

    Article  Google Scholar 

  • Miklósi, Á., Pongrácz, P., and Csányi, V. (1997). The ontogeny of antipredator behaviour in paradise fish larvae (Macropodus opercularis). II. The response to chemical stimuli of heterospecific fishes. Behaviour 134:391–413.

    Article  Google Scholar 

  • Mirza, R.S. (1998). Induced morphological changes in fishes mediated by chemical stimuli associated with predation. MS thesis, University of Saskatchewan, Canada.

    Google Scholar 

  • Mirza, R.S., and Olivers, D.P. (2001). Are chemical alarm cues conserved within salmonid fishes? J. Chem. Ecol. 27:1641–1655.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R.D., Newton, B., and Sih, A. (1996). Delayed hatching as a response of streamside salamander eggs to chemical cues from predatory sunfish. Oikos 77:331–335.

    Article  Google Scholar 

  • Nicieza, A.G. (2000). Interacting effects of predation risk and food availability on larval anuran behaviour and development. Oecologia 123:497–505.

    Article  Google Scholar 

  • Nilsson, P.A., Brönmark, C., and Pettersson, L.B. (1995). Benefits of a predator-induced morphology in crucian carp. Oecologia 104:291–296.

    Article  Google Scholar 

  • Parejko, K., and Dodson, S. (1990). Progress towards characterization of a predator/prey kairomone: Daphnia pulex and Chaoborus americanus. Hydrobiologia 198:51–59.

    Article  Google Scholar 

  • Pettersson, L.B., and Brönmark, C. (1997). Densitydependent costs of an inducible morphological defense in crucian carp. Ecology 78:1805–1815.

    Google Scholar 

  • Pettersson, L.B., Nilsson, P.A., and Brönmark, C. (2000). Predator recognition and defence strategies in crucian carp, Carassius carassius. Oikos 88:200–212.

    Article  Google Scholar 

  • Pfeiffer, W., (1977). The distribution of fright reaction and alarm substance cells in fishes. Copeia 1977:653–665.

    Article  Google Scholar 

  • Pfeiffer, W., Riegelbauer, G., Meir, G., and Scheibler, B. (1985). Effect of hypoxanthine-3(N)-oxide and hypoxanthine-1(N)-oxide on central nervous excitation of the black tetra Gymnocorymbus ternetzi (Characidae, Ostariophysi, Pisces) indicated by dorsal light response. J. Chem. Ecol. 11:507–524.

    Article  CAS  Google Scholar 

  • Pijanowska, J. (1997). Alarm signals in Daphnial? Oecologia 112:12–16.

    Article  Google Scholar 

  • Pijanowska, J., and Stolpe, G. (1996). Summer diapause in Daphnia as a reaction to the presence of fish. J. Plankton Res. 18:1407–1412.

    Article  Google Scholar 

  • Poulin, R., Marcogliese, D.J., and McLaughlin, J.D. (1999). Skin-penetrating parasites and the release of alarm substances in juvenile rainbow trout. J. Fish Biol. 55:47–53.

    Article  CAS  Google Scholar 

  • Powlik, J.J., Lewis, A.G., and Verma, N. (1997). The response of Tigriopus californicus to chlorophytic macroalgae, including Cladophora trichotoma Kuetzing. Estuar. Coast Shelf Sci. 44:327–337.

    Article  Google Scholar 

  • Rahman, Y.J., Forward, R.B. Jr., and Rittschof, D. (2000). Responses of mud snails and periwinkles to environmental odors and disaccharide mimics of fish odor. J. Chem. Ecol. 26:679–696.

    Article  CAS  Google Scholar 

  • Reede, T. (1995). Life history shifts in response to different levels of fish kairomones in Daphnia. J. Plankton Res. 17:1661–1667.

    Article  Google Scholar 

  • Repka, S., and Pihlajamaa, K. (1996). Predatorinduced phenotypic plasticity in Daphnia pulex: Uncoupling morphological defenses and life history shifts. Hydrobiologia 339:67–71.

    Article  Google Scholar 

  • Repka, S., and Walls, M. (1998). Variation in the neonate size of Daphnia pulex: The effects of predator exposure and clonal origin. Aquat. Ecol. 32:203–209.

    Article  Google Scholar 

  • Ringelberg, J., and Van Gool, E. (1995). Migrating Daphnia have a memory for fish kairomones. Mar. Freshwat. Behav. Physiol. 26:249–257.

    Google Scholar 

  • Rittschof, D. (1990). Peptide-mediated behaviors in marine organisms: Evidence for a common theme. J. Chem. Ecol. 16:261–272.

    Article  CAS  Google Scholar 

  • Sakwinska, O. (1998). Plasticity of Daphnia magna life history traits in response to temperature and information about a predator. Freshwat. Biol. 39:681–687.

    Article  Google Scholar 

  • Scheffer, M. (1997). On the implications of predator avoidance. Aquat. Ecol. 31:99–107.

    Article  Google Scholar 

  • Schwartz, S.S. (1991). Predator-induced alterations in Daphnia morphology. J. Plankton Res. 13: 1151–1161.

    Article  Google Scholar 

  • Scrimshaw, S., and Kerfoot, W.C. (1987). Chemical defenses of freshwater organisms: Beetles and bugs. In: Predation: Direct and Indirect Impacts on Aquatic Communities (Kerfoot, W.C., Sih, A., eds.), pp. 240–262. Hanover: UP of New England.

    Google Scholar 

  • Sih, A. (1986). Antipredator responses and the perception of danger by mosquito larvae. Ecology 67:434–441.

    Article  Google Scholar 

  • Sih, A., and Moore, R.D. (1993). Delayed hatching of salamander eggs in response to enhanced larval predation risk. Am. Nat. 142:947–960.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.J.F. (1981). Effect of food deprivation on the reaction of Iowa darters (Etheostoma exile) to skin extract. Can. J. Zool. 59:558–560.

    Article  Google Scholar 

  • Smith, R.J.F. (1982). Reaction of Percina nigrofasciata, Ammocrypta beani and Etheostoma swaini (Percidae, Pisces) to conspecific and intergeneric skin extracts. Can. J. Zool. 17:2253–2259.

    Google Scholar 

  • Smith, R.J.F. (1992). Alarm signals in fishes. Rev. Fish Biol. 2:33–63.

    Article  Google Scholar 

  • Smith, R.J.F. (1999). What good is smelly stuff in the skin? Cross-function and cross taxa effects in fish “alarm substances.” In: Advances in Chemical Signals in Vertebrates (Johnston, R.E., Müller-Schwarze, D., and Sorensen, P.W., eds.), pp. 475–487, New York: Kluwer Academic/Plenum Press.

    Google Scholar 

  • Snyder, N.F.R. (1967). An alarm reaction of aquatic gastropods to intraspecific extract. Cornell University Agricultural Experiment Station, New York State College of Agriculture, Ithaca, NY, Memoir 403:1–122.

    Google Scholar 

  • Spieler, M., and Linsenmair, K.E. (1999). Aggregation behaviour of Bufo maculatus tadpoles as an antipredator mechanism. Ethology 105:665–686.

    Article  Google Scholar 

  • Stabeil, O.B., and Lwin, M.S. (1997). Predatorinduced phenotypic changes in crucian carp are caused by chemical signals from conspecifics. Environ. Biol. Fishes 49:145–149.

    Google Scholar 

  • Stachowicz, J.J., and Hay, M.E. (1999). Mutualism and coral persistence: The role of herbivore resistance to algal chemical defense. Ecology 80:2085–2101.

    Article  Google Scholar 

  • Stewart, T.W., Gafford, J.C., Miner, J.G., and Lowe, R.L. (1999). Dreissena-shell habitat and antipredator behavior: Combined effects on survivorship of snails co-occurring with molluscivorous fish. J. North Am. Benthol. Soc. 18:274–283.

    Article  Google Scholar 

  • Stibor, H. (1992). Predator induced life-history shifts in a freshwater cladoceran. Oecologia 92:162–165.

    Article  Google Scholar 

  • Stirling, G. (1995). Daphnia behaviour as a bioassay of fish presence or predation. Funct. Ecol. 9:778–784.

    Article  Google Scholar 

  • Storfer, A., and Sih, A. (1998). Gene flow and ineffective antipredator behavior in a stream-breeding salamander. Evolution 52:558–565.

    Article  Google Scholar 

  • Suboski, M.D., Brian, S., Carty, A.E., McQuoid, L.M., Seelen, M.I., and Seifert, M. (1990). Alarm reaction in acquisition and social transmission of simulated predator recognition by zebra danio fish (Brachydanio rerio). J. Comp. Psychol. 104:101–112.

    Article  Google Scholar 

  • Tachibana, K., and Gruber, S.H. (1988). Shark repellent lipophilic constituents in the defence secretion of the Moses sole (Pardachirus marmoratus). Toxicon 26:839–853.

    Article  PubMed  CAS  Google Scholar 

  • Tollrian, R. (1994). Fish-kairomone induced morphological changes in Daphnia lumholtzi (Sars) Arch. Hydrobiol. 130:69–75.

    Google Scholar 

  • Tollrian, R. (1995). Predator-induced morphological defenses: Costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76:1691–1705.

    Article  Google Scholar 

  • Tollrian, R., and Harvell, C.D. (1999). The evolution of inducible defenses: Current ideas. In: The Ecology and Evolution of Inducible Defenses (Tollrian, R., and Harvell, C.D., eds.), pp. 306–321. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Turner, A.M., Bernot, R.J., and Boes, C.M. (2000). Chemical cues modify species interactions: The ecological consequences of predator avoidance by freshwater snails. Oikos 88:148–158.

    Article  CAS  Google Scholar 

  • Uiblein, F., Roca, J.R., Baltanas, A., and Danielopol, D.L. (1996). Tradeoff between foraging and antipredator behaviour in a macrophyte dwelling ostracod. Arch. Hydrobiol. 137:119–133.

    Google Scholar 

  • Vadas, R.L., Sr., Burrows, M.T., and Hughes, R.N. (1994). Foraging strategies of dogwhelks, Nucella lapillus (L.): Interacting effects of age, diet and chemical cues to the threat of predation. Oecologia 100:439–450.

    Article  Google Scholar 

  • van Alstyne, K.L. (1988). Herbivore grazing increases polyphenolic defences in the intertidal brown alga Fucus distichus. Ecology 69:655–663.

    Article  Google Scholar 

  • van Alstyne, K.L., Ehlig, J.M., and Whitman, S.L. (1999). Feeding preferences for juvenile and adult algae depend on algal stage and herbivore species. Mar. Ecol. Prog. Ser. 180:179–185.

    Article  Google Scholar 

  • van Buskirk, J., and McCollum, S.A. (2000). Functional mechanisms of an inducible defence in tadpoles: Morphology and behaviour influence mortality risk from predation. J. Evol. Biol. 13:336–347.

    Article  Google Scholar 

  • von Elert, E., and Pohnert, G. (2000). Predator specificity of kairomones in diel vertical migration of Daphnia: A chemical approach. Oikos 88:119–128.

    Article  Google Scholar 

  • Waddell, B., and Pawlik, J.R. (2000). Defences of Caribbean sponges against invertebrate predators. I. Assays with hermit crabs. Mar. Ecol. Prog. Ser. 195:125–132.

    Article  Google Scholar 

  • White, D.S. (1989). Defence mechanisms in riffle beetles (Coleoptera: Dryopoidea). Ann. Entomol. Soc. 82:237–241.

    Google Scholar 

  • Wicklow, B.J. (1997). Signal-induced defensive phenotypic changes in ciliated protists: Morphological and ecological implications for predator and prey. J. Eukaryot. Microbiol. 44:176–188.

    Article  Google Scholar 

  • Wildy, E.L., Chivers, D.P, and Blaustein, A.R. (1999). Shifts in life-history traits as a response to cannibalism in larval long-toed salamanders (Ambystoma macrodactylum). J. Chem. Ecol. 25:2337–2346.

    Article  CAS  Google Scholar 

  • Wilson, D.J., and Lefcort, H. (1993). The effect of predator diet on the alarm response of red-legged frog, Rana aurora, tadpoles. Anim. Behav. 46:1017–1019.

    Article  Google Scholar 

  • Wilson, D.M., Puyana, M., Fenical, W., and Pawlik, J.R. (1999). Chemical defense of the Caribbean reef sponge Axinella corrugata against predatory fishes. J. Chem. Ecol. 25:2811–2824.

    Article  CAS  Google Scholar 

  • Wisenden, B.D. (2000). Scents of danger: The evolution of olfactory ornamentation in chemically mediated predator-prey interactions. In: Animal Signals: Signalling and Signal Design in Animal Communication (Espmark, Y., Amundsen, T., and Rosenqvist, G., eds.), pp. 365–386. Trondheim, Norway: Tapir Academic Press.

    Google Scholar 

  • Wisenden, B.D., and Harter, K.R. (2001). Motion, not shape, facilitates association of predation risk with novel objects by fathead minnows (Pimephales promelas). Ethology 107:357–364.

    Article  Google Scholar 

  • Wisenden, B.D., and Millard, M.C. (2001). Aquatic flatworms use chemical cues from injured conspecifics to assess predation risk and to associate risk with novel cues. Anim. Behav. 62: 761–766.

    Article  Google Scholar 

  • Wisenden, B.D., and Smith, R.J.F. (1997). The effect of physical condition and shoalmate familiarity on proliferation of alarm substance cells in the epidermis of fathead minnows. J. Fish Biol. 50:799–808.

    Article  Google Scholar 

  • Wisenden, B.D., and Smith, R.J.F. (1998). A reevaluation of the effect of shoalmate familiarity on the proliferation of alarm substance cells in ostariophysan fishes. J. Fish Biol. 53:841–846.

    Article  Google Scholar 

  • Wisenden, B.D., Chivers, D.P., and Smith, R.J.F. (1995a). Early warning in the predation sequence: A disturbance pheromone in Iowa darters (Etheostoma exile). J. Chem. Ecol. 21:1469–1480.

    Article  CAS  Google Scholar 

  • Wisenden, B.D., Chivers, D.P., and Smith, R.J.F. (1997). Learned recognition of predation risk by Enallagma damselfly larvae (Odonata, Zygoptera) on the basis of chemical cues. J. Chem. Ecol. 23:137–151.

    Article  CAS  Google Scholar 

  • Wisenden, B.D., Cline, A., and Sparkes, T.C. (1999). Survival benefit to antipredator behavior in the amphipod Gammarus minus (Crustacea: Amphipoda) in response to injury-released chemical cues from conspecifics and heterospecifics. Ethology 105:407–414.

    Article  Google Scholar 

  • Wisenden, B.D., Pohlman, S.G., and Watkin, E.E. (2001). Avoidance of conspecific injury-released cues by free-ranging Gammarus lacustris (Crustacea: Amphipoda). J. Chem. Ecol. 27:1249–1258.

    Article  PubMed  CAS  Google Scholar 

  • Wisenden, B.D., Chivers, D.P., Brown, G.E., and Smith, R.J.F. (1995b). The role of experience in risk assessment: Avoidance of areas chemically labelled with fathead minnow alarm pheromone by conspecifics and heterospecifics. Ecoscience 2:115–122.

    Google Scholar 

  • Yunker, W.K., Wein, D.E., and Wisenden, B.D. (1999). Conditioned alarm behavior in fathead minnows (Pimephales promelas) resulting from association of chemical alarm pheromone with a nonbiological visual stimulus. J. Chem. Ecol. 25:2677–1286.

    Article  CAS  Google Scholar 

  • Zulandt-Schneider, R.A., and Moore, P.A. (2000). Urine as a source of conspecific disturbance signals in the crayfish Procambarus clarkii. J. Exp. Biol. 203:765–771.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Wisenden, B.D. (2003). Chemically Mediated Strategies to Counter Predation. In: Collin, S.P., Marshall, N.J. (eds) Sensory Processing in Aquatic Environments. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22628-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22628-6_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95527-8

  • Online ISBN: 978-0-387-22628-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics