Skip to main content

Anatomical Considerations and Long-Term Effects of Electrical Stimulation

  • Chapter
Cochlear Implants: Auditory Prostheses and Electric Hearing

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 20))

Abstract

There is a consensus that achieving high levels of speech intelligibility with auditory prostheses requires the use of several independent channels of stimulation, each engaged in the transmission of limited bandwidth information (see Zeng, Chapter 1; Wilson, Chapter 2; Shannon et al., Chapter 8). Several types of multichannel cochlear prostheses have been designed with the objective of selectively exciting discrete sectors of the auditory nerve by placing individual electrodes at several sites along the cochlear spiral. Most of these devices utilize the tonotopic organization of the primary afferent auditory neurons within the scala tympani, one of the spiral fluid channels of the cochlea, which is accessible from the middle ear via entrance from the round window or through an opening created just anterior to the window (see Niparko, Chapter 3). As described by Wilson in Chapter 2, several multichannel devices have been developed and used in clinical populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araki S, Atsushi K, Seldon HL, Shepherd RK, Funasaka S, Clark GM (1998) Effects of chronic electrical stimulation on spiral ganglion neuron survival and size in deafened kittens. Laryngoscope 108:687–695.

    PubMed  CAS  Google Scholar 

  • Balkany T, Gantz B, Nadol JB Jr. (1988) Multichannel cochlear implants in partially ossified cochleas. Ann Otol Rhinol Laryngol Suppl 97:3–7.

    Google Scholar 

  • Blatchley BJ, Williams JE, Coleman JR (1983) Age-dependent effects of acoustic deprivation of spherical cells of the rat anteroventral cochlear nucleus. Exp Neurol 80:81–93.

    PubMed  CAS  Google Scholar 

  • Bohne B (1976) Safe level for noise exposure. Ann Otol Rhinol Laryngol 85:711–724.

    PubMed  CAS  Google Scholar 

  • Born DE, Rubel EW (1985) Afferent influences on brainstem auditory nuclei of the chicken: neuron number and size following cochlea removal. J Comp Neurol 231:435–445.

    PubMed  CAS  Google Scholar 

  • Clark GM, Shepherd RK, Franz BK-H (1988) The histopathology of the human temporal bone and auditory central nervous system following cochlear implantation in a patient. Acta Otolaryngol Suppl (Stockh) 448:1–65.

    PubMed  CAS  Google Scholar 

  • Coleman JR, O’Connor P (1979) Effects of monaural and binaural sound deprivation on cell development in the anteroventral cochlear nucleus of rat. Exp Neurol 64:533–566.

    Google Scholar 

  • Coleman JR, Blatchley BJ, Williams JE (1982) Development of the dorsal and ventral cochlear nuclei in rat and effects of acoustic deprivation. Dev Brain Res 4:119–123.

    Google Scholar 

  • Dallos P, Popper A, Fay RR, eds. (1996) The Cochlea. Springer Handbook of Auditory Research. New York: Springer-Verlag.

    Google Scholar 

  • Dawson PW, Clark GM (1997) Changes in synthetic and natural vowel perception after specific training for congenitally deafened patients using a multichannel cochlear implant. Ear Hear 18:488–501.

    PubMed  CAS  Google Scholar 

  • Dodson HC, Bannister LH, Douek EE (1994) Effects of unilateral deafening on the cochlear nucleus of the guinea pig at different ages. Brain Res 80:261–267.

    CAS  Google Scholar 

  • Dubrosky RT, Carter BD (1998) Coupling of the p75 neurotrophin receptor to sphingolipid signaling. Ann N Y Acad Sci 845:32–45.

    Google Scholar 

  • Egami T, Sando I, Sobel J (1978) Noise-induced hearing loss: a human temporal bone case report. Ann Otol Rhinol Laryngol 87:868–874.

    PubMed  CAS  Google Scholar 

  • Eisenberg LS, Luxford WM, Becker TS, House WF (1984) Electrical stimulation of the auditory system in children deafened by meningitis. Otolaryngol Head Neck Surg 92:700–705.

    PubMed  CAS  Google Scholar 

  • Ernfors P, Lee K-F, Jaenisch R (1994) Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368:147–150.

    PubMed  CAS  Google Scholar 

  • Ernfors P, van de Water T, Loring J, Jaenisch R (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14:1153–1164.

    PubMed  CAS  Google Scholar 

  • Ernfors P, Duan ML, El-Shamy WM, Banlon B (1996) Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nat Med 2:463–467.

    PubMed  CAS  Google Scholar 

  • FariÅ©as I, Jones KR, Backus C, Wang X-Y, Reichardt LF (1994) Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369:658–661.

    Google Scholar 

  • Fayad J, Linthicum FH, Otto SR, Galey FR, House WF (1991) Cochlear implants: histopathologic findings related to performance in 16 human temporal bones. Ann Otol Rhinol Laryngol 100:807–811.

    PubMed  CAS  Google Scholar 

  • Fayad J, Luxford W, Linthicum FH (2000) The clarion electrode positioner: temporal bone studies. Am J Otol 21:226–229.

    PubMed  CAS  Google Scholar 

  • Feng AS, Rogowski BA (1980) Effects of monaural and binaural occlusion on the morphology of neurons in the medial superior olivary nucleus of the rat. Brain Res 189:530–534.

    PubMed  CAS  Google Scholar 

  • Fleckeisen C, Harrison R, Mount R (1991) Effects of total cochlear haircell loss on integrity of cochlear nucleus. Acta Otolaryngol Suppl (Stockh) 489:23–31.

    CAS  Google Scholar 

  • Fritzsch B, Silos-Santiago I, Bianchi LM, Farinas I (1997) The role of neurotrophic factors in regulating the development of inner ear innervation. Trends Neurosci 21:159–164.

    Google Scholar 

  • Gantz BJ, McCabe BF, Tyler RS (1988) Use of multichannel cochlear implants in obstructed and obliterated cochleas. Otolaryngol Head Neck Surg 98:72–81.

    PubMed  CAS  Google Scholar 

  • Geshwind MD, Hartnick CJ, Liu W, Amat J, Van De Water TR, Federoff HJ (1996) Defective HSV- 1 vector expressing BDNF in auditory ganglia elicits neurite outgrowth: model for treatment of neuron loss following cochlear degeneration. Hum Gene Ther 7:173–182.

    Google Scholar 

  • Gstoettner W, Plenk H, Franz P (1997) Cochlear implant deep electrode insertion: extent of insertional trauma. Acta Otolaryngol (Stockh) 117:274–277.

    CAS  Google Scholar 

  • Gstoettner W, Franz P, Hamzavi J (1999) Intracochlear position of cochlear implant electrodes. Acta Otolaryngol (Stockh) 119:229–233.

    CAS  Google Scholar 

  • Hansen MR, Zha X-M, Bok J, Green SH (2001) Multiple distinct signal pathways, including an autocrine neurotrophic mechanism contribute to the survivalpromoting effect of depolarization on spiral ganglion neurons in vitro. J Neurosci 21(7):2256–2267.

    PubMed  CAS  Google Scholar 

  • Harrison RV, Ibrahim D, Stanton SG, Mount RJ (1996) Reorganization of frequency maps in Chinchilla auditory midbrain after long-term basal cochlear lesions induced at birth. In: Salvi RJ, Fiorino F, Henderson D, Colletti V, eds. Auditory System Plasticity and Regeneration. New York: Thieme Medical Publishers, pp. 238–255.

    Google Scholar 

  • Hartmann R, Shepherd RK, Heid S, Klinke R (1997) Response of the primary auditory cortex to electrical stimulation of the auditory nerve in the congenitally deaf white cat. Hear Res 112:115–133.

    PubMed  CAS  Google Scholar 

  • Hartshorn DO, Miller JM, Altschuler RA (1991) Protective effect of electrical stimulation in the deafened guinea pig cochlea. Otolaryngol Head Neck Surg 104:311–319.

    PubMed  CAS  Google Scholar 

  • Hashisaki GT, Rubel EW (1989) Effects of unilateral cochlea removal on anteroventral cochlear nucleus neurons in developing gerbils. J Comp Neurol 283:465–473.

    Google Scholar 

  • Hawkins JE Jr, Stebbins WC, Johnsson L-G, Moody DB, Muraki A (1977) The patas monkey as a model for dihydrostreptomycin ototoxicity. Acta Otolaryngol 83:123–129.

    PubMed  Google Scholar 

  • Hegarty JL, Kay AR, Green SH (1997) Trophic support of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins or cAMP and requires elecation of [CA2+]i within a set range. J Neurosci 17:1959–1970.

    PubMed  CAS  Google Scholar 

  • Heid S, Jahn-Siebert TK, Klinke R, Hartmann R, Langner G (1997) Afferent projection pattern in the auditory brainstem in normal cats and congenitally deaf white cats. Hear Res 110:191–199.

    PubMed  CAS  Google Scholar 

  • Heid S, Hartmann R, Klinke R (1998) A model for prelingual deafness, the congenitally deaf white cat: population statistics and degenerative changes. Hear Res 115:101–112.

    PubMed  CAS  Google Scholar 

  • Hinojosa R, Lindsay JR (1980) Profound deafness: associated sensory and neural degeneration. Arch Otolaryngol 106:193–209.

    PubMed  CAS  Google Scholar 

  • Hinojosa R, Marion M (1983) Histopathology of profound sensorineural deafness. Ann N Y Acad Sci 405:459–484.

    PubMed  CAS  Google Scholar 

  • Hinojosa R, Blough RR, Mhoon EE (1987) Profound sensorineural deafness: a histopathologic study. Ann Otol Rhinol Laryngol 128(suppl 96):43–46.

    Google Scholar 

  • Hultcranz M, Snyder RL, Rebscher SJ, Leake PA (1991) Effects of neonatal deafening and chronic introacochlear electrical stimulation on the cochlear nucleus in cats. Hear Res 54:272–180.

    Google Scholar 

  • Incesulu A, Nadol JB (1998) Correlation of acoustic threshold measures and spiral ganglion cell survival in severe to profound sensorineural hearing loss: implications for cochlear implantation. Ann Otol Rhinol Laryngol 107:906–911.

    PubMed  CAS  Google Scholar 

  • Irvine DRF, Rajan R (1994) Plasticity of frequency organization in inferior colliculus of adult cats with unilateral restricted cochlear lesions. Abstr Assoc Res Otolaryngol 17:21.

    Google Scholar 

  • Jean-Baptist M, Morest DK (1975) Transneuronal changes of synaptic endings and nuclear chromatin in the trapezoid body following cochlear ablations in cats. J Comp Neurol 16:111–133.

    Google Scholar 

  • Johnsson L-G (1974) Sequence of degeneration of Corti’s organ and its first-order neurons. Ann Otol Rhinol Laryngol 83:294–303.

    PubMed  CAS  Google Scholar 

  • Johnsson L-G, House WF, Linthicum FH (1979) Bilateral cochlear implants: histological findings in a pair of temporal bones. Laryngoscope 89:759–762.

    PubMed  CAS  Google Scholar 

  • Johnsson L-G, Hawkins JE Jr, Kingsley TC, Black FO, Matz GJ (1981) Aminoglycoside-induced inner ear pathology in man, as seen by microdissection. In: LernerSA, Matz GJ, Hawkins JE Jr, eds. Amino-Glycoside Ototoxicity. Boston: Little, Brown, pp. 389–408.

    Google Scholar 

  • Johnsson L-G, House WF, Linthicum FH (1982) Otopathological findings in a patient with bilateral cochlear implants. Ann Otol Rhinol Laryngol 91(suppl 91) :74–89.

    CAS  Google Scholar 

  • Kennedy DW (1987) Multichannel intracochlear electrodes: mechanism of insertion trauma. Laryngoscope 97:42–49.

    PubMed  CAS  Google Scholar 

  • Ketten DR, Skinner MW, Wang G, Vannier MW, Gates GA, Neely JG (1998) In vivo measures of cochlear length and insertion depth of Nucleus cochlear implant electrode arrays. Ann Otol Rhinol Laryngol Suppl 107:1–16.

    Google Scholar 

  • Kiang NYS, Liberman MC, Levine RA (1976) Auditory-nerve activity in cats exposed to ototoxic drugs and high-intensity sounds. Ann Otol Rhinol Laryngol 85:852–768.

    Google Scholar 

  • Kitzes L (1996) Anatomical and physiological changes in the brainstem induced by neonatal ablation of the cochlea. In: Salvi RJ, Henderson D, eds. Auditory System Plasticity and Regeneration. New York: Thieme Medical Publishers, pp. 256–274.

    Google Scholar 

  • Klinke R, Kral A, Heid S, Tillein J, Hartmann R (1999) Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. Science 285:1729–1733.

    PubMed  CAS  Google Scholar 

  • Kohenen A (1965) Effect of some ototoxic drugs upon the pattern and innervation of cochlear sensory cells in the guinea pig. Acta Otolaryngol Suppl 208.

    Google Scholar 

  • Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2001) Delayed maturation and sensitive periods in the auditory cortex. Audiol Neuro-Otol 6:346–362.

    CAS  Google Scholar 

  • Lalwani AK, Walsh BJ, Reilly PG, Zolotukhin S, Muzczka N, Mhatre AN (1998) Long-term in vivo cochlear transgene expression mediated by recombinant adeno-associated virus. Gene Ther 5:277–281.

    PubMed  CAS  Google Scholar 

  • Larsen SA (1984) Postnatal maturation of the cat cochlear nuclear complex. Acta Otolaryngol Suppl 417:1–43.

    PubMed  CAS  Google Scholar 

  • Leake PA, Hradek GT (1988) Cochlear pathology of long term neomycin induced deafness in cats. Hear Res 33:11–34.

    PubMed  CAS  Google Scholar 

  • Leake PA, Snyder R, Schreiner CE (1987) Cochlear pathology of sensorineural deafness in ctas: coadministration of kanamycin and aminooxyacetic acid. Ann Otol Rhinol Laryngol 96:48–50.

    Google Scholar 

  • Leake PA, Kessler DK, Merzenich MM (1990) Application and safety of cochlear prostheses. In: Agnew WF, McCreery DB, eds. Neural Prostheses. Englewood Cliffs, NJ: Prentice Hall, pp. 253–296.

    Google Scholar 

  • Leake PA, Hradek GT, Rebscher SJ, Snyder RL (1991) Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neonatally deafened cats. Hear Res 54:251–271.

    PubMed  CAS  Google Scholar 

  • Leake PA, Snyder RL, Hradek GT, Rebscher SJ (1992) Chronic intracochlear electrical stimulation in neonatally deafened cats: effects of intensity and stimulating electrode Location. Hear Res 64:99–117.

    PubMed  CAS  Google Scholar 

  • Leake PA, Snyder RL, Hradek GT, Rebscher SJ (1995) Consequences of chronic extracochlear electrical stimulation in neonatally deafened cats. Hear Res 82:65–80.

    PubMed  CAS  Google Scholar 

  • Leake PA, Kuntz AL, Moore CM, Chambers PL (1997) Cochlear pathology induced by aminoglycoside ototoxicity during postnatal maturation in cats. Hear Res 113:117–132.

    PubMed  CAS  Google Scholar 

  • Leake PA, Hradek GT, Snyder RL (1999) Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons in neonatally deafened cats. J Comp Neurol 412:543–562.

    PubMed  CAS  Google Scholar 

  • Leake PA, Snyder RL, Rebscher SJ, Hradek GT, et al. (2000a) Long term effects of deafness and chronic electrical stimulation of the cochlea. In: Waltzman SB, Cohen N, eds. Cochlear Implants. New York: Thieme Medical Publishers, pp. 31–41.

    Google Scholar 

  • Leake PA, Snyder RL, Rebscher SJ, Moore CM, Vollmer M (2000b) Plasticity in central representations in the inferior colliculus induced by chronic single- vs. two-channel electrical stimulation by a cochlear implant after neonatal deafness. Hear Res 147:221–241.

    PubMed  CAS  Google Scholar 

  • Leake PA, Rebscher SJ, Wardrop PJC, Whinney DJD (2003) Optimizing Multichannel Cochlear Implant Electrodes, Assoc. Res. Otolaryngol. Abs.: Vol. 26, p. 194.

    Google Scholar 

  • Levi-Montalcini R (1949) The development of the acousticovestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. J Comp Neurol 91:209–241.

    PubMed  CAS  Google Scholar 

  • Li L, Parkins CW, Webster DB (1999) Does electrical stimulation of deaf cochleas prevent spiral ganglion degeneration? Hear Res 13:27–39.

    Google Scholar 

  • Liberman MC, Kiang NYS (1978) Acoustic trauma in cats: cochlear pathology and auditory nerve activity. Acta Otolaryngol Suppl 358:1–63.

    PubMed  CAS  Google Scholar 

  • Linthicum FH, Fayad J, Otto SR (1991) Cochlear implant histopathology. Am J Otol 12:245–311.

    PubMed  Google Scholar 

  • Loeb GE, Byers CL, Rebscher SJ, Casey DE, et al. (1983) Design and fabrication of an experimental cochlear prosthesis. Med Biol Eng Comput 21:241–254.

    PubMed  CAS  Google Scholar 

  • Lousteau RJ (1987) Increased spiral ganglion cell survival in electrically stimulated deafened guinea pig cochlea. Laryngoscope 97:836–842.

    PubMed  CAS  Google Scholar 

  • Lustig LR, Leake PA, Snyder RL, Rebscher SJ (1994) Changes in the cat cochlear nucleus following neonatal deafening and chronic intracochlear electrical stimulation. Hear Res 74:29–37.

    PubMed  CAS  Google Scholar 

  • Marsh MA, Coker NJ, Jenkins HA (1992) Temporal bone histopathology of a patient with a Nucleus 22-channel cochlear implant. Am J Otol 13:241–248.

    PubMed  CAS  Google Scholar 

  • Matsushima J-I, Shepherd RK, Seldon HL, Xu S-A, Clark GM (1991) Electrical stimulation of the auditory nerve in deaf kittens: effects on cochlear nucleus morphology. Hear Res 56:133–142.

    PubMed  CAS  Google Scholar 

  • Miller JM, Altschuler RA (1995) Effectiveness of different electrical stimulation conditions in preservation of spiral ganglion cells following deafness. Ann Otol Rhinol Laryngol 166:57–60.

    CAS  Google Scholar 

  • Miller JM, Altschuler RA, Niparko JK, Hartshorn DO, Helfert RH, Moore JK (1991) Deafness induced changes in the central nervous system: reversibility and prevention. In: Dancer A, Henderson D, Salvi RJ, Hamernik RP, eds. Noise Induced Hearing Loss. St. Louis: Mosby Year Book, pp. 130–145.

    Google Scholar 

  • Miller JM, Chi D, O’Keefe, Kruska P, Raphael Y, Altschuler RA (1997) Neurotrophins can enhance spiral ganglion cell survival after inner hair cell loss. Int J Dev Neurobiol 15:631–643.

    CAS  Google Scholar 

  • Moore CM, Vollmer M, Leake PA, Snyder RL, Rebscher SJ (2002) Effects of chronic intracochlear electrical stimulation on inferior colliculus spatial representation in adult deafened cats. Hear Res 164:82–96.

    PubMed  Google Scholar 

  • Moore DR, Kitzes LM (1985) Projections from the cochlear nucleus to the inferior colliculus in normal and neonatally cochlea-ablated gerbils. J Comp Neurol 240:180–195.

    PubMed  CAS  Google Scholar 

  • Moore DR, Kowlachuk NE (1988) Auditory brainstem of the ferret: effects of unilateral cochlear lesions on cochlear nucleus volume and projections to the inferior colliculus. J Comp Neurol 272:503–515.

    PubMed  CAS  Google Scholar 

  • Moore JK, Niparko JK, Miller MR, Linthicum FH (1994) Effect of profound hearing loss on a central auditory nucleus. Am J Otol 15:588–595.

    PubMed  CAS  Google Scholar 

  • Moore JK, Niparko JK, Perazzo LM, Miller MR, Linthicum FH (1997) Effect of adult-onset deafness on the human central auditory system. An Otol Rhinol Laryngol 106:385–390.

    CAS  Google Scholar 

  • Mostafapour SP, Cochran SL, del Puerto NM, Rubel EW (2000) Patterns of cell death in mouse AVCN neurons after unilateral cochlea removal. J Comp Neurol 426:561–571.

    PubMed  CAS  Google Scholar 

  • Nadol JB (1997) Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation. Otolaryngol Head Neck Surg 117:220–228.

    PubMed  Google Scholar 

  • Nadol JB, Young Y-S, Glynn RJ (1989) Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. Ann Otol Rhinol Laryngol 98:41–416.

    Google Scholar 

  • Nadol JB, Ketten DR, Burgess BJ (1994) Otopathology in a case of multichannel cochlear implantation. Laryngoscope 104:299–303.

    PubMed  Google Scholar 

  • Niparko JK, Finger PA (1997) Cochlear nucleus cell size changes in the dalmatian: model of congenital deafness. Otolaryngol Head Neck Surg 117:229–235.

    PubMed  CAS  Google Scholar 

  • Nordeen KW, Killackey HP, Kitzes LM (1983) Ascending projections to the inferior colliculus following unilateral cochlear ablation in the neonatal gerbil, Meriones unguiculatus. J Comp Neurol 214:144–153.

    PubMed  CAS  Google Scholar 

  • O’Leary MJ, Fayad J, House WE, Linthicum FH Jr (1991) Electrode insertion trauma in cochlear implantation. Ann Otol Rhinol Laryngol 100:695–699.

    PubMed  Google Scholar 

  • O’Reilly BF (1981) Probability of trauma and reliability of placement of a 20 mm long model human scala tympani multielectrode array. Ann Otol Rhinol Laryngol Suppl 90:11–12.

    PubMed  Google Scholar 

  • Osofsky MR, Leake PA, Moore CM (2001) Does exogenous GM1 ganglioside enhance the effects of electrical stimulation in ameliorating degeneration after neonatal deafness. Hear Res 159:23–35.

    PubMed  CAS  Google Scholar 

  • Otte J, Schuknecht HF, Kerr AG (1978) Ganglion populations in normal and pathological human cochlea: implications for cochlear implantation. Laryngoscope 88:1231–1246.

    PubMed  CAS  Google Scholar 

  • Parks TN (1979) Afferent influences on the development of the brainstem auditory nuclei of the chicken: otocyst ablation. J Comp Neurol 183:665–677.

    PubMed  CAS  Google Scholar 

  • Ponton CW, Don M, Eggermont JJ, Waring MD, Kwong B, Masuda A (1996) Neuroreport 8:61–65.

    CAS  Google Scholar 

  • Powell TPS, Erulkar SD (1962) Transneuronal cell degeneration in the auditory relay nuclei of the cat. J Anat 96:249–268.

    PubMed  CAS  Google Scholar 

  • Raggio MW, Schreiner CE (1994) Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency. J Neurophysiol 72:2334–2359.

    PubMed  CAS  Google Scholar 

  • Raggio MW, Schreiner CE (1999) Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. III. Activation patterns in short- and long-term deafness. J Neurophysiol 82:3506–3526.

    PubMed  CAS  Google Scholar 

  • Raphael Y, Frisancho JC, Roessler BJ (1996) Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo. Neurosci Lett 207:137–141.

    PubMed  CAS  Google Scholar 

  • Rebscher SJ, Heilmann M, Bruszweski W, Talbot N, Snyder R, Merzenich MM (1999) Strategies to improve electrode positioning and safety in cochler implants. IEEE Trans Biomed Eng 46:340–352.

    PubMed  CAS  Google Scholar 

  • Rebscher SJ, Snyder RL, Leake PA (2001) The effect of electrode configuration on threshold and selectivity of responses to intracochlear electrical stimulation. J Acoust Soc Am 109:2035–2048.

    PubMed  CAS  Google Scholar 

  • Roland JT, Fishman A, Alexiades G (2000) Electrode to modiolus proximity: a fluoroscopic and histologic analysis. Am J Otol 21:218–225.

    PubMed  Google Scholar 

  • Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101.

    PubMed  CAS  Google Scholar 

  • Russell RA, Moore DR (1995) Afferent reorganization within the superior olivary complex of the gerbil: development and induction by neonatal unilateral cochlear removal. J Comp Neurol 352:607–625.

    PubMed  CAS  Google Scholar 

  • Schindler RA, Gladstone HB, Scott N, Hradek GT, Williams H, Shah SB (1995) Enhanced preservation of the auditory nerve following cochlear perfusion with nerve growth factor. Am J Otol 16:304–309.

    PubMed  CAS  Google Scholar 

  • Schriener CE, Raggio MW (1996) Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation: II. Repetition rate coding. J Neurophysiol 75:1283–1300.

    Google Scholar 

  • Shah SB, Gladstone HB, Williams H, Hradek GT, Schindler RA (1995) An extended study: protective effects of nerve growth factor in neomycin-induced auditory neural degeneration. Am J Otol 16:310–314.

    PubMed  CAS  Google Scholar 

  • Shepherd RK, Clark GM, Pyman BC, Webb RL (1985) Banded intracochlear electrode array: evaluation of insertion trauma in human temporal bones. Ann Otol Rhinol Laryngol 94:55–59.

    PubMed  CAS  Google Scholar 

  • Shepherd RK, Matsushima J, Martin RL, Clark GM (1994) Cochlear pathology following chronic electrical stimulation of the auditory nerve: II. Deafened kittens. Hear Res 8:150–166.

    Google Scholar 

  • Skinner MW, Ketten DR, Vannier MW, Gates GA, Yoffie RL, Kalender WA (1994) Determination of the position of Nucleus cochlear implant electrodes in the inner ear. Am J Otol 15:644–651.

    PubMed  CAS  Google Scholar 

  • Skinner MW, Ketten DR, Holden LK, Harding GW et al. (2002) CT-derived estimation of cochlear morphology and electrode array position in relation to word recognition in Nucleus-22 recipients. J Assoc Res Otolaryngol 3: 332–350.

    PubMed  Google Scholar 

  • Snyder RL, Rebscher SJ, Cao K, Leake PA, Kelly K (1990) Effects of chronic intracochlear electrical stimulation in the neonatally deafened cat. I: expansion of central spatial representation. Hear Res 50:7–33.

    PubMed  CAS  Google Scholar 

  • Snyder RL, Rebscher SJ, Leake PA, Kelly K, Cao K (1991) Chronic electrical stimulation in the neonatally deafened cat. II: temporal properties of neurons in the inferior colliculus. Hear Res 56:246–264.

    PubMed  CAS  Google Scholar 

  • Snyder RL, Leake PA, Rebscher SJ, Beitel RE (1995) Temporal resolution of neurons in cat inferior colliculus: effects of neonatal deafening and chronic intracochlear electrical stimulation on J Neurophysiol 72:449–467.

    Google Scholar 

  • Snyder RL, Vollmer M, Moore CM, Rebscher SJ, Leake PA, Beitel RE (2000) Responses of inferior colliculus neurons to amplitude modulated intracochlear electrical pulses in deaf cats. J Neurophysiol 84:166–183.

    PubMed  CAS  Google Scholar 

  • Spoendlin HH (1975) Retrograde degeneration of the cochlear nerve. Acta Otolaryngol 79:266–275.

    PubMed  CAS  Google Scholar 

  • Staecker H, Kopke R, Malgrange B, Lefebvre P, Van De Water TR (1996) NT3 and BDNF therapy prevents loss of auditory neurons following loss of hair cells. NeuroReport 7:889–894.

    CAS  Google Scholar 

  • Staecker H, Gabaizadeh R, Rederoff H, Van De Water TR (1998) Brain-derived neurotrophic factor gene therapy prevents spiral ganglion degeneration after hair cell loss. Otolaryngol Head Neck Surg 119:7–13.

    PubMed  CAS  Google Scholar 

  • Stebbins WC, Miller JM, Johnsson LG, Hawkins JE Jr (1969) Ototoxic hearing loss and cochlear pathology in the monkey. Ann Otol Rhinol Laryngol 78:1007–1025.

    PubMed  CAS  Google Scholar 

  • Svirsky MA, Robbine AM, Kirk KI, Pisone DB, Miyamoto RT (2000) Language development in profoundly deaf children with cochlear implants. Psychol Sci 11:153–158.

    PubMed  CAS  Google Scholar 

  • Tierney TS, Russell FA, Moore DR (1997) Susceptibility of developing cochlear nucleus neurons to deafferentation-induced death abruptly ends just before the onset of hearing. J Comp Neurol 378:295–306.

    PubMed  CAS  Google Scholar 

  • Trune DR (1982a) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus: number, size and density of it’s neurons. J Comp Neurol 209:409–424.

    PubMed  CAS  Google Scholar 

  • Trune DR (1982b) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus: II. Dendritic morphometry of its neurons. J Comp Neurol 209:425–434.

    PubMed  CAS  Google Scholar 

  • Tycocinski M, Saunders E, Cohen LT (2001) The contour electrode array: safety study and initial patient trials of a new perimodiolar design. Otol Neurotol 22:23–41.

    Google Scholar 

  • Vollmer M, Snyder RL, Leake PA, Beitel RE, Moore CM, Rebscher SJ (1999) Temporal properties of chronic electrical stimulation determine temporal resolution of neurons in cat inferior colliculus. J Neurophysiol 82:2883–2902.

    PubMed  CAS  Google Scholar 

  • Walsh EJ, Romand R (1992) Functional development of the cochlea and the cochlear nerve. In: Romand R, ed. Development of Auditory and Vestibular Systems 2. New York: Elsevier, pp. 161–219.

    Google Scholar 

  • Webb RL, Clark GM, Shepherd RK, Franz BK-H, Pyman BC (1988) The biological safety of the cochlear corporation multiple-electrode intracochlear implant. Am J Otol 9:8–13.

    PubMed  CAS  Google Scholar 

  • Webster DB (1983) Late onset of auditory deprivation does not affect brainstem auditory neuron soma size. Hear Res 12:145–147.

    PubMed  CAS  Google Scholar 

  • Webster DB, Webster M (1977) Neonatal sound deprivation affects brainstem auditory nuclei. Arch Otolaryngol 103:392–396.

    PubMed  CAS  Google Scholar 

  • Webster DB, Webster M (1979) Effects of neonatal conductive hearing loss on brainstem auditory nuclei. Ann Otol Rhinol Laryngol 88:684–688.

    PubMed  CAS  Google Scholar 

  • Webster DB, Webster M (1981) Spiral ganglion neuron loss following organ of Corti loss: a quantitative study. Ann Otol Rhinol Laryngol 90(suppl 82):17–30.

    Google Scholar 

  • Weiss MA, Frisancho C, Roessler JB, Raphael Y (1977) Viral-mediated gene transfer in the cochlea. Int J Dev Neurosci 15;577–583.

    Google Scholar 

  • West BA, Brummett RE, Hines, DL (1973) Interaction of kanamycin and ethacrynic acid. Arch Otolaryngol 98:32–37.

    PubMed  CAS  Google Scholar 

  • Xu S-A, Shepherd RK, Chen Y, Clark GM (1993) Profound hearing loss in the cat following the single co-administration of kanamycin and ethacrynic acid. Hear Res 71:205–215.

    Google Scholar 

  • Yagi M, Kanzaki S, Kawamoto K, Shin B, et al. (2000) Spiral ganglion neurons are protected from degeneration by GDNF gene therapy. JARO 1:315–325.

    PubMed  CAS  Google Scholar 

  • Ylikoski J (1974) Correlative studies of the cochlear pathology and hearing loss in guinea pigs after intoxication with ototoxic antibiotics. Acta Otolaryngol 79:266–275.

    Google Scholar 

  • Ylikoski J, Privola U, Virkkala J, Suvanto P, et al. (1998) Guinea pig auditory neurons are protected by glial cell line-derived growth factor from degeneration after noise trauma. Hear Res 124:17–26.

    PubMed  CAS  Google Scholar 

  • Zappia JJ, Niparko JK, Oviatt DL, Kemink JL, et al. (1991) Evaluation of the temporal bones of a multichannel cochlear implant patient. Ann Otol Rhinol Laryngol 100:914–921.

    PubMed  CAS  Google Scholar 

  • Zheng JL, Stewart RR, Gao W-Q (1995) Neurotrophin-4/5 enhances survival of cultured spiral ganglion neurons and protects them from cisplatin neurotoxitity. J Neurosci 15:5079–5087.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leake, P.A., Rebscher, S.J. (2004). Anatomical Considerations and Long-Term Effects of Electrical Stimulation. In: Zeng, FG., Popper, A.N., Fay, R.R. (eds) Cochlear Implants: Auditory Prostheses and Electric Hearing. Springer Handbook of Auditory Research, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22585-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22585-2_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2346-2

  • Online ISBN: 978-0-387-22585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics