Skip to main content

Simple mathematical models with very complicated dynamics

  • Chapter
The Theory of Chaotic Attractors

Abstract

First-order difference equations arise in many contexts in the biological, economic and social sciences. Such equations, even though simple and deterministic, can exhibit a surprising array of dynamical behaviour, from stable points, to a bifurcating hierarchy of stable cycles, to apparently random fluctuations. There are consequently many fascinating problems, some concerned with delicate mathematical aspects of the fine structure of the trajectories, and some concerned with the practical implications and applications. This is an interpretive review of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. May, R. M., and Oster, G. F., Am. Nat., 110 (in the press).

    Google Scholar 

  2. Varley, G. C., Gradwell, G. R., and Hassell, M. P., Insect Population Ecology ( Blackwell, Oxford, 1973 ).

    Google Scholar 

  3. May, R. M. (ed.), Theoretical Ecology: Principles and Applications ( Blackwell, Oxford, 1976 ).

    Google Scholar 

  4. Guckenheimer, J. Oster, G. F., and Ipaktchi, A., Theor. Pop. Biot. (in the press).

    Google Scholar 

  5. Oster, G. F., Ipaktchi, A., and Rocklin, I., Theor. Pop. Bio!. (in the press).

    Google Scholar 

  6. Asmussen, M. A., and Feldman, M. W., J. teor. Bio!. (in the press).

    Google Scholar 

  7. Hoppensteadt, F. C., Mathematical Theories of Populations: Demographics, Genetics and Epidemics (SIAM, Philadelphia, 1975 ).

    Google Scholar 

  8. Samuelson, P. A., Foundations of Economic Analysis (Harvard University Press, Cambridge, Massachusetts, 1947 ).

    Google Scholar 

  9. Goodwin, R. E., Econometrica, 19, 1–17 (1951).

    Article  MATH  Google Scholar 

  10. Baumol, W. J., Economic Dynamics, 3rd ed. ( Macmillan, New York, 1970 ).

    Google Scholar 

  11. See, for example, Kemeny, J., and Snell, J. L., Mathematical Models in the Social Sciences (MIT Press, Cambridge, Massachusetts, 1972 ).

    Google Scholar 

  12. Chaundy, T. W., and Phillips, E., Q. J! Math. Oxford, 7, 74–80 (1936). 13 Myrberg, P. J., Ann. Akad. Sc. Fennicae, A, I, No. 336/3 (1963).

    Google Scholar 

  13. Myrberg, P. J., Ann. Akad. Sc. Fennicae, A, I, No. 259 (1958).

    MathSciNet  Google Scholar 

  14. Lorenz, E. N., J. Atmos. Sci., 20, 130–141 (1963); Telles, 16, 1–1I (1964).

    Google Scholar 

  15. Metropolis, N., Stein, M. L., and Stein, P. R., J. Combinatorial Theory, 15 (A), 25–44 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  16. Maynard Smith, J., Mathematical Ideas in Biology ( Cambridge University Press, Cambridge, 1968 ).

    Google Scholar 

  17. Krebs, C. J., Ecology ( Harper and Row, New York, 1972 ).

    Google Scholar 

  18. May, R. M., Ant. Nat., 107, 46–57 (1972).

    Article  Google Scholar 

  19. Li, T.Y., and Yorke, J. A., Am. Math. Monthly, 82, 985–992 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  20. Hoppensteadt, F. C., and Hyman, J. M. (Courant Institute, New York University: preprint, 1975 ).

    Google Scholar 

  21. Ale, S., and Williams, R. (Department of Mathematics, Berkeley: preprint.

    Google Scholar 

  22. May, R. M., Science, 186, 645–647 (1974).

    Article  Google Scholar 

  23. Moran, P. A. P., Biometrics, 6, 250–258 (1950).

    Article  Google Scholar 

  24. Ricker, W. E., J. Fish. Res. Bd. Can., 11, 559–623 (1954).

    Article  Google Scholar 

  25. Cook, L. M., Nature, 207, 316 (1965).

    Article  Google Scholar 

  26. Macfadyen, A., Animal Ecology: Aims and Methods ( Pitman, London, 1963 ).

    Google Scholar 

  27. May, R. M., J. sites,. Bio!., 51, 511–524 (1975).

    Google Scholar 

  28. Guckenheimer, J., Proc. AMS Symposia in Pure Math., XIV, 95–124 (1970).

    Google Scholar 

  29. Gilbert, E. N., and Riordan, J., Illinois J. Math., 5, 657–667 (1961).

    MathSciNet  MATH  Google Scholar 

  30. Preston, C. J. (King’s College, Cambridge: preprint, 1976 ).

    Google Scholar 

  31. Gumowski, I., and Mira, C., C. r. hebd. Sianc. Acad. Set., Paris, 281a, 45–48 (1975); 282a, 219–222 (1976).

    Google Scholar 

  32. Layer, D., Sci. Am., 233 (6), 56–69 (1975).

    Article  Google Scholar 

  33. Ulam, S. M., Proc. Int. Corti, Math. 1950, Cambridge, Mass.; Vol. Il, pp. 264–273 ( AMS, Providence R.I., 1950 ).

    Google Scholar 

  34. Ulam, S. M., and von Neumann, J., Bull. Am. math. Soc. (abstr.), 53, 1120 (1947).

    Google Scholar 

  35. Kac, M., Ann. Math., 47, 33–49 (1946).

    Article  MATH  Google Scholar 

  36. May, R. M., Science, 181, 1074 (1973).

    Google Scholar 

  37. Hassell, M. P., J. Anim. Eco(., 44, 283–296 (1974).

    Article  Google Scholar 

  38. Hassell, M. P., Lawton, J. H., and May, R. M., J. Anim. Ecol. (in the press).

    Google Scholar 

  39. Ruelle, D., and Takens, F., Comm. math. Phys., 20, 167–192 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  40. Landau, L. D., and Lifshitz, E. M., Fluid Mechanics ( Pergamon, London, 1959 ).

    Google Scholar 

  41. Martin, P. C., Proc. Int. Conf. on Statistical Physics, 1975, Budapest (Hungarian Acad. Sci., Budapest, in the press).

    Google Scholar 

  42. Southwood, T. R. E., in Insects, Science and Society (edit. by Pimentel, D.), 151–199 ( Academic, New York, 1975 ).

    Google Scholar 

  43. Metropolis, N., Stein, M. L., and Stein, P. R., Numer. Math., 10, 1–19 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  44. Gumowski, I., and Mira, C., Automatica, 5, 303–317 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  45. Stein, P. R., and Ulam, S. M., Rospeaa’y Mat., 39, 1–66 (1964).

    MathSciNet  Google Scholar 

  46. Beddington, J. R., Free, C. A., and Lawton, J. H., Nature, 255, 58–60 (1975).

    Article  Google Scholar 

  47. Hirsch, M. W., and Smale, S., Differential Equations, Dynamical Systems and Linear Algebra ( Academic, New York, 1974 ).

    MATH  Google Scholar 

  48. Kolata, G. B., Science, 189, 984–985 (1975).

    Article  Google Scholar 

  49. Smale. S. (Department of Mathematics, Berkeley: preprint, 1976 ).

    Google Scholar 

  50. May, R. M., and Leonard, W. J., SIAM J. App!. Math., 29, 243–253 (1975).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

May, R.M. (2004). Simple mathematical models with very complicated dynamics. In: Hunt, B.R., Li, TY., Kennedy, J.A., Nusse, H.E. (eds) The Theory of Chaotic Attractors. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21830-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21830-4_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2330-1

  • Online ISBN: 978-0-387-21830-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics