Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 90/2))

Abstract

The use of stimulated Raman scattering (SRS) as a means of amplifying signals in telecommunication systems has been demonstrated since 1976 [1]. Yet despite its advantages over erbium-doped fiber, Raman amplification was not used in the first generation of deployed optically amplified systems. One of the principal reasons for this was the lack of reliable high-power pump sources needed for Raman amplification. It was in this environment that the cascaded Raman fiber laser (RFL) was invented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Lin and R. H. Stolen, Backward Raman amplification and pulse steepening in silica fibers, Appl. Phys. Lett., 29:428, 1976.

    Article  ADS  Google Scholar 

  2. E. P. Ippen, Low-power quasi-cw Raman oscillator, Appl. Phys. Lett., 16:303, 1970.

    Article  ADS  Google Scholar 

  3. R. H. Stolen, E. P. Ippen, and A. R. Tynes, Raman oscillation in glass optical waveguide, Appl. Phys. Lett., 20:62, 1972.

    Article  ADS  Google Scholar 

  4. R. H. Stolen and E. P. Ippen, Raman gain in glass optical waveguides, Appl. Phys. Lett., 22:276–278, 1973.

    Article  ADS  Google Scholar 

  5. K. O. Hill, B. S. Kawasaki, and D. C. Johnson, Low-threshold cw Raman laser, Appl. Phys. Lett., 29:181, 1976.

    Article  ADS  Google Scholar 

  6. C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high efficiency tunable cw Raman oscillator,” Appl. Phys. Lett., 30:162, 1977.

    Article  ADS  Google Scholar 

  7. C. Lin, R. H. Stolen, W. G. French, and T. G. Malone, A tunable 1.1 μm fiber Raman oscillator, Appl. Phys. Lett., 31:97, 1977.

    Article  ADS  Google Scholar 

  8. C. Lin, L. G Cohen, R. H. Stolen, G W. Tasker, and W. G French, Near-infrared sources in the 1-1.3 μm region by efficient stimulated Raman emission in glass fibers, Opt. Commun., 20:426–428, 1977.

    Article  ADS  Google Scholar 

  9. R. K. Jain, C. Lin, R. H. Stolen, and A. Ashkin, A tunable multiple Stokes cw fiber Raman oscillator, Appl. Phys. Lett., 31:89, 1977.

    Article  ADS  Google Scholar 

  10. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Photosensitivity in optical waveguides: Application to reflection filter fabrication, Appl. Phys. Lett., 32:10, 647, 1978.

    Article  ADS  Google Scholar 

  11. R. Kashyap, Fiber Bragg Gratings, San Diego: Academic, 1999.

    Google Scholar 

  12. S. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W. Y. Cheung, W. A. Reed, P. J. Lemaire, A. E. Miller, S. G. Kosinski, G. Nykolak, and P. C. Becker, 1.3 μm cascaded Raman amplifier in germanosilicate fibers. In Proceedings of Optical Amplifiers and Their Applications, PD3-1, 187, 1994.

    Google Scholar 

  13. S.G Grubb, T. Strasser, W.Y. Cheung, W.A. Reed, V. Mizrachi, T. Erdogan, P.J. Lemaire, A.M. Vengsarkar, D. J. DiGiovanni, D. W. Peckham, and B. H. Rockney, High-power 1.48 μm cascaded Raman laser in germanosilicate fibers. In Proceedings of Optical Amplifiers and Their Applications, SA4, 197–199, 1995.

    Google Scholar 

  14. D. Innis, D. J. DiGiovanni, T. A. Strasser, A. Hale, C. Headley, A. J. Stentz, R. Pedrazzani, D. Tipton, S. G Kosinski, D. L. Brownlow, K. W. Quoi, K. S. Kranz, R. G Huff, R. Espindola, J. D. Le Grange, and G Jacobovitz-Veselka, Ultrahigh-power single-mode fiber lasers from 1.065 to 1.472 μm using Yb-doped cladding-pumped and cascaded Raman lasers. In Proceedings of the Conference on Lasers and Electro-Optics, CPD-31, 1997.

    Google Scholar 

  15. V. I. Karpov, E. M. Dianov, A. S. Kurkov, V. M. Paramonov, V. N. Protopopov, M. P. Bachynski, and W. R. L. Clements, LD-pumped 1.48 μm laser based on Yb-doped double-clad fiber and phosphorosilicate-fiber Raman converter. In Proceedings of the Optical Fiber Communication Conference, WM3, 202–204, 1999.

    Google Scholar 

  16. E. M. Dianov, I. A. Bufetov, M. M. Bubnov, A. V. Shubin, S. A. Vasiliev, O. I. Medvedkov, S. I. Semjonov, M. V. Grekov, V. M. Paramonov, A. N. Gur’yanov, V. F. Khopin, D. Varelas, A. Iocco, D. Costantini, H. G. Limberger and R-P. Salathé, CW highly efficient 1.24 μm Raman laser based on low-loss phosphosilicate fiber. In Proceedings of the Optical Fiber Communication Conference, PD25, 1999.

    Google Scholar 

  17. V. I. Karpov, E. M. Dianov, V.M. Paramonov, O. I. Medvedkov, M. M. Bubnov, S. L. Semyonov, S. A. Vasiliev, V. N. Protopopov, O. N. Egorova, V. F. Hopin, A. N. Guryanov, M. P. Bachynski, and W. R. L. Clements, Laser-diode-pumped phosphosilicate-fiber Raman laser with an output power of 1 W at 1.48 μm, Opt. Lett., 24:13, 887–889, 1999.

    Article  ADS  Google Scholar 

  18. E. M. Dianov, I. A. Bufetov, M. M. Bubnov, M. V Grekov, S. A. Vasiliev, and O. I. Medvedkov, Three cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber, Opt. Lett., 25:6, 402–404, 2000.

    Article  ADS  Google Scholar 

  19. W.A. Reed, W. C. Coughran and S. G Grubb, Numerical modeling of cascaded cw Raman fiber amplifiers and lasers. In Optical Fiber Communication Conference, WD1, 107–109, 1995.

    Google Scholar 

  20. M. Rini, I. Cristiani, and V. Degiorgio, Numerical modeling and optimization of cascaded cw Raman fiber lasers, IEEE J. Quantum Electron., QE 36:10, 1117–1122, 2000.

    Article  ADS  Google Scholar 

  21. A. Bertoni and G. C. Reali, 1.24-μm cascaded Raman laser for 1.31-μm Raman fiber amplifiers, Appl. Phys. B 67:5–10, 1998.

    Article  ADS  Google Scholar 

  22. G Vareille, O. Audouin, and E. Desurvire, Numerical optimization of power conversion efficiency in 1480 nm multi-Stokes Raman fibre lasers, Electron. Lett. 34:7, 675–676, 1998.

    Article  Google Scholar 

  23. S. D. Jackson and P. H. Muir, Theory and numerical simulation of nth-order cascaded Raman fiber lasers, J. Opt. Soc. Am. B 18:9, 1297–1306, 2001.

    Article  ADS  Google Scholar 

  24. K. Rottwitt and H. D. Kidorf, A 92 nm bandwidth Raman amplifier. In Proceedings of the Optical Fiber Communication Conference, PD6, 1998.

    Google Scholar 

  25. Y. Emori and S. Namiki, 100 nm flat Raman amplifiers pumped and gain equalized by 12-wavelength-channel WDM high power laser diodes. In Proceedings of the Optical Fiber Conference, PD19-1, 1999.

    Google Scholar 

  26. D. I. Chang, D. S. Lim, M. Y. Jeon, H. K. Lee, K. H. Kim, and T. Park, Dual wavelength cascaded Raman fiber laser, Electron. Lett., 36:1365–1368, 2001.

    Google Scholar 

  27. S. B. Paperny, V I. Karpov, and W. R. L. Clements, Efficient dual-wavelength Raman fiber laser, In Proceedings of the Optical Fiber Communication Conference, WDD15-1, 2001.

    Google Scholar 

  28. M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Fedder and B. J. Eggleton, A high-efficiency power-stable three-wavelength configurable Raman fiber laser. In Proceedings of the Optical Fiber Communication Conference, PD3-1, 2001.

    Google Scholar 

  29. M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, K. Feder, and B.J. Eggleton, Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening, IEEE Photon. Technol. Lett., 13:12, 1286–1288, 2001.

    Article  ADS  Google Scholar 

  30. M. D. Mermelstein, C. Horn, Z. Huang, P. Steinvurzel, K. Feder, M. Luvalle, J.-C. Bouteiller, C. Headley, and B. J. Eggleton, Configurability of a three-wavelength Raman fiber laser for gain ripple minimization and power partitoning. In Proceedings of the Optical Fiber Communication Conference, TuJ2-1, 2002.

    Google Scholar 

  31. X. Normandin, F Leplingard, E. Bourova, C. Leclère, T. Lopez, Jean-Jacques Guérin, D. Bayart, Experimental assessment of phospho-silicate fibers for three wavelength (1427 nm, 1455 nm, 1480 nm) reconfigurable Raman lasers. In Proceedings of the Optical Fiber Communication Conference, TuB2-1, 2002.

    Google Scholar 

  32. M. D. Mermelstein, C. Horn, J.-C. Bouteiller, P. Steinvurzel, K. Feder, C. Headley, and B. J. Eggleton, Six wavelength Raman fiber laser for C+L-band Raman amplification. In Proceedings of the Conference on Lasers and Electro-Optics, CThJ1, 2002.

    Google Scholar 

  33. M. D. Mermelstein, C. Horn, S. Radic, and C. Headley, Six-wavelength Raman fibre laser for C-and L-band Raman amplification and dynamic gain flattening, Electron. Lett., 38:636–638, 2002.

    Article  Google Scholar 

  34. F. Leplingard, S. Borne, L. Lorcy, T. Lopez, J.-J. Guérin, C. Moreau, C. Martinelli, D. Bayart, Six output wavelength Raman fibre laser for Raman amplification, Electron. Lett., 38:886–887, 2002.

    Article  Google Scholar 

  35. K. Rottwitt, A. Stentz, T. Nielsen, P. Hansen, K. Feder, and K. Walker, Transparent 80 km bidirectionally pumped distributed Raman amplifier with second order pumping. In Proceedings of the European Conference on Optical Communication, II-144–145, 1999.

    Google Scholar 

  36. V. Dominic, A. Mathur, and M. Ziari, Second-order distributed Raman amplification with a high-power 1370 nm laser diode, In Proceedings of Optical Amplifiers and their Applications, OMC6, 2001.

    Google Scholar 

  37. L. Labrunie, F. Boubal, E. Brandon, L. Buet, N. Darbois, D. Dufournet, V. Havard, P. Le Roux, M. Mesic, L. Piriou, A. Tran, and J.-P. Blondel, 1.6 Terabits (160 x 10.66 Gbit/s) unrepeated transmission over 321 km using second order pumping distributed Raman amplification. In Proceedings of the Optical Amplifiers and their Applications, PD3-1, 2001.

    Google Scholar 

  38. P. Le Roux, F. Boubal, E. Brandon, L. Buet, N. Darbois, V. Havard, L. Labrunie, L. Piriou, A. Tran and J.-P. Blondel, 25 GHz spaced DWDM 160 x 10.66 Gbit/s (1.6 Tbit/s) unrepeatered transmission over 380 km. In Proceedings of the European Conference on Optical Communication, PD. M. 1.5, 2001.

    Google Scholar 

  39. J.-C. Bouteiller, K. Brar, S. Radic, J. Bromage, Z. Wang, and C. Headley, Dual-order Raman pump providing improved noise figure and large gain bandwidth. In Proceedings of the Optical Fiber Communication Conference, Postdeadline Paper FB3, 2002.

    Google Scholar 

  40. S. B. Paperny, V. I. Karpov, and W. R. L. Clements, Third-order cascaded Raman amplification. In Proceedings of the Optical Fiber Communication Conference, FB4-1, 2002.

    Google Scholar 

  41. M. Prabhu, N. S. Kim, L. Jianren, and K. Ueda, Simultaneous two-color CW Raman fiber laser with maximum output power of 1.05 W/1239 nm and 0.95W/1484 nm using phosphosilicate fiber, Opt. Commun. 182:305–309, 2000.

    Article  ADS  Google Scholar 

  42. Alfalight, Boston Laser Inc., IRE-Polus Group, JDSU, LaserTel, SLI, Spectra Physics Products List.

    Google Scholar 

  43. L. Goldberg, B. Cole, and E. Snitzer, V-groove side-pumped 1.5 μm fibre amplifer, Electron. Lett., 33:2127–2129, 1997.

    Article  Google Scholar 

  44. L. Goldberg and J. Koplow, Compact, side-pumped 25 dBm Er/Yb co-doped double cladding fibre amplifier, Electron. Lett., 34:2027–2028, 1998.

    Article  Google Scholar 

  45. IRE-Polus Group Products List.

    Google Scholar 

  46. A. B. Grudin, J. Nilsson, P. W. Turner, C. C. Renaud, W. A. Clarkson, and D. N. Payne, Single clad coiled optical fibre for high power lasers and amplifiers. In Proceedings of the Conference on Lasers and Electro-Optics, CPD26-1, 1999.

    Google Scholar 

  47. V. P. Gapontsev, P. I. Sadovsky, and I. E. Samartsev, 1.5 μm erbium glass lasers, Proceedings of the Conference on Lasers and Electro-Optics, CPDP-38, 1990.

    Google Scholar 

  48. J. D. Minelly, E. R. Taylor, K. P. Jedrzejewski, J. Wang and D. N. Payne, “Laser-diode pumped neodymium-doped fibre laser with output power > 1W,” Proceedings of the Conference on Lasers and Electro-Optics, CWE-6, 1992.

    Google Scholar 

  49. H. M. Pask, J. L. Archambault, D. C. Hanna, L Reekie, P.St.J. Russell, J. E. Townsend, and A. C. Tropper, Operation of cladding-pumped Yb3+-doped silica fibre lasers in 1μm region, Electron. Lett., 30:11, 863–865, 1994.

    Article  ADS  Google Scholar 

  50. E. Snitzer, H. Po, F Hakimi, R. Tumminelli, and B. C. McCollum, Double-clad, offset core Nd fiber laser. In Proceedings of the Optical Fiber Communication Conference, PD5, 1988.

    Google Scholar 

  51. H. Po, E. Snitzer, L. Tumminelli, F. Hakimi, N. M. Chu, and T. Haw, Doubly clad high brightness Nd fiber laser pumped by GaAlAs phased array. In Proceedings of the Optical Fiber Communication Conference, PD7, 1989.

    Google Scholar 

  52. P. B. Hansen, L. Eskildsen, S. G. Grubb, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, Capacity upgrades of transmission systems by Raman amplification, IEEE Photon. Technol. Lett., 9:2, 262–264, 1997.

    Article  ADS  Google Scholar 

  53. Y. Qian, J. H. Povlsen, S. N. Knudsen, and L. Grüner-Nielsen, On Rayleigh backscattering and nonlinear effects evaluations and Raman amplification characterizations of single-mode fibers. In Proceedings of the Optical Amplifiers and their Applications Conference, OMD18, 2000.

    Google Scholar 

  54. F. L. Galeener, J. C. Mikkelsen, Jr., R.H. Geils, and W. J. Mosby, The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5, Appl. Phys. Lett., 32:34–36, 1978.

    Article  ADS  Google Scholar 

  55. N. Shibata, M. Horigudhi, and T. Edahiro, Raman spectra of binary high-silica glasses and fibers containing GeO2, P2O5 and B2O3, J. Non-Crystalline Solids, 45:115–126, 1981.

    Article  ADS  Google Scholar 

  56. D. Marcuse, Light Transmission Optics, New York: Van Nostrand Reinhold, Chap. 8, 1982.

    Google Scholar 

  57. V. M. Mashinsky, E. M. Dianov, V. B. Neustruev, S. V. Lavrishchev, A. N. Guryanov, V. F Khopin, N. N. Vechkanov, and O. D. Sazhin, UV absorption and excess optical loss in preforms and fibers with high germanium content. In Fiber Optic Materials and Components, H. H. Yuce, D. K. Paul, R. A. Greenwell, ed. Proc. SPIE, 2290:105–112, 1994.

    Google Scholar 

  58. E. M. Dianov, V. M. Mashinsky, V.B. Neustruev, O. D. Sazhin, A. N. Guryanov, V. F. Khopin, N. N. Vechkanov, and S. V Lavrishchev, Origin of excess loss in single-mode optical fibers with high GeO2-doped silica core, Optic. Fiber Technol. 3:77–86, 1997.

    Article  ADS  Google Scholar 

  59. L. Grüner-Nielsen, High index fibers, thesis for Industrial Ph.D., EF 546/Ph.D. No. 94-0146-ATV, Danish Academy of Technical Sciences, May, 1998.

    Google Scholar 

  60. M.E. Lines, W.A. Reed, D.J. DiGiovanni, and J.R. Hamlins, Explanation of anomalous loss in high delta singlemode fibres, Electron. Lett., 1009–1010, 1999.

    Google Scholar 

  61. A. S. Kurkov, V M. Paramonov, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, Raman fiber laser at 1.45 μm: Comparison of different schemes. In Proceedings of Optical Amplifiers and Their Applications, OMB5, 16–18, 2000.

    Google Scholar 

  62. C. R. S. Fludger, B. Handerek, and R. J. Mears, Pump to signal RIN transfer in Raman fibre amplifiers, J. Lightwave Tech., 19:8, 1140–1148, 2001.

    Article  ADS  Google Scholar 

  63. M. D. Mermelstein, C. Headley, and J.-C. Bouteiller, RIN transfer analysis in the pump depletion regime for Raman fiber amplifiers, Electron. Lett., 38:403–405, 2002.

    Article  Google Scholar 

  64. N. Tsukiji, N. Hayamizu, H. Shimizu, Y Ohki, T. Kimura, S. Irino, J. Yoshida, T. Fukushima, and S. Namiki, Advantage of inner-grating-muti-mode laser (iGM-laser) for SBS reduction in copropagating Raman amplifier. In Proceedings of Optical Amplifiers and their Applications, OMB4, 2002.

    Google Scholar 

  65. L. L. Wang, R. E. Tench, L. M. Yang, and Z. Jiang, Linewidth limitations of low noise, wavelength stabilized Raman pumps. In Proceedings of Optical Amplifiers and their Applications, OMB5, 2002.

    Google Scholar 

  66. B. J. Eggleton, J. A. Rogers, P. B. Westbrook, and T. A. Strasser, Electrically tunable power efficient dispersion compensating fiber Bragg grating, IEEE Photon. Technol. Lett., 11:854–856, 1999.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Headley, C., Mermelstein, M., Bouteiller, JC. (2004). Raman Fiber Lasers. In: Islam, M.N. (eds) Raman Amplifiers for Telecommunications 2. Springer Series in Optical Sciences, vol 90/2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21585-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21585-3_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-40656-5

  • Online ISBN: 978-0-387-21585-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics