Skip to main content

Fc Receptor Targeting in the Treatment of Allergy, Autoimmune Diseases and Cancer

  • Chapter
Multichain Immune Recognition Receptor Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 640))

Abstract

Fc receptors (FcRs) play an important role in the maintenance of an adequate activation threshold of various cells in antibody-mediated immune responses. Analyses of murine models show that the inhibitory FcR, FcγRIIB plays a pivotal role in the suppression of antibody-mediated allergy and autoimmunity. On the other hand, the activating-type FcRs are essential for the development of these diseases, suggesting that regulation of inhibitory or activating FcR is an ideal target for a therapeutic agent. Recent experimental or clinical studies also indicate that FcRs function as key receptors in the treatment with monoclonal antibodies (mAbs) therapy. This review summarizes FcR functions and highlights possible FcR-targeting therapies including mAb therapies for allergy, autoimmune diseases and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heyman B. Regulation of antibody responses via antibodies, complement and Fc receptors. Annu Rev Immunol 2000; 18:709–737.

    Article  PubMed  CAS  Google Scholar 

  2. Ravetch JV, Bolland S. IgG Fc receptors. Annu Rev Immunol 2001; 19:275–290.

    Article  PubMed  CAS  Google Scholar 

  3. Takai T. Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2002; 2:580–592.

    PubMed  CAS  Google Scholar 

  4. Hogarth PM. Fc receptors are major mediators of antibody based inflammation in autoimmunity. Curr Opin Immunol 2002; 14:798–802.

    Article  PubMed  CAS  Google Scholar 

  5. Nimmerjahn F, Ravetch JV. Fey receptors: Old friends and new family members. Immunity 2006; 24:19–28.

    Article  PubMed  CAS  Google Scholar 

  6. Nimmerjahn F, Bruhns P, Horiuchi K et al. FcγRIV: A novel FcR with distinct IgG subclass specificity. Immunity 2005; 23:41–51.

    Article  PubMed  CAS  Google Scholar 

  7. Roopenian DC, Christianson GJ, Sproule TJ et al. The MHO class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol 2003; 170:3528–3233.

    PubMed  CAS  Google Scholar 

  8. Sondermann P, Huber R, Oosthuizen V et al. The 3.2-Å crystal structure of the human IgG l Fc fragment-FcγRIII complex. Nature 2000; 406:267–273.

    Article  PubMed  CAS  Google Scholar 

  9. Garman SC, Wiirzburg BA, Tarchevskaya SS et al. Structure of the Fc fragment of human IgE bound to its high-affinity receptor FcɛRIα. Nature 2000; 406:259–266.

    Article  PubMed  CAS  Google Scholar 

  10. Herr AB, Ballister ER, Bjorkman PJ. Insights into IgA-mediated immune responses from the crystal structures of human FcɛRIα and its complex with IgAl-Fc. Nature 2003; 423:614–620.

    Article  PubMed  CAS  Google Scholar 

  11. Radaev S, Motyka S, Fridman WH et al. The structure of a human type III Fey receptor in complex with Fc. J Biol Chem 2001; 276:16469–16477.

    Article  PubMed  CAS  Google Scholar 

  12. Woof JM, Burton DR. Human antibody-Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol 2004; 4:89–99.

    Article  PubMed  CAS  Google Scholar 

  13. Maxwell KF, Powell MS, Hulett MD et al. Crystal structure of the human leukocyte Fc receptor, FcγRIIa. Nat Struct Biol 1999; 6:437–442.

    Article  PubMed  CAS  Google Scholar 

  14. Sondermann P, Huber R, Jacob U. Crystal structure of the soluble form of the human Fcγ-receptor IIb: A new member of the immunoglobulin superfamily at 1.7 A resolution. EMBO J 1999; 18:1095–1103.

    Article  PubMed  CAS  Google Scholar 

  15. Garman SC, Kinet JP, Jardetzky TS. Crystal structure of the human high-affinity IgE receptor. Cell 1998; 95:951–961.

    Article  PubMed  CAS  Google Scholar 

  16. Ding Y, Xu G, Yang M et al. Crystal structure of the ectodomain of human FcaRI. J Biol Chem 2003; 278:27966–27970.

    Article  PubMed  CAS  Google Scholar 

  17. Willcox BE, Thomas LM, Bjorkman PJ. Crystal structure of HLA-A2 bound to LIR-1, a host and viral major histocompatibility complex receptor Nat Immunol 2003; 4:913–919.

    Article  PubMed  CAS  Google Scholar 

  18. Chapman TL, Heikema AP, West AP Jr et al. Crystal structure and ligand binding properties of the D1D2 region of the inhibitory receptor LIR-1 (ILT2) Immunity 2000; 13:727–736.

    Article  PubMed  CAS  Google Scholar 

  19. Ghazizadeh S, Bolen JB, Fleit HB. Physical and functional association of Src-related protein tyrosine kinases with FcγRII in monocytic THP-1 cells. J Biol Chem 1994; 269:8878–8884.

    PubMed  CAS  Google Scholar 

  20. Wang AV, Scholl PR, Geha RS. Physical and functional association of the high affinity immunoglobulin G receptor (FcγRI) with the kinases Hck and Lyn. J Exp Med 1994; 180:1165–1170.

    Article  PubMed  CAS  Google Scholar 

  21. Bolland S, Pearse RN, Kurosaki T et al. SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunity 1998; 8:509–516.

    Article  PubMed  CAS  Google Scholar 

  22. Fluckiger AC, Li Z, Kato RM et al. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J 1998; 17:1973–1985.

    Article  PubMed  CAS  Google Scholar 

  23. Tamir I, Stolpa JC, Helgason CD et al. The RasGAP-binding protein p62dok is a mediator of inhibitory FcγRIIB signals in B-cells. Immunity 2000; 12:347–358.

    Article  PubMed  CAS  Google Scholar 

  24. Hara I, Takechi Y, Houghton AN. Implicating a role for immune recognition of self in tumor rejection: passive immunization against the brown locus protein. J Exp Med 1995; 182:1609–1614.

    Article  PubMed  CAS  Google Scholar 

  25. Clynes R, Takechi Y, Moroi Y et al. Fc receptors are required in passive and active immunity to melanoma. Proc Nad Acad Sci USA 1998; 95:652–656.

    Article  CAS  Google Scholar 

  26. Clynes RA, Towers TL, Presta LG et al. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 2000; 6:443–446.

    Article  PubMed  CAS  Google Scholar 

  27. Akiyama K, Ebihara S, Yada A et al. Targeting apoptotic tumor cells to FcγR provides efficient and versatile vaccination against tumors by dendritic cells. J Immunol 2003; 170:1641–1648.

    PubMed  CAS  Google Scholar 

  28. Yada A, Ebihara S, Matsumura K et al. Accelerated antigen presentation and elicitation of humoral response in vivo by FcγRIIB-and FcγRI/III-mediated immune complex uptake. Cell Immunol 2003; 225:21–32.

    Article  PubMed  CAS  Google Scholar 

  29. Regnault A, Lankar D, Lacabanne V et al. Feγ receptor-mediated induction of dendritic cell matura-tion and major histocompatibility complex class I-restricted antigen presentation after immune comple internalization. J Exp Med 1999; 189:371–380.

    Article  PubMed  CAS  Google Scholar 

  30. Rodriguez A, Regnault A, Kleijmeer M et al. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat Cell Biol 1999; 1:362–368.

    Article  PubMed  CAS  Google Scholar 

  31. Dhodapkar KM, Krasovsky J, Williamson B et al. Antitumor monoclonal antibodies enhance cross-presentation of cCellular antigens and the generation of myeloma-specific killer T-cells by dendritic cells. J Exp Med 2002; 195:125–133.

    Article  PubMed  CAS  Google Scholar 

  32. Kalergis AM, Ravetch JV. Inducing tumor immunity through the selective engagement of activating Feγ receptors on dendritic cells. J Exp Med 2002; 195:1653–1659.

    Article  PubMed  CAS  Google Scholar 

  33. Bergtold A, Desai DD, Gavhane A et al. Cell surface recycling of internalized antigen permits dendritic cell priming of B-cells. Immunity 2005; 23:503–514.

    Article  PubMed  CAS  Google Scholar 

  34. Sinclair NR. Fc-signalling in the modulation of immune responses by passive antibody. Scand J Immunol 2001; 53:322–330.

    Article  PubMed  CAS  Google Scholar 

  35. Nakamura A, Akiyama K, Takai T. Fc receptor targeting in the treatment of allergy, autoimmune disease and cancer. Expert Opin Ther Targets 2005; 9:169–190.

    Article  PubMed  CAS  Google Scholar 

  36. Kinet JP. Atopic allergy and other hypersensitivities. Curr Opin Immunol 1999; 11: 603–605.

    Article  PubMed  CAS  Google Scholar 

  37. Weinberger M. Innovative therapies for asthma: anti-IgE—The future?Paediatr Respir Rev 2004; 5 Suppl A:S115–118.

    Article  PubMed  Google Scholar 

  38. Busse W, Neaville W. Anti-immunoglobulin E for the treatment of allergic disease. Curr Opin Allergy Clin Immunol 2001; 1:105–108.

    PubMed  CAS  Google Scholar 

  39. Bruhns P, Fremont S, Daeron M. Regulation of allergy by Fc receptors. Curr Opin Immunol 2005; 17:662–669.

    Article  PubMed  CAS  Google Scholar 

  40. Strunk RC, Bloomberg GR. Omalizumab for asthma. N Engl J Med 2006; 354:2689–2695.

    Article  PubMed  CAS  Google Scholar 

  41. Goodnow CC. Pathways for self-tolerance and the treatment of autoimmune diseases. Lancet 2001; 357:2115–2121.

    Article  PubMed  CAS  Google Scholar 

  42. Scofield RH. Autoantibodies as predictors of disease. Lancet 2004; 363:1544–1546.

    Article  PubMed  CAS  Google Scholar 

  43. Olseni NJ, Stein CM. New drugs for rheumatoid arthritis. N Engl J Med 2004; 350:2167–2179.

    Article  Google Scholar 

  44. Choy EH, Isenberg DA, Garrood T et al. Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: A randomized, double-blind, placebo-controlled, dose-escalation trial. Arthritis Rheum 2002; 46:3143–3150.

    Article  PubMed  CAS  Google Scholar 

  45. Nishimoto N, Yoshizaki K, Miyasaka N et al. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: A multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 2004; 50:1761–1769.

    Article  PubMed  CAS  Google Scholar 

  46. Gorman C, Leandro M, Isenberg D. B-cell depletion in autoimmune disease. Arthritis Res Ther 2003; 5:S17–21.

    Article  PubMed  Google Scholar 

  47. Edwards JC, Szczepanski L, Szechinski J et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 2004; 350:2572–2581.

    Article  PubMed  CAS  Google Scholar 

  48. Pescovitz MD. Rituximab, an anti-CD20 monoclonal antibody: History and mechanism of action. Am J Transplant 2006; 6:859–866.

    Article  PubMed  CAS  Google Scholar 

  49. Coiffier B. Monoclonal antibody as therapy for malignant lymphomas. CR Biol 2006; 329:241–254.

    Article  CAS  Google Scholar 

  50. Gopal AK, Press OW. Clinical applications of anti-CD20 antibodies. J Lab Clin Med 1999; 134:445–450.

    Article  PubMed  CAS  Google Scholar 

  51. Uchida J, Hamaguchi Y, Oliver JA et al. The innate mononuclear phagocyte network depletes B-lym-phocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 2004; 199:1659–6169.

    Article  PubMed  CAS  Google Scholar 

  52. Anohk JH, Campbell D, Felgar RE et al. The relationship of FcγRIIIa genotype to degree of B-cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum 2003; 48:455–459.

    Article  Google Scholar 

  53. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 2003; 21:3940–3947.

    Article  PubMed  CAS  Google Scholar 

  54. Glennie MJ, Johnson PW. Clinical trials of antibody therapy. Immunol. Today 2000; 21:403–410.

    Article  PubMed  CAS  Google Scholar 

  55. Gelderman KA, Tomlinson S, Ross GD et al. Complement function in mAb-mediated cancer immunotherapy. Trends Immunol 2004; 25:158–164.

    Article  PubMed  CAS  Google Scholar 

  56. Harris M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol 2004; 5:292–302.

    Article  PubMed  CAS  Google Scholar 

  57. Anderson KG, Bates MP, Slaughenhoupt BL et al. Egression of human B-ccll-associated antigens on leukemias and lymphomas: A model of human B-cell differentiation. Blood 1984; 63:1424–1433.

    PubMed  CAS  Google Scholar 

  58. Cartron G, Dacheux L, Salles G et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 2002; 99:754–758.

    Article  PubMed  CAS  Google Scholar 

  59. Zhang Z, Zhang M, Goldman CK et al. Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD52 monoclonal antibody, Campath-1H. Cancer Res 2003; 63:6453–6457.

    PubMed  CAS  Google Scholar 

  60. Slamon DJ, Godolphin W, Jones LA et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244:707–712.

    Article  PubMed  CAS  Google Scholar 

  61. Mosesson Y, Yarden Y. Oncogenic growth factor receptors: implications for signal transduction therapy. Semin Cancer Biol 2004; 14:262–270.

    Article  PubMed  CAS  Google Scholar 

  62. Sliwkowski MX, Lofgren JA, Lewis GD et al. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol 1999; 4 Suppl 12:60–70.

    Google Scholar 

  63. zum Buschcnfelde CM, Hermann C, Schmidt B et al. Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T-lymphocytes against HER2-overexpressing tumor cells. Cancer Res 2002; 62: 2244–2247.

    Google Scholar 

  64. Kono K, Sato E, Naganuma H et al. Trastuzumab (Herceptin) enhances class I-restricted antigen presentation recognized by HER-2/neu-specific T cytotoxic lymphocytes. Clin Cancer Res 2004; 10:2538–2544.

    Article  PubMed  CAS  Google Scholar 

  65. Bolland S, Ravetch JV. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immimity 2000; 13:277–285.

    Article  CAS  Google Scholar 

  66. Yajima K, Nakamura A, Sugahara A et al. FcγRIIB deficiency with Fas mutation is sufficient for the development of systemic autoimmune disease. Eur J Immunol 2003; 33:1020–1029.

    Article  PubMed  CAS  Google Scholar 

  67. Kyogoku C, Dijstelbloem HM, Tsuchiya N et al. Feγ receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus. Arthritis Rheum 2002; 46:1242–1254.

    Article  PubMed  CAS  Google Scholar 

  68. Siriboonrit U, Tsuchiya N, Sirikong M et al. Association of Fey receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens 2003; 61:374–383.

    Article  PubMed  CAS  Google Scholar 

  69. Floto RA, Clatworthy MR, Heilbronn KR et al. Loss of function of a lupus-associated FcγRIIb polymorphism through exclusion from lipid rafts. Nat Med 2005; 11:1056–1058.

    Article  PubMed  CAS  Google Scholar 

  70. Kono H, Kyogoku C, Suzuki T et al. FcγRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B-cell receptor signaling. Hum Mol Genet 2005; 14:2881–2892.

    Article  PubMed  CAS  Google Scholar 

  71. Zhu D, Kepley CL, Zhang M et al. A novel himian immunoglobulin Fcγ-Fcɛ bifunctional fusion protein inhibits FceRI-mediated degranulation. Nat Med 2002; 8:518–521.

    Article  PubMed  CAS  Google Scholar 

  72. Zhu D, Kepley CL, Zhang K et al. A chimeric human-cat fusion protein blocks cat-induced allergy. Nat Med 2005; 11:446–449.

    Article  PubMed  CAS  Google Scholar 

  73. Tam SW, Demissie S, Thomas D et al. A bispecific antibody against human IgE and human Fcgamma-RII that inhibits antigen-induced histamine release by human mast cells and basophils. Allergy 2004; 59:772–780.

    Article  PubMed  CAS  Google Scholar 

  74. Rankin CT, Veri MC, Gorlatov S et al. CD32B, the human inhibitory Fey receptor IIB, as a target for monoclonal antibody therapy of B-cell lymphoma. Blood 2006; 108:2384–2391.

    Article  PubMed  CAS  Google Scholar 

  75. Cines DB, Blanchettei VS. Immune thrombocytopenic purpura. N Engl J Med 2002; 346:995–1008.

    Article  PubMed  Google Scholar 

  76. Yuki N. Infectious origins of and molecular mimicry in, Guillain-Barre and Fisher syndromes. Lancet Infect Dis 2001; 1:29–37.

    Article  PubMed  CAS  Google Scholar 

  77. Durelli L, Isoardo G. High-dose intravenous immunoglobulin treatment of multiple sclerosis. Neurol Sci 2002; 23:S39–48.

    Article  PubMed  Google Scholar 

  78. Latov N, Chaudhry V, Koski CL et al. Use of intravenous γ globulins in neuroimmunologic diseases. J Allergy Clin Immunol 2001; 108:S126–132.

    Article  PubMed  CAS  Google Scholar 

  79. Wiles CM, Brown P, Chapel H et al. Intravenous immunoglobulin in neurological disease: A specialist review. J Neurol Neurosurg Psychiatry 2002; 72:440–448.

    PubMed  CAS  Google Scholar 

  80. Burns JC. Kawasaki disease. Adv Pediatr 2001; 48:157–177.

    PubMed  CAS  Google Scholar 

  81. Sewell WA, Jolles S. Immunomodulatory action of intravenous immunoglobulin. Immunology 2002; 107:387–393.

    Article  PubMed  CAS  Google Scholar 

  82. Simon HU, Spath PJ. IVIG—Mechanisms of action. Allergy 2003; 58:543–552.

    Article  PubMed  CAS  Google Scholar 

  83. Bayry J, Thirion M, Misra N et al. Mechanisms of action of intravenous immunoglobulin in autoimmune and inflammatory diseases. Transfus Clin Biol 2003; 10:165–169.

    Article  PubMed  CAS  Google Scholar 

  84. Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 2001; 291:484–486.

    Article  PubMed  CAS  Google Scholar 

  85. Kaneko Y, Nimmerjahn F, Madaio MP et al. Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J Exp Med 2006; 203:789–797.

    Article  PubMed  CAS  Google Scholar 

  86. Bruhns P, Samuelsson A, Pollard J W et al. Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 2003; 18:573–581.

    Article  PubMed  CAS  Google Scholar 

  87. Crow AR, Song S, Freedman J et al. IVIg-mediated amelioration of murine ITP via FcγRIIB is independent of SHIP1, SHP-1 and Btk activity. Blood 2003; 102:558–560.

    Article  PubMed  CAS  Google Scholar 

  88. Siragam V, Crow AR, Brine D et al. Intravenous immunoglobulin ameliorates ITP via activating Fcγ receptors on dendritic cells. Nat Med 2006; 12:688–692.

    Article  PubMed  CAS  Google Scholar 

  89. Akilesh S, Petkova S, Sproule TJ et al. The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease. J Clin Invest 2004; 113:1328–1333.

    PubMed  CAS  Google Scholar 

  90. Li N, Zhao M, Hilario-Vargas J et al. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J Clin Invest 2005; 115:3440–3450.

    Article  PubMed  CAS  Google Scholar 

  91. McDonnell JM, Beavil AJ, Mackay GA et al. Structure based design and characterization of peptides that inhibit IgE binding to its high-affinity receptor. Nat Struct Biol 1996; 5:419–426.

    Article  Google Scholar 

  92. Marino M, Ruvo M, De Falco S et al. Prevention of systemic lupus erythematosus in MRL/lpr mice by administration of an immunoglobulin-binding peptide. Nat Biotechnol 2000; 18:735–739.

    Article  PubMed  CAS  Google Scholar 

  93. Uray K, Medgyesi D, Hilbert A et al. Synthesis and receptor binding of IgGl peptides derived from the IgG Fc region. J Mol Recognit 2004; 17:95–105.

    Article  PubMed  CAS  Google Scholar 

  94. Medgyesi D, Uray K, Sallai K et al. Functional mapping of the FcγRII binding site on human IgGl by synthetic peptides. Eur J Immunol 2004; 34:1127–1135.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Nakamura, A., Kubo, T., Takai, T. (2008). Fc Receptor Targeting in the Treatment of Allergy, Autoimmune Diseases and Cancer. In: Sigalov, A.B. (eds) Multichain Immune Recognition Receptor Signaling. Advances in Experimental Medicine and Biology, vol 640. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09789-3_17

Download citation

Publish with us

Policies and ethics