Skip to main content

Graph Model of Coalescence with Recombinations

  • Chapter
  • First Online:
Problem Solving Handbook in Computational Biology and Bioinformatics

Abstract

One of the primary genetic events shaping an autosomal chromosome is recombination. This is a process that occurs during meiosis, in eukaryotes, that results in the offsprings having different combinations of (homologous) genes, or chromosomal segments, of the two parents. The presence of these recombination events in the evolutionary history of each chromosome complicates the genetic landscape of a population, and understanding the manifestations of these genetic exchanges in the chromosome sequences has been a subject of intense curiosity (see [Hud83, Gri99, HSW05] and citations therein).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R Bürger. The mathematical theory of selection, recombination, and mutation. New York, Wiley, 2000.

    MATH  Google Scholar 

  • T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press, Cambridge, Massachusetts, 1990.

    MATH  Google Scholar 

  • Joanna L. Davies, Frantiek Simank, Rune Lyngs, Thomas Mailund, and Jotun Hein. On recombination-induced multiple and simultaneous coalescent events. Genetics, 177:2151–2160, December 2007.

    Article  Google Scholar 

  • Erling Følner. On groups with full Banach mean value. Mathematica Scandinavica, 3: 243254, December 1955.

    Google Scholar 

  • R. C. Griffiths and P. Marjoram. An ancestral recombinations graph. Progress in Population Genetics and Human Evolution (P Donnelly and S Tavare Eds) IMA vols in Mathematics and its Applications, 87:257–270, 1997.

    Google Scholar 

  • R. C. Griffiths. The time to the ancestor along sequences with recombination. Theoretical Population Biology, 55(2):137–144, April 1999.

    Article  MATH  Google Scholar 

  • Stacey B. Gabriel, Stephen F. Schaffner, Huy Nguyen, Jamie M. Moore, Jessica Roy, Brendan Blumenstiel, John Higgins, Matthew DeFelice, Amy Lochner, Maura Faggart, Shau Neen Liu-Cordero, Charles Rotimi, Adebowale Adeyemo, Richard Cooper, Ryk Ward, Eric S. Lander, Mark J. Daly, and David Altshuler. The structure of haplotype blocks in the human genome. Science, 296(5576):2225 – 2229, 2002.

    Article  Google Scholar 

  • Dan Gusfield, Vikas Bansal, Vineet Bafna and Yun S. Song. A decomposition theory for phylogenetic networks and incompatible characters. Journal of Computational Biology, 14(10): 1247–1272, 2007.

    Article  MathSciNet  Google Scholar 

  • Jotun Hein, Mikkel H. Schierup, and Carsten Wiuf. Gene Genealogies, Variation and Evolution: A Primer in Coalescent Theory. Oxford Press, 2005.

    Google Scholar 

  • R. R. Hudson. Properties of a neutral allele model with intragenic recombination. Theoretical Population Biology, 23(2):183–201, April 1983.

    Article  MATH  Google Scholar 

  • R. R. Hudson. Gene genealogies and the coalescent process. Oxford Surveys in Evolutionary Biology. Oxford University Press, Oxford, 1990.

    Google Scholar 

  • M.A. Jobling, M. Hurles, and C. Tyler-Smith. Human Evolutionary Genetics: Origins, Peoples and Disease. Mathematical and Computaional Biology Series. Garland Publishing, 2004.

    Google Scholar 

  • Motoo Kimura and James F. Crow. The number of alleles that can be maintained in a finite population. Genetics, 49(4):725–738, 1964.

    Google Scholar 

  • Motoo Kimura. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics, 61(4):893–903, 1969.

    Google Scholar 

  • J. F. C. Kingman. On the genealogy of large populations. Journal of Applied Probability, 19A:2743, 1982.

    MathSciNet  Google Scholar 

  • Marta Melé, Asif Javed, Francesc Calafell, Laxmi Parida, Jaume Bertranpetit, Genographic Consortium. Recombination-based genomics: a genetic variation analysis in human populations. under submission, 2009.

    Google Scholar 

  • Laxmi Parida. Pattern Discovery in Bioinformatics: Theory and Algorithms. Chapman Hall Press, 2007.

    Google Scholar 

  • Laxmi Parida. Ancestral Recombinations Graph: A Reconstructability Perspective using Random-Graphs Framework. under submission, 2009.

    Google Scholar 

  • Laxmi Parida, Marta Melé, Francesc Calafell, Jaume Bertranpetit, Genographic Consortium. Estimating the Ancestral Recombinations Graph (ARG) as Compatible Networks of SNP Patterns. Journal of Computational Biology, 15(9):1–22, 2008.

    Article  MathSciNet  Google Scholar 

  • Laxmi Parida, Marta Melé, Francesc Calafell, Jaume Bertranpetit, Genographic Consortium. Minimizing recombinations in consensus networks for phylogeographic studies. BMC Bioinformatics, 10(1):S72, DOI = 10.1186/1471-2105-10-S1-S72, ISSN =1471-2105, 2009.

    Article  Google Scholar 

  • Stephen F. Schaffner, Catherine Foo, Stacey Gabriel, David Reich, Mark J. Daly and David Altshuler. Calibrating a coalescent simulation of human genome sequence variation. Genome Res., 15:1576-1583, 2005.

    Article  Google Scholar 

  • Mikkel H. Schierup and Jotun Hein. Consequences of recombination on traditional phylogenetic analysis. Genetics, 156:879–891, October 2000.

    Google Scholar 

  • Mike Steel and Jotun Hein. Reconstructing pedigrees: A combinatorial perspective. Journal of Theoretical Biology, 240(3):360–367, 2006.

    Article  MathSciNet  Google Scholar 

  • Carsten Wiuf and Jotun Hein. Recombination as a point process along sequences. Theoretical Population Biology, 55:248–259, 1999.

    Article  MATH  Google Scholar 

  • Carsten Wiuf and Jotun Hein. The ancestry of a sample of sequences subject to recombination. Genetics, 151:1217–1228, March 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxmi Parida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer US

About this chapter

Cite this chapter

Parida, L. (2010). Graph Model of Coalescence with Recombinations. In: Heath, L., Ramakrishnan, N. (eds) Problem Solving Handbook in Computational Biology and Bioinformatics. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09760-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09760-2_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09759-6

  • Online ISBN: 978-0-387-09760-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics