Skip to main content

Role of Hyperglycemia and Redox-Induced Signaling in Vascular Complications of Diabetes

  • Chapter
Signal Transduction in the Cardiovascular System in Health and Disease

Abstract

Vascular complications including impaired contractility and increased cell proliferation are the most common complications associated with diabetes. Chronic hyperglycemia appears to be an important contributing factor in this process. Various signaling pathways are implicated in diabetes/hyperglycemia-induced impaired vascular functions. Increased oxidative stress, nonenzymatic glycation, enhanced production of diacylglycerol, increased activity of protein kinase C, mitogen-activated protein kinases (MAPK), and other signaling pathways have been proposed to explain the adverse effects of hyperglycemia on vascular smooth muscle cells. Hyperglycemia-induced stimulation of the L-type Ca2+ channel via G-protein-coupled adenylyl cyclase/cAMP and phospholipase C/protein kinase C (PKC) pathways has also been shown. In addition, hyperglycemia has been reported to decrease the availability of nitric oxide and increase the formation of peroxynitrite which may contribute to all of the hemodynamic and physiological changes occurring in diabetes. G-protein/adenylyl cyclase signaling that plays an important role in the regulation of cardiovascular functions has also been reported to be impaired in diabetes and under hyperglycemic conditions. In this review, we have highlighted some key signaling pathways, including PKC, MAPK, and G-protein/adenylyl cyclase, which are altered in diabetes, and in response to hyperglycemia/oxidative stress, and discussed their contributions in the development of vascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anand-Srivastava, M.B. 1989. Angiotensin II receptors negatively coupled to adenylate cyclase in rat myocardial sarcolemma. Involvement of inhibitory guanine nucleotide regulatory protein. Biochem. Pharmacol. 38:489-496.

    CAS  PubMed  Google Scholar 

  • Anand-Srivastava, M.B., A.K. Srivastava, and M. Cantin. 1987. Pertussis toxin attenuates atrial natriuretic factor-mediated inhibition of adenylate cyclase. Involvement of inhibitory guanine nucleotide regulatory protein. J. Biol. Chem. 262:4931-4934.

    CAS  PubMed  Google Scholar 

  • Azar, Z.M., M.Z. Mehdi, and A.K. Srivastava. 2006. Activation of insulin-like growth factor type-1 receptor is required for H2 O2 -induced PKB phosphorylation in vascular smooth muscle cells. Can. J. Physiol. Pharmacol. 84:777-786.

    CAS  PubMed  Google Scholar 

  • Azar, Z.M., M.Z. Mehdi, and A.K. Srivastava. 2007. Insulin-like growth factor type-1 recep-tor transactivation in vasoactive peptide and oxidant-induced signaling pathways in vascular smooth muscle cells. Can. J. Physiol. Pharmacol. 85:105-111.

    CAS  PubMed  Google Scholar 

  • Bassil, M., and M.B. Anand-Srivastava. 2006a. Nitric oxide modulates Gi-protein expression and adenylyl cyclase signaling in vascular smooth muscle cells. Free Radic. Biol. Med. 41:1162-1173.

    CAS  Google Scholar 

  • Bassil, M., and M.B. Anand-Srivastava. 2006b. Peroxynitrite modulates the expression of Giα protein and adenylyl cyclase signaling in vascular smooth muscle cells. FASEB J. 20:A664.

    Google Scholar 

  • Baynes, J.W. 1991. Role of oxidative stress in development in diabetes. Diabetes 40: 405-412.

    CAS  PubMed  Google Scholar 

  • Baynes, J.W., and S.R. Thorpe. 1999. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1-9.

    CAS  PubMed  Google Scholar 

  • Blanc, A., N.R. Pandey, and A.K. Srivastava. 2003. Synchronous activation of ERK 1/2, p38mapk and PKB/Akt signaling by H2 O2 in vascular smooth mucle cells: Potential involvement in vas-cular disease (review). Int. J. Mol. Med. 11:229-234.

    CAS  PubMed  Google Scholar 

  • Blanc, A., N.R. Pandey, and A.K. Srivastava. 2004. Distinct roles of Ca2+ , calmodulin, and protein kinase C in H2 O2 -induced activation of ERK1/2, p38 MAPK, and protein kinase B signaling in vascular smooth muscle cells. Antioxid. Redox Signal. 6:353-366.

    CAS  PubMed  Google Scholar 

  • Brownlee, M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature 414:813-820.

    CAS  PubMed  Google Scholar 

  • Bushfield, M., S.L. Griffiths, G.J. Murphy, N.J. Pyne, J.T. Knowler, G. Milligan, P.J. Parker, S. Mollner, and M.D. Houslay. 1990. Diabetes-induced alterations in the expression, functioning and phosphorylation state of the inhibitory guanine nucleotide regulatory protein Gi-2 in hepa-tocytes. Biochem. J. 271:365-372.

    CAS  PubMed  Google Scholar 

  • Cai, H., and D.G. Harrison. 2000. Endothelial dysfunction in cardiovascular diseases: the role of oxidative stress. Circ. Res. 87:840-844.

    CAS  PubMed  Google Scholar 

  • Cali, J.J., E.A. Balcueva, I. Rybalkin, and J.D. Robishaw. 1992. Selective tissue distribution of G protein gamma subunits, including a new form of the gamma subunits identified by cDNA cloning. J. Biol. Chem. 267:24023-24027.

    CAS  PubMed  Google Scholar 

  • Caro, J.F., M.S. Raju, M. Caro, C.J. Lynch, J. Poulos, J.H. Exton, and J.K. Thakkar. 1994. Guanine nucleotide binding regulatory proteins in liver from obese humans with and without type II diabetes: evidence for altered “cross-talk” between the insulin receptor and Gi-proteins. J. Cell Biochem. 54:309-319.

    CAS  PubMed  Google Scholar 

  • Ceriello, A., F. Mercuri, L. Quagliaro, R. Assaloni, E. Motz, L. Tonutti, and C. Taboga. 2001. Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress. Diabetologia 44:834-848.

    CAS  PubMed  Google Scholar 

  • Chiasson, J.L., R. Rabasa-Lhoret, and A.K. Srivastava. 2006. Oxidative stress in the development of diabetes and its complication. In Antioxidants and Cardiovascular Disease. J.C. Tardif and M.G. Bourassa, editors. Springer, New York. 380-391.

    Google Scholar 

  • Craven, P.A., and F.R. DeRubertis. 1989. Protein kinase C is activated in glomeruli from strepto-zotocin diabetic rats. Possible mediation by glucose. J. Clin. Invest. 83:1667-1675.

    CAS  PubMed  Google Scholar 

  • Daou, G.B., and A.K. Srivastava. 2004. Reactive oxygen species mediate endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 signaling, as well as protein synthesis, in vascular smooth muscle cells. Free Radic. Biol. Med. 37:208-215.

    CAS  Google Scholar 

  • Davi, G., G. Ciabattoni, A. Consoli, A. Mezzetti, A. Falco, S. Santarone, E. Pennese, E. Vita-colonna, T. Bucciarelli, F. Costantini, F. Capani, and C. Patrono. 1999. In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 99:224-229.

    CAS  PubMed  Google Scholar 

  • Davis, R.J. 1993. The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 268:14553-14556.

    CAS  PubMed  Google Scholar 

  • Denton, R.M., and J.M. Tavare. 1995. Does mitogen-activated-protein kinase have a role in insulin action? The cases for and against. Eur. J. Biochem. 227:597-611.

    CAS  PubMed  Google Scholar 

  • Esposito, F., G. Chirico, G.N. Montesano, I. Posadas, R. Ammendola, T. Russo, G. Cirino, and F. Cimino. 2003. Protein kinase B activation by reactive oxygen species is independent of ty-rosine kinase receptor phosphorylation and requires SRC activity. J. Biol. Chem. 278:20828-20834.

    CAS  PubMed  Google Scholar 

  • Farhangkhoee, H., Z.A. Khan, H. Kaur, X. Xin, S. Chen, and S. Chakrabarti. 2006. Vascular en-dothelial dysfunction in diabetic cardiomyopathy: pathogenesis and potential treatment targets. Pharmacol. Ther. 111:384-399.

    CAS  PubMed  Google Scholar 

  • Force, T., and J.V. Bonventre. 1998. Growth factors and mitogen-activated protein kinases. Hyper-tension 31:152-161.

    CAS  Google Scholar 

  • Frodin, M., and S. Gammeltoft. 1999. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol. Cell. Endocrinol. 151:65-77.

    CAS  PubMed  Google Scholar 

  • Fujita, N., Y. Furukawa, J. Du, N. Itabashi, G. Fujisawa, K. Okada, T. Saito, and S. Ishibashi. 2002. Hyperglycemia enhances VSMC proliferation with NF-kappaB activation by angiotensin II and E2F-1 augmentation by growth factors. Mol. Cell. Endocrinol. 192:75-84.

    CAS  PubMed  Google Scholar 

  • Gilman, A.G. 1984. G proteins and dual control of adenylate cyclase. Cell 36:577-579.

    CAS  PubMed  Google Scholar 

  • Griffiths, S.L., J.T. Knowler, and M.D. Houslay. 1990. Diabetes-induced changes in guanine-nucleotide-regulatory-protein mRNA detected using synthetic oligonucleotide probes. Eur. J. Biochem. 193:367-374.

    CAS  PubMed  Google Scholar 

  • Gupta, S., D. Campbell, B. Derijard, and R.J. Davis. 1995. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267:389-393.

    CAS  PubMed  Google Scholar 

  • Hadjiconstantinou, M., Z.X. Qu, S.E. Moroi-Fetters, and N.H. Neff. 1988. Apparent loss of Gi protein activity in the diabetic retina. Eur. J. Pharmacol. 149:193-194.

    CAS  PubMed  Google Scholar 

  • Hargrove, G.M., J. Dufresne, C. Whiteside, D.A. Muruve, and N.C. Wong. 2000. Diabetes mellitus increases endothelin-1 gene transcription in rat kidney. Kidney Int. 58:1534-1545.

    CAS  PubMed  Google Scholar 

  • Hashim, S., Y.Y. Liu, R. Wang, and M.B. Anand-Srivastava. 2002. Streptozotocin-induced diabetes impairs G-protein linked signal transduction in vascular smooth muscle. Mol. Cell. Biochem. 240:57-65.

    CAS  PubMed  Google Scholar 

  • Hashim, S., Y. Li, A. Nagakura, S. Takeo, and M.B. Anand-Srivastava. 2004. Modulation of G-protein expression and adenylyl cyclase signaling by high glucose in vascular smooth muscle. Cardiovasc. Res. 63:709-718.

    CAS  PubMed  Google Scholar 

  • Hashim, S., Y. Li, and M.B. Anand-Srivastava. 2006. G protein-linked cell signaling and cardio-vascular functions in diabetes/hyperglycemia. Cell Biochem. Biophys. 44:51-64.

    CAS  Google Scholar 

  • Hattori, Y., N. Matsuda, A. Sato, S. Watanuki, H. Tomioka, H. Kawasaki, and M. Kanno. 2000. Predominant contribution of the G protein-mediated mechanism to NaF-induced vascular con-tractions in diabetic rats: association with an increased level of G(qalpha) expression. J. Phar-macol. Exp. Ther. 292:761-768.

    CAS  Google Scholar 

  • Hayashi, S., R. Morishita, H. Matsushita, H. Nakagami, Y. Taniyama, T. Nakamura, M. Aoki, K. Yamamoto, J. Higaki, and T. Ogihara. 2000. Cyclic AMP inhibited proliferation of human aortic vascular smooth muscle cells, accompanied by induction of p53 and p21. Hypertension 35:237-243.

    CAS  PubMed  Google Scholar 

  • Igarashi, M., H. Wakasaki, N. Takahara, H. Ishii, Z.Y. Jiang, T. Yamauchi, K. Kuboki, M. Meier, C.J. Rhodes, and G.L. King. 1999. Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J. Clin. Invest. 103:185-195.

    CAS  PubMed  Google Scholar 

  • Igarashi, M., A. Hirata, H. Yamaguchi, N. Sugae, Y. Kadomoto-Antsuki, H. Nozaki, Y. Jimbu, and M. Tominaga. 2007. Characterization of activation of MAP kinase superfamily in vasculature from diabetic rats. J. Atheroscler. Thromb. 14:235-244.

    CAS  PubMed  Google Scholar 

  • Inoguchi, T., and H. Nawata. 2005. NAD(P)H oxidase activation: a potential target mechanism for diabetic vascular complications, progressive beta-cell dysfunction and metabolic syndrome. Curr. Drug Targets. 6:495-501.

    CAS  PubMed  Google Scholar 

  • Inoguchi, T., R. Battan, E. Handler, J.R. Sportsman, W. Heath, and G.L. King. 1992. Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc. Natl. Acad. Sci. USA 89:11059-11063.

    CAS  PubMed  Google Scholar 

  • Inoguchi, T., P. Li, F. Umeda, H.Y. Yu, M. Kakimoto, M. Imamura, T. Aoki, T. Etoh, T. Hashimoto, M. Naruse, H. Sano, H. Utsumi, and H. Nawata. 2000. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939-1945.

    CAS  PubMed  Google Scholar 

  • Inoguchi, T., T. Sonta, H. Tsubouchi, T. Etoh, M. Kakimoto, N. Sonoda, N. Sato, N. Sekiguchi, K. Kobayashi, H. Sumimoto, H. Utsumi, and H. Nawata. 2003. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. J. Am. Soc. Nephrol. 14:S227-S232.

    CAS  PubMed  Google Scholar 

  • Ip, Y.T., and R.J. Davis. 1998. Signal transduction by the c-Jun N-terminal kinase (JNK)—from inflammation to development. Curr. Opin. Cell Biol. 10:205-219.

    CAS  PubMed  Google Scholar 

  • Ishii, H., M.R. Jirousek, D. Koya, C. Takagi, P. Xia, A. Clermont, S.E. Bursell, T.S. Kern, L.M. Ballas, W.F. Heath, L.E. Stramm, E.P. Feener, and G.L. King. 1996. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 272:728-731.

    CAS  PubMed  Google Scholar 

  • Ishikawa, Y., and C.J. Homcy. 1997. The adenylyl cyclases as integrators of transmembrane signal transduction. Circ. Res. 80:297-304.

    CAS  PubMed  Google Scholar 

  • Katsushika, S., L. Chen, J. Kawabe, R. Nilakantan, N.J. Halnon, C.J. Homcy, and Y. Ishikawa. 1992. Cloning and characterization of a sixth adenylyl cyclase isoform: types V and VI con-stitute a subgroup within the mammalian adenylyl cyclase family. Proc. Natl. Acad. Sci. USA 89:8774-8778.

    CAS  PubMed  Google Scholar 

  • Khan, Z.A., and S. Chakrabarti. 2003. Endothelins in chronic diabetic complications. Can. J. Phys-iol. Pharmacol. 81:622-634.

    Google Scholar 

  • Koka, V., W. Wang, X.R. Huang, S. Kim-Mitsuyama, L.D. Truong, and H.Y. Lan. 2006. Advanced glycation end products activate a chymase-dependent angiotensin II-generating pathway in dia-betic complications. Circulation 113:1353-1360.

    CAS  PubMed  Google Scholar 

  • Kook, H., J. Lee, S.W. Kim, and Y.H. Baik. 2002. Augmented natriuretic peptide-induced guanylyl cyclase activity and vasodilation in experimental hyperglycemic rats. Jpn. J. Pharmacol. 88:167-173.

    PubMed  Google Scholar 

  • Koya, D., and G.L. King. 1998. Protein kinase C activation and the development of diabetic com-plications. Diabetes 47:859-866.

    CAS  PubMed  Google Scholar 

  • Kunisaki, M., S.E. Bursell, F. Umeda, H. Nawata, and G.L. King. 1994. Normalization of diacylglycerol-protein kinase C activation by vitamin E in aorta of diabetic rats and cultured rat smooth muscle cells exposed to elevated glucose levels. Diabetes 43:1372-1377.

    CAS  PubMed  Google Scholar 

  • Laakso, M. 1999. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 48:937-942.

    PubMed  Google Scholar 

  • Lavrentyev, E.N., A.M. Estes, and K.U. Malik. 2007. Mechanism of high glucose induced an-giotensin II production in rat vascular smooth muscle cells. Circ. Res. 101:455-464.

    CAS  PubMed  Google Scholar 

  • Lee, H.S., S.M. Son, Y.K. Kim, K.W. Hong, and C.D. Kim. 2003. NAD(P)H oxidase participates in the signaling events in high glucose-induced proliferation of vascular smooth muscle cells. Life Sci. 72:2719-2730.

    CAS  PubMed  Google Scholar 

  • Lee, I.K., D. Koya, H. Ishi, H. Kanoh, and G.L. King. 1999. Alpha-tocopherol prevents the hyperglycemia induced activation of diacylglycerol (DAG)-protein kinase C (PKC) pathway in vascular smooth muscle cell by an increase of DAG kinase activity. Diabetes Res. Clin. Pract. 45:183-190.

    CAS  Google Scholar 

  • Li, Y., G. Lappas, and M.B. Anand-Srivastava. 2007.Role of oxidative stress in angiotensin II-induced enhanced expression of Gi(alpha) proteins and adenylyl cyclase signaling in A10 vas-cular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 292:H1922-H1930.

    CAS  PubMed  Google Scholar 

  • Li, Y., M. Descorbeth, and M.B. Anand-Srivastava. 2008 Role of oxidative stress in high glucose-induced decreased expression of Giαproteins and adenylyl cyclase signaling in vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 294:H2845-2854.

    CAS  PubMed  Google Scholar 

  • Liu, W.S., and C.A. Heckman. 1998. The sevenfold way of PKC regulation. Cell Signal. 10:529-542.

    CAS  PubMed  Google Scholar 

  • Liu, Y., K. Terata, N.J. Rusch, and D.D. Gutterman. 2001. High glucose impairs voltage-gated K(+) channel current in rat small coronary arteries. Circ. Res. 89:146-152.

    CAS  PubMed  Google Scholar 

  • Livingstone, C., A.R. McLellan, M.A. McGregor, A. Wilson, J.M. Connell, M. Small, G. Milligan, K.R. Paterson, and M.D. Houslay. 1991. Altered G-protein expression and adenylate cyclase activity in platelets of non-insulin-dependent diabetic (NIDDM) male subjects. Biochim. Biophys. Acta 1096:127-133.

    CAS  PubMed  Google Scholar 

  • Mancusi, G., C. Hutter, S. Baumgartner-Parzer, K. Schmidt, W. Schutz, and V. Sexl. 1996. High-glucose incubation of human umbilical-vein endothelial cells does not alter expression and function either of G-protein alpha-subunits or of endothelial NO synthase. Biochem. J. 315(Pt 1):281-287.

    CAS  PubMed  Google Scholar 

  • Mehdi, M.Z., N.R. Pandey, S.K. Pandey, and A.K. Srivastava. 2005. H2 O2 -induced phosphoryla-tion of ERK1/2 and PKB requires tyrosine kinase activity of insulin receptor and c-Src. An-tioxid. Redox Signal. 7:1014-1020.

    CAS  Google Scholar 

  • Monnier, L., E. Mas, C. Ginet, F. Michel, L. Villon, J.P. Cristol, and C. Colette. 2006. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295:1681-1687.

    CAS  PubMed  Google Scholar 

  • Moxham, C.M., and C.C. Malbon. 1996. Insulin action impaired by deficiency of the G-protein subunit G ialpha2. Nature 379:840-844.

    CAS  PubMed  Google Scholar 

  • Nakanishi, H., K.A. Brewer, and J.H. Exton. 1993. Activation of the zeta isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 268:13-16.

    CAS  PubMed  Google Scholar 

  • Natarajan, R., S. Scott, W. Bai, K.K. Yerneni, and J. Nadler. 1999. Angiotensin II signaling in vascular smooth muscle cells under high glucose conditions. Hypertension 33:378-384.

    CAS  PubMed  Google Scholar 

  • Newton, A.C., and J.E. Johnson. 1998. Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. Biochim. Biophys. Acta 1376:155-172.

    CAS  PubMed  Google Scholar 

  • Nishizuka, Y. 1995. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 9:484-496.

    CAS  PubMed  Google Scholar 

  • Onozato, M.L., A. Tojo, A. Goto, T. Fujita, and C.S. Wilcox. 2002. Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB. Kidney Int. 61:186-194.

    CAS  PubMed  Google Scholar 

  • Pacher, P., and C. Szabo. 2006. Role of peroxynitrite in the pathogenesis of cardiovascular compli-cations of diabetes. Curr. Opin. Pharmacol. 6:136-141.

    CAS  PubMed  Google Scholar 

  • Pacher, P., I.G. Obrosova, J.G. Mabley, and C. Szabo. 2005. Role of nitrosative stress and perox-ynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr. Med. Chem. 12:267-275.

    CAS  PubMed  Google Scholar 

  • Park, J.Y., N. Takahara, A. Gabriele, E. Chou, K. Naruse, K. Suzuma, T. Yamauchi, S.W. Ha, M. Meier, C.J. Rhodes, and G.L. King. 2000. Induction of endothelin-1 expression by glucose: an effect of protein kinase C activation. Diabetes 49:1239-1248.

    CAS  PubMed  Google Scholar 

  • Pennathur, S., J.D. Wagner, C. Leeuwenburgh, K.N. Litwak, and J.W. Heinecke. 2001. A hydroxyl radical-like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease. J. Clin. Invest. 107:853-860.

    CAS  PubMed  Google Scholar 

  • Premont, R.T., J. Chen, H.W. Ma, M. Ponnapalli, and R. Iyengar. 1992. Two members of a widely expressed subfamily of hormone-stimulated adenylyl cyclases. Proc. Natl. Acad. Sci. USA 89:9809-9813.

    CAS  PubMed  Google Scholar 

  • Purdom, S., and Q.M. Chen. 2005. Epidermal growth factor receptor-dependent and - indepen-dent pathways in hydrogen peroxide-induced mitogen-activated protein kinase activation in car-diomyocytes and heart fibroblasts. J. Pharmacol. Exp. Ther. 312:1179-1186.

    CAS  PubMed  Google Scholar 

  • Pyorala, K., M. Laakso, and M. Uusitupa. 1987. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab. Rev. 3:463-524.

    CAS  Google Scholar 

  • Reaven, G., F. Abbasi, and T. McLaughlin. 2004. Obesity, insulin resistance, and cardiovascular disease. Recent Prog. Horm. Res. 59:207-223.

    CAS  Google Scholar 

  • Seger, R., and E.G. Krebs. 1995. The MAPK signaling cascade. FASEB J. 9:726-735.

    CAS  PubMed  Google Scholar 

  • Singh, U., and I. Jialal. 2006. Oxidative stress and atherosclerosis. Pathophysiology 13:129-142.

    CAS  PubMed  Google Scholar 

  • Sodhi, C.P., Y.S. Kanwar, and A. Sahai. 2003. Hypoxia and high glucose upregulate AT1 receptor expression and potentiate ANG II-induced proliferation in VSM cells. Am. J. Physiol. Heart Circ. Physiol. 284:H846-H852.

    CAS  PubMed  Google Scholar 

  • Spiegel, A.M. 1987. Signal transduction by guanine nucleotide binding proteins. Mol. Cell. En-docrinol. 49:1-16.

    CAS  Google Scholar 

  • Strassheim, D., T. Palmer, and M.D. Houslay. 1991. Genetically acquired diabetes: adipocyte gua-nine nucleotide regulatory protein expression and adenylate cyclase regulation. Biochim. Bio-phys. Acta 1096:121-126.

    CAS  Google Scholar 

  • Strathmann, M., T.M. Wilkie, and M.I. Simon. 1989. Diversity of the G-protein family: sequences from five additional alpha subunits in the mouse. Proc. Natl. Acad. Sci. USA 86:7407-7409.

    CAS  PubMed  Google Scholar 

  • Stryer, L., and H.R. Bourne. 1986. G proteins: a family of signal transducers. Annu. Rev. Cell Biol. 2:391-419.

    CAS  PubMed  Google Scholar 

  • Tabet, F., E.L. Schiffrin, and R.M. Touyz. 2005. Mitogen-activated protein kinase activation by hy-drogen peroxide is mediated through tyrosine kinase-dependent, protein kinase C-independent pathways in vascular smooth muscle cells: upregulation in spontaneously hypertensive rats. J. Hypertens. 23:2005-2012.

    CAS  PubMed  Google Scholar 

  • Tan, Y., J. Rouse, A. Zhang, S. Cariati, P. Cohen, and M.J. Comb. 1996. FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J. 15:4629-4642.

    CAS  PubMed  Google Scholar 

  • Tang, W.J., and A.G. Gilman. 1991. Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits. Science 254:1500-1503.

    CAS  PubMed  Google Scholar 

  • Tannous, M., R.A. Rabini, A. Vignini, N. Moretti, P. Fumelli, B. Zielinski, L. Mazzanti, and B. Mutus. 1999. Evidence for iNOS-dependent peroxynitrite production in diabetic platelets. Dia-betologia 42:539-544.

    CAS  Google Scholar 

  • Taussig, R., L.M. Quarmby, and A.G. Gilman. 1993. Regulation of purified type I and type II adenylylcyclases by G protein beta gamma subunits. J. Biol. Chem. 268:9-12.

    CAS  PubMed  Google Scholar 

  • Toro, M.J., E. Montoya, and L. Birnbaumer. 1987. Inhibitory regulation of adenylyl cyclases. Ev-idence inconsistent with beta gamma-complexes of Gi proteins mediating hormonal effects by interfering with activation of Gs. Mol. Endocrinol. 1:669-676.

    CAS  PubMed  Google Scholar 

  • Touyz, R.M., C. Deschepper, J.B. Park, G. He, X. Chen, M.F. Neves, A. Virdis, and E.L. Schiffrin. 2002. Inhibition of mitogen-activated protein/extracellular signal-regulated kinase improves en-dothelial function and attenuates Ang II-induced contractility of mesenteric resistance arteries from spontaneously hypertensive rats 1. J. Hypertens. 20:1127-1134.

    CAS  PubMed  Google Scholar 

  • Touyz, R.M., G. Yao, E. Viel, F. Amiri, and E.L. Schiffrin. 2004. Angiotensin II and endothelin-1 regulate MAP kinases through different redox-dependent mechanisms in human vascular smooth muscle cells. J. Hypertens. 22:1141-1149.

    CAS  PubMed  Google Scholar 

  • Tucek, S., P. Michal, and V. Vlachova. 2001. Dual effects of muscarinic M2 receptors on the synthesis of cyclic AMP in CHO cells: background and model. Life Sci. 68:2501-2510.

    CAS  PubMed  Google Scholar 

  • Ushio-Fukai, M., R.W. Alexander, M. Akers, and K.K. Griendling. 1998. P38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J. Biol. Chem. 273:15022-15029.

    CAS  PubMed  Google Scholar 

  • Wang, X.Z., and D. Ron. 1996. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase. Science 272:1347-1349.

    CAS  PubMed  Google Scholar 

  • Weber, L.P., and K.M. Macleod. 1997. Influence of streptozotocin diabetes on the alpha-1 adreno-ceptor and associated G proteins in rat arteries. J. Pharmacol. Exp. Ther. 283:1469-1478.

    CAS  PubMed  Google Scholar 

  • Wickman, K.D., J.A. Iniguez-Lluhl, P.A. Davenport, R. Taussig, G.B. Krapivinsky, M.E. Linder, A.G. Gilman, and D.E. Clapham. 1994. Recombinant G-protein beta gamma-subunits activate the muscarinic-gated atrial potassium channel. Nature 368:255-257.

    CAS  PubMed  Google Scholar 

  • Widmann, C., S. Gibson, M.B. Jarpe, and G.L. Johnson. 1999. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79:143-180.

    CAS  PubMed  Google Scholar 

  • Williams, B., P. Tsai, and R.W. Schrier. 1992. Glucose-induced downregulation of angiotensin II and arginine vasopressin receptors in cultured rat aortic vascular smooth muscle cells. Role of protein kinase C. J. Clin. Invest. 90:1992-1999.

    CAS  PubMed  Google Scholar 

  • Williams, B., B. Gallacher, H. Patel, and C. Orme. 1997. Glucose-induced protein kinase C activa-tion regulates vascular permeability factor mRNA expression and peptide production by human vascular smooth muscle cells in vitro. Diabetes 46:1497-1503.

    CAS  PubMed  Google Scholar 

  • Wong, Y.H., B.R. Conklin, and H.R. Bourne. 1992. Gz-mediated hormonal inhibition of cyclic AMP accumulation. Science 255:339-342.

    CAS  PubMed  Google Scholar 

  • Xu, Q., Y. Liu, M. Gorospe, R. Udelsman, and N.J. Holbrook. 1996. Acute hypertension activates mitogen-activated protein kinases in arterial wall 2. J. Clin. Invest. 97:508-514.

    CAS  PubMed  Google Scholar 

  • Yasuda, H., K. Maeda, M. Sonobe, T. Kawabata, M. Terada, T. Hisanaga, Y. Taniguchi, R. Kikkawa, and Y. Shigeta. 1994. Metabolic effect of PGE1 analogue 01206.alpha CD on nerve Na(+)-K(+)-ATPase activity of rats with streptozocin-induced diabetes is mediated via cAMP: possible role of cAMP in diabetic neuropathy. Prostaglandins 47:367-378.

    CAS  PubMed  Google Scholar 

  • Yasunari, K., M. Kohno, H. Kano, K. Yokokawa, M. Minami, and J. Yoshikawa. 1999. Antiox-idants improve impaired insulin-mediated glucose uptake and prevent migration and prolifer-ation of cultured rabbit coronary smooth muscle cells induced by high glucose. Circulation 99:1370-1378.

    CAS  PubMed  Google Scholar 

  • Zhang, Z., K. Apse, J. Pang, and R.C. Stanton. 2000. High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J. Biol. Chem. 275:40042-40047.

    CAS  PubMed  Google Scholar 

  • Zheng, X.L., J. Guo, H. Wang, and C.C. Malbon. 1998. Expression of constitutively activated Gialpha2 in vivo ameliorates streptozotocin-induced diabetes. J. Biol. Chem. 273:23649-23651.

    CAS  PubMed  Google Scholar 

  • Zhuang, S., and R.G. Schnellmann. 2004. H2 O2 -induced transactivation of EGF receptor requires Src and mediates ERK1/2, but not Akt, activation in renal cells. Am. J. Physiol. Renal Physiol. 286:F858-F865.

    PubMed  Google Scholar 

  • Zinck, R., M.A. Cahill, M. Kracht, C. Sachsenmaier, R.A. Hipskind, and A. Nordheim. 1995. Protein synthesis inhibitors reveal differential regulation of mitogen-activated protein kinase and stress-activated protein kinase pathways that converge on Elk-1. Mol. Cell Biol. 15:4930-4938.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Srivastava, A.K., Anand-Srivastava, M.B. (2008). Role of Hyperglycemia and Redox-Induced Signaling in Vascular Complications of Diabetes. In: Srivastava, A.K., Anand-Srivastava, M.B. (eds) Signal Transduction in the Cardiovascular System in Health and Disease. Advances in Biochemistry in Health and Disease, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09552-3_9

Download citation

Publish with us

Policies and ethics