Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alessandrini, A., Gerunda, M. et al. (2003). Electron tunneling through azurin is mediated by the active site Cu ion. Chem. Phys. Letts. 376(5–6), 625–630.

    Article  CAS  Google Scholar 

  • Bashir, R. (2001). DNA-mediated artificial nanobiostructures: state of the art and future directions. Superlattices Microstructures 29(1), 1–16.

    Article  CAS  Google Scholar 

  • Beratan, D.N., Onuchic, J.N., Hopfield, J.J. (1987). Electron tunneling through covalent and non-covalent pathways in proteins. J. Chem. Phys. 86, 4488–4498.

    Article  CAS  Google Scholar 

  • Birge, R.R., Gillespie, N.B. et al. (1999). Biomolecular electronics: protein-based associative processors and volumetric memories. J. Phys. Chem. B 103(49), 10746–10766.

    Article  CAS  Google Scholar 

  • Bramanti, A., Pompa, P.P., Maruccio, G., Calabi, F., Arima, V., Cingolani, R., Corni, S., Di Felice, R., De Rienzo, F., and Rinaldi, R. (2005). Azurin for biomolecular electronics: a reliability study. Jpn. J. Appl. Phys. 44(9A), 6864–6866.

    Article  CAS  Google Scholar 

  • Broo, A. and Larsson S. (1991). Electron-transfer in azurin and the role of aromatic side groups of the protein. J. Phys. Chem. 95(13), 4925–4928.

    Article  CAS  Google Scholar 

  • Champagne, A. R., Pasupathy, A. N. et al. (2005). Mechanically adjustable and electrically gated single-molecule transistors. Nano Letts. 5(2), 305–308.

    Article  CAS  Google Scholar 

  • Chen, F., He, J. et al. (2005). A molecular switch based on potential-induced changes of oxidation state. Nano Letts. 5(3), 503–506.

    Article  CAS  Google Scholar 

  • Chi, Q.J., Zhang, J.D. et al. (2000). Molecular monolayers and interfacial electron transfer of Pseudomonas aeruginosa azurin on Au(111). J. Amer. Chem. Soc. 122(17), 4047–4055.

    Article  CAS  Google Scholar 

  • Choi, J.W. and Fujihira, M. (2004). Molecular-scale biophotodiode consisting of a green fluorescent protein/cytochrome c self-assembled heterolayer. Appl. Phys. Letts. 84(12), 2187–2189.

    Article  CAS  Google Scholar 

  • Choi, J.W., Nam, Y.S. et al. (2001). Rectified photocurrent of the protein-based bio-photodiode. Appl. Phys. Letts. 79(10), 1570–1572.

    Article  CAS  Google Scholar 

  • Cinelli, R.A.G., Pellegrini, V. et al. (2001). Green fluorescent proteins as optically controllable elements in bioelectronics. Appl. Phys. Letts. 79(20), 3353–3355.

    Article  CAS  Google Scholar 

  • Cohen, B.E., McAnaney, T.B. et al. (2002). Probing protein electrostatics with a synthetic fluorescent amino acid. Science 296(5573), 1700–1703.

    Article  CAS  Google Scholar 

  • Coura, P.Z., Legoas, S.B. et al. (2004). On the structural and stability features of linear atomic suspended chains formed from gold nanowires stretching. Nano Letts. 4(7), 1187–1191.

    Article  CAS  Google Scholar 

  • Dadosh, T., Gordin, Y., Krahne, R., Khivirich, I., Mahalu, D., Frydman, V., Sperling, J., Yacoby, A. and Bar-Joseph, I., (2005). Measurement of the conductance of single conjugated molecules. Nature 436, 677.

    Article  CAS  Google Scholar 

  • Danielewicz-Ferchmin, I., Banachowicz, E. et al. (2003). Protein hydration and the huge electrostriction. Biophys. Chem. 106(2), 147–153.

    Article  CAS  Google Scholar 

  • Das, R., Kiley, P.J. et al. (2004). Integration of photosynthetic protein molecular complexes in solid-state electronic devices. Nano Letts. 4(6), 1079–1083.

    Article  CAS  Google Scholar 

  • Datta, S., Tian, W.D. et al. (1997). Current-voltage characteristics of self-assembled monolayers by scanning tunneling microscopy. Phys. Rev. Letts. 79(13), 2530–2533.

    Article  CAS  Google Scholar 

  • Davis, J.J., Morgan, D.A. et al. (2005). Molecular bioelectronics. J. Mater. Chem. 15(22), 2160–2174.

    Article  CAS  Google Scholar 

  • Farver, O., Lu, Y. et al. (1999). Enhanced rate of intramolecular electron transfer in an engineered purple CUA azurin. Proc. Natl. Acad. Sci. U S A 96(3), 899–902.

    Article  CAS  Google Scholar 

  • Farver, O. and Pecht I. (1992). Long-range intramolecular electron-transfer in azurins. J. Amer. Chem. Soc. 114(14), 5764–5767.

    Article  CAS  Google Scholar 

  • Fidy, J., Balog, E. et al. (1998). Proteins in electric fields and pressure fields, experimental results. Biochim. et Biophys Acta Prot. Struct. Mol. Enzymol. 1386(2), 289–303.

    Article  CAS  Google Scholar 

  • Frolov, L., Rosenwaks, Y., Carmeli, C., and Carmeli, I. (2005). Fabrication of a photoelectronic device by direct chemical binding of the photosynthetic reaction center protein to metal surfaces. Adv. Mater. 17, 2434.

    Article  CAS  Google Scholar 

  • Giese, B., Amaudrut, J. et al. (2001). Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature 412(6844), 318–320.

    Article  CAS  Google Scholar 

  • Giese, B., Wessely, S. et al. (1999). On the mechanism of long-range electron transfer through DNA. Angewandte Chemie Int. Ed. 38(7), 996–998.

    Article  CAS  Google Scholar 

  • Gray, H.B. and Winkler, J.R. (1996). Electron transfer in proteins. Annu. Rev. Biochem. 65, 537–561.

    Article  CAS  Google Scholar 

  • Gray, H.B. and Winkler, J.R. (2005). Long-range electron transfer. Proc. Natl. Acad. Sci. U S A 102(10), 3534–3539.

    Article  CAS  Google Scholar 

  • Kagan, C.R., Afzali, A. et al. (2003). Evaluations and considerations for self-assembled mono layer field-effect transistors. Nano Letts. 3(2), 119–124.

    Article  CAS  Google Scholar 

  • Keren, K., Berman, R.S. et al. (2003). DNA-templated carbon nanotube field-effect transistor. Science 302(5649), 1380–1382.

    Article  CAS  Google Scholar 

  • Keren, K., Krueger, M. et al. (2002). Sequence-specific molecular lithography on single DNA molecules. Science 297(5578), 72–75.

    Article  CAS  Google Scholar 

  • Kervennic, Y.V., Van der Zant, H.S.J. et al. (2002). Nanometer-spaced electrodes with calibrated separation. Appl. Phys. Letts. 80(2), 321–323.

    Article  CAS  Google Scholar 

  • Kim, K.S., Park, I. et al. (1996). The nature of a wet electron. Phys. Rev. Letts. 76(6), 956.

    Article  Google Scholar 

  • Kohler, M., Friedrich, J. et al. (1998). Proteins in electric fields and pressure fields, basic aspects. Biochim. et Biophys Acta Prot. Struct. Mol. Enzymol. 1386(2), 255–288.

    Article  CAS  Google Scholar 

  • Krahne, R., Yacoby, A. et al. (2002). Fabrication of nanoscale gaps in integrated circuits. Appl. Phys. Letts. 81(4), 730–732.

    Article  CAS  Google Scholar 

  • Kuhn, O., Rupasov, V. et al. (1996). Effective bridge spectral density for long-range biological energy and charge transfer. J. Chem. Phys. 104(15), 5821–5833.

    Article  Google Scholar 

  • Larsson, S., Broo, A. et al. (1995). Connection between structure, electronic-spectrum, and electron-transfer properties of blue copper proteins. J. Phys. Chem. 99(13), 4860–4865.

    Article  CAS  Google Scholar 

  • Leckner, J., Bonander, N. et al. (1997). The effect of the metal ion on the folding energetics of azurin, a comparison of the native, zinc and apoprotein. Biochim. et Biophys Acta Prot. Struct. Mol. Enzymol. 1342(1), 19–27.

    Article  CAS  Google Scholar 

  • Lee, J.O., Lientschnig, G. et al. (2003). Absence of strong gate effects in electrical measurements on phenylene-based conjugated molecules. Nano Letts. 3(2), 113–117.

    Article  CAS  Google Scholar 

  • Lee, S.W., Mao, C.B. et al. (2002). Ordering of quantum dots using genetically engineered viruses. Science 296(5569), 892–895.

    Article  CAS  Google Scholar 

  • Liu, H., Fan, F.F. et al. (1986). Scanning electrochemical and tunneling ultramicroelectrode microscope for high-resolution examination of electrode surfaces in solution. J. Amer. Chem. Soc. 108, 3838.

    Article  CAS  Google Scholar 

  • Lu, X.H., Grobis, M. et al. (2003). Spatially mapping the spectral density of a single C-60 mole cule. Phys. Rev. Letts. 90(9), art. no. 096802.

    Google Scholar 

  • Maltezopoulos, T., Bolz, A. et al. (2003). Wave-function mapping of InAs quantum dots by scanning tunneling spectroscopy. Phys. Rev. Letts. 91(19), art. no. 196804.

    Google Scholar 

  • Manoj, A.G. and Narayan, K.S. (2003). Voltage-controlled spectral tuning of photoelectric signals in a conducting polymer-bacteriorhodopsin device. Appl. Phys. Letts. 83(17), 3614–3616.

    Article  CAS  Google Scholar 

  • Maruccio, G., Biasco, A. et al. (2005). Towards protein field-effect transistors, Report and model of prototype. Adv. Mater. 17(7), 816.

    Article  CAS  Google Scholar 

  • Maruccio, G., Visconti, P. et al. (2004). Nano-scaled biomolecular field-effect transistors: prototypes and evaluations. Electroanalysis 16(22), 1853–1862.

    Article  CAS  Google Scholar 

  • Maruccio, G., Visconti, P. et al. (2003). Planar nanotips as probes for transport experiments in molecules. Microelectr. Eng. 67–68, 838–844.

    Article  Google Scholar 

  • Maruccio G, Marzo P, Krahne R, Passaseo A, Cingolani R, Rinaldi R (2007), Protein conduction and negative differential resistance in large-scale nanojunction arrays, SMALL 3 (7), 1184–1188

    Article  CAS  Google Scholar 

  • Merzel, F. and Smith, J.C. (2002). Is the first hydration shell of lysozyme of higher density than bulk water? Proc. Natl. Acad. Sci. U S A 99(8), 5378–5383.

    Article  CAS  Google Scholar 

  • Park, E.S., Andrews, S.S. et al. (1999). Vibrational stark spectroscopy in proteins, a probe and calibration for electrostatic fields. J. Phys. Chem. B 103(45), 9813–9817.

    Article  CAS  Google Scholar 

  • Park, E.S., Thomas, M.R. et al. (2000). Vibrational Stark spectroscopy of NO bound to heme: effects of protein electrostatic fields on the NO stretch frequency. J. Amer. Chem. Soc. 122(49), 12297–12303.

    Article  CAS  Google Scholar 

  • Park, J., Pasupathy, A.N. et al. (2002). Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417(6890), 722–725.

    Article  CAS  Google Scholar 

  • Pompa, P.P., Biasco, A. et al. (2004). Structural stability study of protein monolayers in air. Phys. Rev. E 69(3), art. no. 032901.

    Google Scholar 

  • Pompa, P.P., Bramanti, A. et al. (2005a). Retention of nativelike conformation by proteins embedded in high external electric fields. J. Chem. Phys. 122(18), art. no. 181102.

    Google Scholar 

  • Pompa, P.P., Bramanti, A. et al. (2005b). Aging of solid-state protein films: behavior of azurin at ambient conditions. Chem. Phys. Letts. 404(1–3), 59–62.

    Article  CAS  Google Scholar 

  • Ramamurthy, V. and Schanze, K.S. (1998). Organic and Inorganic Photochemistry, Marcel Dekker, New York.

    Google Scholar 

  • Reed, M.A., Zhou, C. et al. (1997). Conductance of a molecular junction. Science 278(5336), 252–254.

    Article  CAS  Google Scholar 

  • Rinaldi R. and Maruccio G. (2006) Nano-Bio Electronics, published by WILEY-VCH ∙Weinheim ∙ Berlin as a chapter in the book entitled Series on Nanotechnology for Life Sciences - Vo l 4 (Nanodevices for Life Sciences, ISBN-10: 3-527-31384-2, ISBN-13: 978-3-527-31384-6, (2006) approx 400pp with 175 figs) edited by Challa Kumar

    Google Scholar 

  • Silverman, J.P. (1997). X-ray lithography, status, challenges and outlook for 0.13 um. J. Vacuum Sci. Technol. B 15, 2117.

    Article  CAS  Google Scholar 

  • Skourtis, S.S., Balabin, I.A. et al. (2005). Protein dynamics and electron transfer: electronic decoherence and non-Condon effects. Proc. Natl. Acad. Sci. U S A 102(10), 3552–3557.

    Article  CAS  Google Scholar 

  • Sonnenfeld, R. and Hansma, P.K. (1986). Atomic-Resolution Microscopy in Water Science 232, 211.

    CAS  Google Scholar 

  • Star, A., Gabriel, J.C.P. et al. (2003). Electronic detection of specific protein binding using nanotube FET devices. Nano Letts. 3(4), 459–463.

    Article  CAS  Google Scholar 

  • Svergun, D.I., Richard, S. et al. (1998). Protein hydration in solution: experimental observation by x-ray and neutron scattering. Proc. Natl. Acad. Sci. U S A 95(5), 2267–2272.

    Article  CAS  Google Scholar 

  • Tan, J.L., Tien, J. et al. (2002). Microcontact printing of proteins on mixed self-assembled mono layers. Langmuir 18(2), 519–523.

    Article  CAS  Google Scholar 

  • Tao, N.J. (1996). Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy. Phys. Rev. Letts. 76(21), 4066–4069.

    Article  CAS  Google Scholar 

  • Xia, Y.N. and Whitesides, G.M. (1998). Soft lithography. Angewandte Chemie-Int. Ed. 37(5), 551–575.

    Article  Google Scholar 

  • Xu, B.Q. and Tao, N.J.J. (2003). Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301(5637), 1221–1223.

    Article  CAS  Google Scholar 

  • Xu, D., Phillips, J.C. et al. (1996). Protein response to external electric fields, Relaxation, hysteresis, and echo. J. Phys. Chem. 100(29), 12108–12121.

    Article  CAS  Google Scholar 

  • Xu, D.G., Watt, G.D. et al. (2005). Electrical conductivity of ferritin proteins by conductive AFM. Nano Letts. 5(4), 571–577.

    Article  CAS  Google Scholar 

  • Yasutomi, S., Morita, T. et al. (2004). A molecular photodiode system that can switch photocurrent direction. Science 304(5679), 1944–1947.

    Article  CAS  Google Scholar 

  • Zandbergen, H.W., van Duuren, R. et al. (2005). Sculpting nanoelectrodes with a transmission electron beam for electrical and geometrical characterization of nanoparticles. Nano Letts. 5(3), 549–553.

    Article  CAS  Google Scholar 

  • Zhang, J.D., Grubb, M. et al. (2003). Electron transfer behaviour of biological macromolecules towards the single-molecule level. J. Phys. Cond. Mater. 15(18), S1873–S1890.

    Article  CAS  Google Scholar 

  • Zhao, J.W., Davis, J.J. et al. (2004). Exploring the electronic and mechanical properties of protein using conducting atomic force microscopy. J. Amer. Chem. Soc. 126(17), 5601–5609.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful for the invaluable support and exciting collaboration by various colleagues. We would like to thank Ross Rinaldi, Roberto Cingolani, Pier Paolo Pompa, Franco Calabi, Valentina Arima, Adriana Biasco, Eliana D'Amone, Paolo Visconti, Antonio Della Torre at NNL in Lecce (Italy), Elisa Molinari, Rosa Di Felice, Stefano Corni at S3-INFM research center in Modena (Italy), Gerard Canters and Martin Verbeet at Leiden University (NL). Financial support by NNL, IIT, EC through SAMBA and SpiDME project, Italian MIUR (FIRB Molecular Devices) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maruccio, G., Bramanti, A. (2009). Nanoelectronic Devices Based on Proteins. In: Offenhäusser, A., Rinaldi, R. (eds) Nanobioelectronics - for Electronics, Biology, and Medicine. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09459-5_6

Download citation

Publish with us

Policies and ethics