Skip to main content

The Use of Mosses for the Study of Cell Polarity

  • Chapter
New Frontiers in Bryology

Abstract

Moss development allows both the study of the development of cell polarity and the modification of polarity in an already-polar cell. The gametophore allows polarity studies to be extended to multicellular structures. Both spore germination and protoplast regeneration allow the study of the generation of a polar cell axis. The polarity of the axis of regenerating protoplasts of Ceratodon purpureus is influenced by light direction. The programming of the response is however complex. There is a delay before a response to a changed light direction is observed, indicating that axis polarity is fixed before asymmetrical development can be observed. However, the length of the delay is influenced by the state of the cell at the time the light direction is changed. When protoplasts regenerating in red light at 25°, are reoriented with respect to the light direction, there is a lag of about 9 hours before a response is observed. If protoplast are irradiated with farred light immediately before reorientation, the lag is shorter, indicating that protoplasts use phytochrome to “memorize” light direction, preventing a precipitous response to temporarily changed conditions. Protonemal apical cells show tropic responses to both light and gravity. Mutant studies show that the phototropic response is mediated by phytochrome, and that this photoreceptor also turns off the gravitropic response in light. Mutants with a reversal of the orientation of their gravitropic response, have been isolated in both Physcomitrella patens and C. purpureus, and it is possible that in the latter species, a single gene can mutate either to prevent the gravitropic response or to reverse its orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashton, N.W. & Cove, D.J. 1977. The isolation and preliminary characterisation of auxotrophic mutants of the moss, Physcomitrella patens. Molecular and General Genetics 154, 87–95.

    Article  Google Scholar 

  • Brücker, G., Zeidler, M., Kohchi, T., Hartmann, E. & Lamparter, T. 2000. Phytochrome-chromophore deficient mutants of the moss Ceratodon purpureus can be rescued by microinjecting heme oxygenase genes. Planta 210, 529–535

    Article  PubMed  Google Scholar 

  • Courtice, G.R.M. 1979. Developmental genetic studies of Physcomitrella patens. Ph. D. thesis, University of Cambridge, England

    Google Scholar 

  • Chaban, Ch.I., Kern, V.D., Ripetsky, R.T., Demkiv, O.T. & Sack, F.D. 1998. Gravitropism in caulonemata of the moss Pottia intermedia. Journal of Bryology 20, 287–299

    PubMed  CAS  Google Scholar 

  • Cove, D.J., Schild, A., Ashton, N.W. & Hartmann, E. 1978. Genetic and physiological studies of the effect of light on the development of the moss, Physcomitrella patens. Photochemistry and Photobiology 27, 249–254.

    Article  Google Scholar 

  • Cove, D.J. & Knight C.D. l987. Gravitropism and phototropism in the moss, Physcomitrella patens. In “Developmental Mutants of Higher Plants” pp l8l-l96. Editors: H. Thomas and D. Grierson. Published: Academic Press, London, England l987.

    Google Scholar 

  • Cove, D.J., Quatrano, R.S. & Hartmann, E. 1996. The alignment of the axis of asymmetry in regenerating protoplasts of the moss, Ceratodon purpureus, is determined independently of axis polarity. Development 122, 371–397.

    PubMed  CAS  Google Scholar 

  • Cove, D.J. & Lamparter, T. 1998. The role of light in the regulation of moss development. In “Microbial Responses to Light and Time” (Eds.: M.X.Caddick, S. Baumberg, D.A.Hodgson and M.K.Phillips-Jones). pp. 125–141. Cambridge University Press, London

    Google Scholar 

  • Cove, D.J., Hope, I.A. & Quatrano, R.S. 1999. Polarity in biological systems. In “Development: Genetics, Epigenetics and Environmental Regulation”. (Eds.: V.E.O.Russo, D.J.Cove, L.Edgar, R.Jaenisch and F.Salamini ). pp. 507–524. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Fu, Y., Wu, G. & Yang, Z.. 2001. Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. Journal of Cell Biology 152, 1019–1032.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, E., Klingenberg, B. & Bauer, L. 1983. Phytochrome-mediated phototropism in protonemata of the moss, Ceratodon purpureus Brid. Photochemistry and Photobiology 38, 599–603.

    Article  Google Scholar 

  • Hartmann, E. & Weber, M. 1988. Storage of the phytochrome-mediated phototropic stimulus of moss protonemal tip cells. Planta 175, 39–49.

    Article  CAS  Google Scholar 

  • Jaffe, L. & Etzold, H. 1965. Tropic responses of Funaria spores to red light. Biophysical Journal 5, 715–742.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, G.I., Courtice, G.R.M. & Cove, D.J. l986. Gravitropic responses of wild-type and mutant strains of the moss, Physcomitrella patens. Plant, Cell and Environment 9, 637–644.

    Google Scholar 

  • Jenkins, G.I. & Cove, D.J. 1983a. Phototropism and polarotropism of primary chloronemata of the moss Physcomitrella patens: responses of the wild-type. Planta 158, 357–364.

    Article  Google Scholar 

  • Jenkins, G.I. & Cove, D.J. l983b. Phototropism and polarotropism of primary chloronemata of the moss Physcomitrella patens: responses of mutant strains. Planta 159, 432–438.

    Google Scholar 

  • Knight, C.D. 1987. Gravitropism in the moss, Physcomitrella patens. Ph.D. thesis, University of Leeds, England.

    Google Scholar 

  • Knight, C.D. & Cove, D.J. 1991. The polarity of gravitropism in the moss Physcomitrella patens is reversed during mitosis and after growth on a clinostat. Plant, Cell and Environment 14, 995–1001.

    Google Scholar 

  • Lamparter, T., Esch, H., Cove, D., Hughes, J. & Hartmann, E. 1996. Aphototropic mutants of the moss Ceratodon purpureus with spectrally normal and with spectrally dysfunctional phytochrome. Plant, Cell and Environment 19, 560–568.

    Google Scholar 

  • Lamparter, T., Esch, H., Cove, D.J. & Hartmann, E. 1997. Phytochrome control of phototropism and chlorophyll accumulation in the apical cells of protonemal filaments of wildtype and an aphototropic mutant of the moss Ceratodon purpureus. Plant and Cell Physiology 38, 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Lamparter, T., Brücker, D., Esch, H., Hughes, J., Meister, A. & Hartmann, E. 1998a. Somatic hybridisation with aphototropic mutants of the moss Ceratodon purpureus: genome size, phytochrome photoreversibility, tip-cell phototropism and chlorophyll regulation. Journal of Plant Physiology 153, 394–400.

    Article  CAS  Google Scholar 

  • Lamparter, T., Hughes, J., Hartmann, E. 1998b. Blue light-and genetically-reversed gravitropic response in protonemata of the moss Ceratodon purpureus. Planta 206, 95–102.

    Article  PubMed  CAS  Google Scholar 

  • Meske, V. & Hartmann, E. 1995. Reorganisation of microfilaments in protonemal tip cells of the moss, Ceratodon purpureus. Protoplasma 188, 58–68.

    Article  Google Scholar 

  • Schaefer, D.G. 2001. Gene targeting in Physcomitrella patens. Current Opinion in Plant Biology 4, 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Schildt, A. 1981. Untersuchungen zur sporenkeimung und protonemaentwicklung bei dem laubmoss Physcomitrella patens. Ph. D. thesis, University of Mainz, Germany.

    Google Scholar 

  • Schwuchow, J.M., Kim, D. & Sack, F.D. 1995. Caulonemal gravitropism and amyloplast sedimentation in the moss Funaria hygrometrica. Canadian Journal of Botany 73, 1029–1035.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, T.A., Cove, D.J. & Sack, F.D. 1997. A positively gravitropic mutant mirrors the wild-type protonemal response in the moss Ceratodon. Planta 202, 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, T.A. & Sack, F.D. 1998. Gravitropism and gravimorphism during regeneration from protoplasts of the moss Ceratodon purpureus ( Hedw.) Brid. Planta 205, 352–358.

    Google Scholar 

  • Walker, L.M. & Sack, F.D. 1990. Amyloplasts as possible statoliths in gravitropic protonemata of the moss Ceratodon purpureus. Planta 181, 71–77.

    Article  PubMed  CAS  Google Scholar 

  • Young, J.C. & Sack, F.D. 1992. Time-lapse analysis of gravitropism in Ceratodon protonemata. American Journal of Botany 79, 1348–1358.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cove, D.J., Quatrano, R.S. (2004). The Use of Mosses for the Study of Cell Polarity. In: Wood, A.J., Oliver, M.J., Cove, D.J. (eds) New Frontiers in Bryology. Springer, Dordrecht. https://doi.org/10.1007/978-0-306-48568-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48568-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6569-8

  • Online ISBN: 978-0-306-48568-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics