Skip to main content

Cultivation of Environmental Bacterial Communities as Multispecies Biofilms

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Abstract

Microbes play an important role in the biogeochemistry of hydrocarbons and are frequently studied for potential applications in hydrocarbon biotechnologies. The empirical study of microbes often requires their cultivation, a problematic proposition as approximately only 1% of bacteria may be cultured by traditional methods. One promising strategy to grow the “unculturables” is to grow environmental microbes directly as mixed species biofilms – surface-bound, slime-encapsulated microbial communities. Mixed species biofilms can mimic natural environmental conditions and support microbial growth through beneficial social interactions between microbes, along with the inclusion of cell-cell signaling. Here, we describe a simple, flexible method for growing environmental mixed species biofilms in vitro using the Calgary Biofilm Device (CBD). Additionally, we describe a battery of assays for biofilm characterization. Using our approach, we have successfully grown mixed-species biofilms from a variety of hydrocarbon-contaminated environments, while demonstrating high retention of the original microbial diversity and the metabolic potential for biotechnology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77:103–116

    Article  CAS  PubMed  Google Scholar 

  2. Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    Article  CAS  PubMed  Google Scholar 

  3. Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brar SK, Verma M, Surampalli RY et al (2006) Bioremediation of hazardous wastes—a review, practice periodical of hazardous. Toxic Radioactive Waste Manag 10:59–72

    Article  CAS  Google Scholar 

  5. Allard A-S, Neilson AH (1997) Bioremediation of organic waste sites: a critical review of microbiological aspects. Int Biodeterior Biodegradation 39:253–285

    Article  CAS  Google Scholar 

  6. Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97:9909–9921

    Article  CAS  PubMed  Google Scholar 

  7. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Keller M, Zengler K (2004) Tapping into microbial diversity. Nat Rev Microbiol 2:141–150

    Article  CAS  PubMed  Google Scholar 

  9. Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of “unculturable” bacteria. FEMS Microbiol Lett 309:1–7

    Google Scholar 

  10. Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Costerton JW, Lewandowski Z, Caldwell DE et al (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  12. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  PubMed  Google Scholar 

  13. Beveridge TJ, Makin SA, Kadurugamuwa JL et al (1997) Interactions between biofilms and the environment. FEMS Microbiol Rev 20:291–303

    Article  CAS  PubMed  Google Scholar 

  14. Burmølle M, Ren D, Bjarnsholt T et al (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22:84–91

    Article  PubMed  Google Scholar 

  15. Nadell CD, Bucci V, Drescher K et al (2013) Cutting through the complexity of cell collectives. Proc R Soc B Biol Sci 280:1–11

    Article  Google Scholar 

  16. Nadell CD, Xavier JB, Foster KR (2009) The sociobiology of biofilms. FEMS Microbiol Rev 33:206–224

    Article  CAS  PubMed  Google Scholar 

  17. Mitri S, Xavier JB, Foster KR (2011) Social evolution in multispecies biofilms. Proc Natl Acad Sci 108:10839–10846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33

    Article  CAS  PubMed  Google Scholar 

  19. Joint I, Mühling M, Querellou J (2010) Culturing marine bacteria – an essential prerequisite for biodiscovery. Microb Biotechnol 3:564–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ceri H, Olson ME, Stremick CA et al (1999) The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Golby S, Ceri H, Gieg LM et al (2012) Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond. FEMS Microbiol Ecol 79:240–250

    Article  CAS  PubMed  Google Scholar 

  22. Demeter MA, Lemire J, George I et al (2014) Harnessing oil sands microbial communities for use in ex situ naphthenic acid bioremediation. Chemosphere 97:78–85

    Article  CAS  PubMed  Google Scholar 

  23. Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harrison JJ, Turner RJ, Ceri H (2005) High-throughput metal susceptibility testing of microbial biofilms. BMC Microbiol 5:53

    Article  PubMed  PubMed Central  Google Scholar 

  25. Harrison JJ, Ceri H, Yerly J et al (2006) The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary biofilm device. Biol Proced Online 8:194–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Harrison JJ, Stremick CA, Turner RJ et al (2010) Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nat Protoc 5:1236–1254

    Article  CAS  PubMed  Google Scholar 

  27. Sule P, Wadhawan T, Carr NJ et al (2009) A combination of assays reveals biomass differences in biofilms formed by Escherichia coli mutants. Lett Appl Microbiol 49:299–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Armitano J, Méjean V, Jourlin-Castelli C (2013) Aerotaxis governs floating biofilm formation in Shewanella oneidensis. Environ Microbiol 15:3108–3118

    CAS  PubMed  Google Scholar 

  29. Lembke C, Podbielski A, Hidalgo-Grass C et al (2006) Characterization of biofilm formation by clinically relevant serotypes of group A Streptococci. Appl Environ Microbiol 72:2864–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xue Z, Lee WH, Coburn KM et al (2014) Selective reactivity of monochloramine with extracellular matrix components affects the disinfection of biofilm and detached clusters. Environ Sci Technol 48:3832–3839

    Article  CAS  PubMed  Google Scholar 

  31. Lee KWK, Periasamy S, Mukherjee M et al (2013) Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J 2013:1–14

    Google Scholar 

  32. Horemans B, Breugelmans P, Hofkens J et al (2013) Environmental dissolved organic matter governs biofilm formation and subsequent linuron degradation activity of a linuron-degrading bacterial consortium. Appl Environ Microbiol 79:4534–4542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Burmolle M, Webb JS, Rao D et al (2006) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 72:3916–3923

    Article  PubMed  PubMed Central  Google Scholar 

  34. Paulsen IT, Press CM, Ravel J et al (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    Article  CAS  PubMed  Google Scholar 

  35. Ritalahti KM, Amos BK, Sung Y et al (2006) Quantitative PCR targeting 16S rRNA and reductive Dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72:2765–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Golby S, Ceri H, Marques LLR et al (2013) Mixed-species biofilms cultured from an oil sand tailings pond can biomineralize metals. Microb Ecol 68:70–80

    Article  PubMed  Google Scholar 

  37. Lehtinen J, Virta M, Lilius E-M (2003) Fluoro-luminometric real-time measurement of bacterial viability and killing. J Microbiol Methods 55:173–186

    Article  CAS  PubMed  Google Scholar 

  38. Arretxe M, Heap JM, Christofi N (1997) The effect of toxic discharges on ATP content in activated sludge. Environ Toxicol 12:23–29

    CAS  Google Scholar 

  39. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141

    Article  CAS  PubMed  Google Scholar 

  40. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322

    Article  CAS  PubMed  Google Scholar 

  42. Deng W, Xi D, Mao H et al (2007) The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review. Mol Biol Rep 35:265–274

    Article  PubMed  Google Scholar 

  43. Marzorati M, Wittebolle L, Boon N et al (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581

    Article  CAS  PubMed  Google Scholar 

  44. Galan M, Guivier E, Caraux G et al (2010) A 454 multiplex sequencing method for rapid and reliable genotyping of highly polymorphic genes in large-scale studies. BMC Genomics 11:296

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124

    Article  CAS  PubMed  Google Scholar 

  46. Ramos-Padrón E, Bordenave S, Lin S et al (2011) Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ Sci Technol 45:439–446

    Article  PubMed  Google Scholar 

  47. Liu R, Yu Z, Guo H et al (2012) Pyrosequencing analysis of eukaryotic and bacterial communities in faucet biofilms. Sci Total Environ 435–436:124–131

    Article  PubMed  Google Scholar 

  48. Hong PY, Hwang C, Ling F et al (2010) Pyrosequencing analysis of bacterial biofilm communities in water meters of a drinking water distribution system. Appl Environ Microbiol 76:5631–5635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Harrison JJ, Rabiei M, Turner RJ et al (2006) Metal resistance in Candida biofilms. FEMS Microbiol Ecol 55:479–491

    Article  CAS  PubMed  Google Scholar 

  50. Schwering M, Song J, Louie M et al (2013) Multi-species biofilms defined from drinking water microorganisms provide increased protection against chlorine disinfection. Biofouling 29:917–928

    Article  CAS  PubMed  Google Scholar 

  51. Lee ZMP, Bussema C, Schmidt TM (2009) rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res 37:D489–D493

    Article  CAS  PubMed  Google Scholar 

  52. Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tremaroli V, Vacchi Suzzi C, Fedi S et al (2010) Tolerance of Pseudomonas pseudoalcaligenes KF707 to metals, polychlorobiphenyls and chlorobenzoates: effects on chemotaxis-, biofilm- and planktonic-grown cells. FEMS Microbiol Ecol 74:291–301

    Article  CAS  PubMed  Google Scholar 

  54. Sharp CE, Brady AL, Sharp GH et al (2014) Humboldt’s spa: microbial diversity is controlled by temperature in geothermal environments. ISME J 8:1166–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Soh J, Dong X, Caffrey SM et al (2013) Phoenix 2: a locally installable large-scale 16S rRNA gene sequence analysis pipeline with Web interface. J Biotechnol 167:393–403

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Demeter, M.A., Lemire, J., Golby, S., Schwering, M., Ceri, H., Turner, R.J. (2015). Cultivation of Environmental Bacterial Communities as Multispecies Biofilms. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_82

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_82

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45178-6

  • Online ISBN: 978-3-662-45179-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics