Skip to main content

Detection of Protein-Synthesizing Microorganisms in the Environment via Bioorthogonal Noncanonical Amino Acid Tagging (BONCAT)

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Bioorthogonal noncanonical amino acid tagging (BONCAT) is a recently developed method for studying microbial in situ activity. This technique is based on the in vivo incorporation of artificial amino acids that carry modifiable chemical tags into newly synthesized proteins. BONCAT has been demonstrated to be effective in labeling the proteomes of a wide range of taxonomically and physiologically distinct Archaea and bacteria without resulting in preferential synthesis or degradation of proteins. After chemical fixation of cells, surrogate-containing proteins can be detected by whole-cell fluorescence staining using azide-alkyne click chemistry. When used in conjunction with rRNA-targeted fluorescence in situ hybridization (FISH), BONCAT allows the simultaneous taxonomic identification of a microbial cell and its translational activity. Rather than studying the bulk proteome, BONCAT is able to specifically target proteins that have been expressed in reaction to an experimental condition. BONCAT-FISH thus provides researchers with a selective, sensitive, fast, and inexpensive fluorescence microscopy technique for studying microbial in situ activity on an individual cell level.

This protocol provides a detailed description of how to design and perform BONCAT experiments using two different bioorthogonal amino acids, l-azidohomoalanine (AHA) and l-homopropargylglycine (HPG), which are both surrogates of l-methionine. It illustrates how incorporation of these noncanonical amino acids into new proteins can be detected via copper-catalyzed or strain-promoted azide-alkyne click chemistry and outlines how the visualization of translational activity can be combined with the taxonomic identification of cells via FISH. Last, the protocol discusses potential problems that might be encountered during BONCAT studies and how they can be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binder BJ, Liu YC (1998) Growth rate regulation of rRNA content of a marine synechococcus (Cyanobacterium) strain. Appl Environ Microbiol 64:3346–3351

    Article  CAS  Google Scholar 

  2. Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–538

    Article  CAS  Google Scholar 

  3. Bollmann A, Schmidt I, Saunders AM, Nicolaisen MH (2005) Influence of starvation on potential ammonia-oxidizing activity and amoA mRNA levels of Nitrosospira briensis. Appl Environ Microbiol 71:1276–1282

    Article  CAS  Google Scholar 

  4. Foster RA, Subramaniam A, Zehr JP (2009) Distribution and activity of diazotrophs in the Eastern Equatorial Atlantic. Environ Microbiol 11:741–750

    Article  CAS  Google Scholar 

  5. Morgenroth E, Obermayer A, Arnold E, Brühl A, Wagner M, Wilderer PA (2000) Effect of long-term idle periods on the performance of sequencing batch reactors. Water Sci Technol 41:105–113

    Article  CAS  Google Scholar 

  6. Odaa Y, Slagmana S, Meijerb WG, Forneya LJ, Gottschala JC (2000) Influence of growth rate and starvation on fluorescent in situ hybridization of Rhodopseudomonas palustris. FEMS Microbiol Ecol 32:205–213

    Article  CAS  Google Scholar 

  7. Schmid M, Schmitz-Esser S, Jetten M, Wagner M (2001) 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environ Microbiol 3:450–459

    Article  CAS  Google Scholar 

  8. Wagner M, Rath G, Amann R, Koops HP, Schleifer KH (1995) In situ identification of ammonia-oxidizing bacteria. Syst Appl Microbiol 18:251–264

    Article  CAS  Google Scholar 

  9. Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ (2014) In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol 16:2568–2590

    Article  CAS  Google Scholar 

  10. Beatty KE, Xie F, Wang Q, Tirrell DA (2005) Selective dye-labeling of newly synthesized proteins in bacterial cells. J Am Chem Soc 127:14150–14151

    Article  CAS  Google Scholar 

  11. Dieterich DC, Link AJ, Graumann J, Tirrell DA, Schuman EM (2006) Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc Natl Acad Sci U S A 103:9482–9487

    Article  CAS  Google Scholar 

  12. Kiick KL, Saxon E, Tirrell DA, Bertozzi CR (2002) Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc Natl Acad Sci U S A 99:19–24

    Article  CAS  Google Scholar 

  13. Beatty KE, Liu JC, Xie F, Dieterich DC, Schuman EM, Wang Q, Tirrell DA (2006) Fluorescence visualization of newly synthesized proteins in mammalian cells. Angew Chem Int Ed Engl 45:7364–7367

    Article  CAS  Google Scholar 

  14. Beatty KE, Tirrell DA (2008) Two-color labeling of temporally defined protein populations in mammalian cells. Bioorg Med Chem Lett 18:5995–5999

    Article  CAS  Google Scholar 

  15. Dieterich DC, Hodas JJ, Gouzer G, Shadrin IY, Ngo JT, Triller A, Tirrell DA, Schuman EM (2010) In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 13:897–905

    Article  CAS  Google Scholar 

  16. Hinz FI, Dieterich DC, Tirrell DA, Schuman EM (2012) Non-canonical amino acid labeling in vivo to visualize and affinity purify newly synthesized proteins in larval zebrafish. ACS Chem Neurosci 3:40–49

    Article  CAS  Google Scholar 

  17. Hong V, Steinmetz NF, Manchester M, Finn MG (2010) Labeling live cells by copper-catalyzed alkyne–azide click chemistry. Bioconjug Chem 21:1912–1916

    Article  CAS  Google Scholar 

  18. Chakrabarti S, Liehl P, Buchon N, Lemaitre B (2012) Infection-induced host translational blockage inhibits immune responses and epithelial renewal in the Drosophila gut. Cell Host Microbe 12:60–70

    Article  CAS  Google Scholar 

  19. Ouellette SP, Dorsey FC, Moshiach S, Cleveland JL, Carabeo RA (2011) Chlamydia species-dependent differences in the growth requirement for lysosomes. PLoS One 6:e16783

    Article  CAS  Google Scholar 

  20. Siegrist MS, Whiteside S, Jewett JC, Aditham A, Cava F, Bertozzi CR (2013) (D)-amino acid chemical reporters reveal peptidoglycan dynamics of an intracellular pathogen. ACS Chem Biol 8:500–505

    Article  CAS  Google Scholar 

  21. Mahdavi A, Szychowski J, Ngo JT, Sweredoski MJ, Graham RL, Hess S, Schneewind O, Mazmanian SK, Tirrell DA (2014) Identification of secreted bacterial proteins by noncanonical amino acid tagging. Proc Natl Acad Sci U S A 111:433–438

    Article  CAS  Google Scholar 

  22. Best MD (2009) Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. Biochemistry 48:6571–6584

    Article  CAS  Google Scholar 

  23. Carrico IS (2008) Chemoselective modification of proteins: hitting the target. Chem Soc Rev 37:1423–1431

    Article  CAS  Google Scholar 

  24. Jewett JC, Bertozzi CR (2010) Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev 39:1272–1279

    Article  CAS  Google Scholar 

  25. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl 48:6974–6998

    Article  CAS  Google Scholar 

  26. Huisgen R (1963) 1,3-dipolar cycloadditions: past and future. Angew Chem Int Ed Engl 2:565–598

    Article  Google Scholar 

  27. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl 41:2596–2599

    Article  CAS  Google Scholar 

  28. Torne CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-friazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064

    Article  Google Scholar 

  29. Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126:15046–15047

    Article  CAS  Google Scholar 

  30. Codelli JA, Baskin JM, Agard NJ, Bertozzi CR (2008) Second-generation difluorinated cyclooctynes for copper-free click chemistry. J Am Chem Soc 130:11486–11493

    Article  CAS  Google Scholar 

  31. Bagert JD, Xie YJ, Sweredoski MJ, Qi Y, Hess S, Schuman EM, Tirrell DA (2014) Quantitative, time-resolved proteomic analysis by combining bioorthogonal noncanonical amino acid tagging and pulsed stable isotope labeling by amino acids in cell culture. Mol Cell Proteomics 13(5):1352–1358. doi:10.1074/mcp.M113.031914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Samo TJ, Smriga S, Malfatti F, Sherwood BP, Azam F (2014) Broad distribution and high proportion of protein synthesis active marine bacteria revealed by click chemistry at the single cell level. Front Marine Sci. doi:10.3389/fmars.2014.00048:

    Article  Google Scholar 

  33. Beatty KE, Fisk JD, Smart BP, Lu YY, Szychowski J, Hangauer MJ, Baskin JM, Bertozzi CR, Tirrell DA (2010) Live-cell imaging of cellular proteins by a strain-promoted azide-alkyne cycloaddition. Chembiochem 11:2092–2095

    Article  CAS  Google Scholar 

  34. Daims H, Stoecker K, Wagner M (2005) Fluorescence in situ hybridization for the detection of prokaryotes. In: Osborn AM, Smith CJ (eds) Molecular microbial ecology. Bios Advanced Methods, Abingdon, pp 213–239

    Google Scholar 

  35. Daims H, Lücker S, Wagner M (2006) Daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol 8:200–213

    Article  CAS  Google Scholar 

  36. Griffin RJ (1994) The medicinal chemistry of the azido group. Prog Med Chem 31:121–232

    Article  CAS  Google Scholar 

  37. Shi Shun AL, Tykwinski RR (2006) Synthesis of naturally occurring polyynes. Angew Chem Int Ed Engl 45:1034–1057

    Article  Google Scholar 

  38. Besanceney-Webler C, Jiang H, Zheng T, Feng L, Soriano del Amo D, Wang W, Klivansky LM, Marlow FL, Liu Y, Wu P (2011) Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew Chem Int Ed Engl 50:8051–8056

    Article  CAS  Google Scholar 

  39. Hong V, Presolski SI, Ma C, Finn MG (2009) Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew Chem Int Ed Engl 48:9879–9883

    Article  CAS  Google Scholar 

  40. Chang PV, Prescher JA, Sletten EM, Baskin JM, Miller IA, Agard NJ, Lo A, Bertozzi CR (2010) Copper-free click chemistry in living animals. Proc Natl Acad Sci U S A 107:1821–1826

    Article  CAS  Google Scholar 

  41. Adachi T, Yamada Y, Inoue I (1977) Alternative method for selective reduction of unsaturated nucleoside azides to amines. Synthesis 1:45–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria J. Orphan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Hatzenpichler, R., Orphan, V.J. (2015). Detection of Protein-Synthesizing Microorganisms in the Environment via Bioorthogonal Noncanonical Amino Acid Tagging (BONCAT). In: McGenity, T.J., Timmis, K.N., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_61

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_61

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49129-4

  • Online ISBN: 978-3-662-49131-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics