Skip to main content

Localization of Proteins Within Intact Bacterial Cells Using Fluorescent Protein Fusions

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The advent of genetically encoded fluorescent protein (FP) reporters has revolutionized the ability to track localization of specific proteins in individual cells. Being small and generally lacking structures observable by electron microscopy, bacterial cells have particularly benefited from these technologies, which have demonstrated their high degree of protein organization. To track a protein of interest, the gene encoding the protein needs to be first fused to a gene encoding an FP, with special care to preserve function of the target protein. The localization of the target fusion protein can then be observed either in fixed cells, which preserve the localization at the moment of fixation, or in live cells. Imaging of live cells allows a protein to be tracked spatially as well as temporally. Image analysis and basic quantitation of fluorescence intensities can then be done with freely available software. The locations of multiple proteins can be monitored simultaneously using multiple fluorescent protein tags and can be verified by immunofluorescence if needed. The same specimens can, if desired, be imaged at higher resolution and/or in three dimensions using deconvolution or super-resolution methods. This chapter focuses on the basic methods for localizing proteins fused to FPs in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher DC (1994) Green Fluorescent Protein as a marker for gene expression. Science 263:802–805

    Article  CAS  Google Scholar 

  2. Prasher DC (1995) Using GFP to see the light. Trends Genet 11:320–323

    Article  CAS  Google Scholar 

  3. Prasher DC, Ekenrode WK, Ward WW, Prendergast FG, Cormier HJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  CAS  Google Scholar 

  4. Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    Article  CAS  Google Scholar 

  5. Yang F, Moss LG, Phillips GNJ (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251

    Article  CAS  Google Scholar 

  6. Drepper T, Eggert T, Circolone F, Heck A, Krauß U, Guterl J-K, Wendorff M, Losi A, Gärtner W, Jaeger K-E (2007) Reporter proteins for in vivo fluorescence without oxygen. Nat Biotechnol 25:443–445

    Article  CAS  Google Scholar 

  7. Margolin W (2012) The price of tags in protein localization studies. J Bacteriol 194:6369–6371

    Article  CAS  Google Scholar 

  8. Margolin W (2000) Green fluorescent protein as a reporter for macromolecular localization in bacterial cells. Methods 20:62–72

    Article  CAS  Google Scholar 

  9. Cohen SE, Erb ML, Selimkhanov J, Dong G, Hasty J, Pogliano J, Golden SS (2014) Dynamic localization of the cyanobacterial circadian clock proteins. Curr Biol 24:1836–1844

    Article  CAS  Google Scholar 

  10. Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38

    Article  CAS  Google Scholar 

  11. Snapp E (2005) Design and use of fluorescent fusion proteins in cell biology. In: Bonifacino JS, Dasso M, Harford JB, Lippincott-Schwartz J, Yamada KM (eds) Current protocols in cell biology. Wiley, Hoboken

    Google Scholar 

  12. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  CAS  Google Scholar 

  13. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99:7877–7882

    Article  CAS  Google Scholar 

  14. Landgraf D, Okumus B, Chien P, Baker TA, Paulsson J (2012) Segregation of molecules at cell division reveals native protein localization. Nat Methods 9:480–482

    Article  CAS  Google Scholar 

  15. Sastalla I, Chim K, Cheung GYC, Pomerantsev AP, Leppla SH (2009) Codon-optimized fluorescent proteins designed for expression in low-GC gram-positive bacteria. Appl Environ Microbiol 75:2099–2110

    Article  CAS  Google Scholar 

  16. Hansen FG, Atlung T (2011) YGFP: a spectral variant of GFP. BioTechniques 50:411–412

    Article  CAS  Google Scholar 

  17. Borg S, Hofmann J, Pollithy A, Lang C, Schuler D (2014) New vectors for chromosomal integration enable high-level constitutive or inducible magnetosome expression of fusion proteins in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 80:2609–2616

    Article  Google Scholar 

  18. Matthysse AG, Stretton S, Dandie C, McClure NC, Goodman AE (1996) Construction of GFP vectors for use in Gram-negative bacteria other than Escherichia coli. FEMS Microbiol Lett 145:87–94

    Article  CAS  Google Scholar 

  19. Gerlach RG, Holzer SU, Jackel D, Hensel M (2007) Rapid engineering of bacterial reporter gene fusions by using Red recombination. Appl Environ Microbiol 73:4234–4242

    Article  CAS  Google Scholar 

  20. Ma X, Ehrhardt DW, Margolin W (1996) Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci USA 93:12998–13003

    Article  CAS  Google Scholar 

  21. Weiss DS, Chen JC, Ghigo JM, Boyd D, Beckwith J (1999) Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J Bacteriol 181:508–520

    Article  CAS  Google Scholar 

  22. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  23. Levin PA (2002) Light microscopy techniques for bacterial cell biology. In: Sansonetti P, Zychlinsky A (eds) Methods in microbiology. Academic Press, London, pp 115–132

    Google Scholar 

  24. Juarez JR, Margolin W (2010) Changes in the Min oscillation pattern before and after cell birth. J Bacteriol 192:4134–4142

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Margolin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Rowlett, V.W., Margolin, W. (2015). Localization of Proteins Within Intact Bacterial Cells Using Fluorescent Protein Fusions. In: McGenity, T.J., Timmis, K.N., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_48

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49129-4

  • Online ISBN: 978-3-662-49131-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics