Skip to main content

Adaptive Quasi-Linear Viscoelastic Modeling

  • Chapter
  • First Online:
Computational Modeling in Tissue Engineering

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 10))

Abstract

Engineered tissues are often designed to serve a mechanical role. The design and evaluation of such tissues requires a mechanical model. An important component of such models is often viscoelasticity, or the dependence of mechanical response on loading rate and loading history. In a great number of biological and bio-artificial tissues the passive tissue force (or stress) relates to changes in tissue length (or strain) in a nonlinear viscoelastic manner. Choosing and fitting nonlinear viscoelastic models to data for a specific tissue can be a computational challenge. This chapter describes the range of such models, criteria for selecting amongst them, and computational and experimental techniques needed to fit these to uniaxial data. The chapter begins with Fung’s quasi-linear viscoelastic (QLV) model, which is nearly a standard first model to try for nonlinear viscoelastic tissues. The chapter then describes the two major limitations of the Fung QLV model, and presents approaches for overcoming these. The first limitation is accuracy: the Fung QLV model imposes a severe set of restrictions on constitutive behavior, and a generalized form of the Fung QLV model is needed in many cases. The second limitation is that the Fung QLV model is cumbersome computationally, especially for calibration experiments. The Adaptive QLV model is far simpler to calibrate and provides greater flexibility than the Fung QLV model. The Adaptive QLV model extends linear viscoelastic models to incorporate nonlinearity using a principle different from that of the Fung QLV model: it adapts nonlinearity according to the instantaneous level of strain. The Adaptive QLV model can be used in simple or generalized form. The chapter concludes with a series of test protocols for calibrating QLV models along with the associated calibration procedures, using the nonlinear viscoelastic behavior of reconstituted collagen tissue as an example. The Adaptive QLV model is not only simpler to calibrate but also more accurate in predicting the mechanical response of the reconstituted collagen tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taber, L.A.: Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48, 487 (1995)

    Article  Google Scholar 

  2. Taber, L.A.: Biomechanics of cardiovascular development. Ann. Rev. Biomed. Eng. 3(1), 1–25 (2001)

    Article  Google Scholar 

  3. Varner, V.D., Taber, L.A.: Not just inductive: a crucial mechanical role for the endoderm during heart tube assembly. Development 139(9), 1680–1690 (2012)

    Article  Google Scholar 

  4. Varner, V.D., Voronov, D.A., Taber, L.A.: Mechanics of head fold formation: investigating tissue-level forces during early development. Development 137(22), 3801–3811 (2010)

    Article  Google Scholar 

  5. Zamir, E.A., Czirok, A., Cui, C., Little, C.D., Rongish, B.J.: Mesodermal cell displacements during avian gastrulation are due to both individual cell-autonomous and convective tissue movements. Proc. Natl. Acad. Sci. USA 103(52), 19806–19811 (2006)

    Article  Google Scholar 

  6. Thomopoulos, S., Genin, G.M., Galatz, L.M.: The development and morphogenesis of the tendon-to-bone insertion - what development can teach us about healing. J. Musculoskelet. Neuronal. Interact. 10(1), 35–45 (2010)

    Google Scholar 

  7. Bayly, P.V., Cohen, T.S., Leister, E.P., Ajo, D., Leuthardt, E.C., Genin, G.M.: Deformation of the human brain induced by mild acceleration. J. Neurotrauma. 22(8), 845–856 (2005)

    Article  Google Scholar 

  8. Cohen, T.S., Smith, A.W., Massouros, P.G., Bayly, P.V., Shen, A.Q., Genin, G.M.: Inelastic behavior in repeated shearing of bovine white matter. J. Biomech. Eng. 130(4), 044504 (2008)

    Article  Google Scholar 

  9. Elson, E.L., Fried, E., Dolbow, J.E., Genin, G.M.: Phase separation in biological membranes: integration of theory and experiment. Annu. Rev. Biophys. 39, 207–226 (2010)

    Article  Google Scholar 

  10. Massouros, P.G., Genin, G.M.: The steady-state response of a Maxwell viscoelastic cylinder to sinusoidal oscillation of its boundary. Proc. Roy. Soc. Lond. A 464(2089), 207–221 (2008)

    Article  MATH  Google Scholar 

  11. Nekouzadeh, A., Pryse, K.M., Elson, E.L., Genin, G.M.: Stretch-activated force shedding, force recovery, and cytoskeletal remodeling in contractile fibroblasts. J. Biomech. 41(14), 2964–2971 (2008)

    Article  Google Scholar 

  12. Nekouzadeh, A., Rudy, Y.: Continuum molecular simulation of large conformational changes during ion-channel gating. PLoS One 6(5), e20186 (2011)

    Article  Google Scholar 

  13. Qiu, H., Zhu, Y., Sun, Z., Trzeciakowski, J.P., Gansner, M., Depre, C., Resuello, R.R., Natividad, F.F., Hunter, W.C., Genin, G.M., Elson, E.L., Vatner, D.E., Meininger, G.A., Vatner, S.F.: Vascular smooth muscle cell stiffness as a mechanism for increased aortic stiffness with aging. Circ. Res. 107(5), 615–619 (2010)

    Article  Google Scholar 

  14. Sabet, A.A., Christoforou, E., Zatlin, B., Genin, G.M., Bayly, P.V.: Deformation of the human brain induced by mild angular head acceleration. J. Biomech. 41(2), 307–315 (2008)

    Article  Google Scholar 

  15. Silva, J.R., Pan, H., Wu, D., Nekouzadeh, A., Decker, K.F., Cui, J., Baker, N.A., Sept, D., Rudy, Y.: A multiscale model linking ion-channel molecular dynamics and electrostatics to the cardiac action potential. Proc. Natl. Acad. Sci. USA 106(27), 11102–11106 (2009)

    Article  Google Scholar 

  16. Nerurkar, N.L., Elliott, D.M., Mauck, R.L.: Mechanical design criteria for intervertebral disc tissue engineering. J. Biomech. 43(6), 1017–1030 (2010)

    Article  Google Scholar 

  17. Grayson, W.L., Chao, P.H., Marolt, D., Kaplan, D.L., Vunjak-Novakovic, G.: Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol. 26(4), 181–189 (2008)

    Article  Google Scholar 

  18. Yang, P.J., Temenoff, J.S.: Engineering orthopedic tissue interfaces. Tissue Eng. Part B Rev. 15(2), 127–141 (2009)

    Article  Google Scholar 

  19. Thomopoulos, S., Das, R., Birman, V., Smith, L., Ku, K., Elson, E.L., Pryse, K.M., Marquez, J.P., Genin, G.M.: Fibrocartilage tissue engineering: the role of the stress environment on cell morphology and matrix expression. Tissue Eng Part A 17(7–8), 1039–1053 (2011)

    Article  Google Scholar 

  20. Nekouzadeh, A., Silva, J.R., Rudy, Y.: Modeling subunit cooperativity in opening of tetrameric ion channels. Biophys. J. 95(7), 3510–3520 (2008)

    Article  Google Scholar 

  21. Marquez, J.P., Elson, E.L., Genin, G.M.: Whole cell mechanics of contractile fibroblasts: relations between effective cellular and extracellular matrix moduli. Philos. Transact. A Math. Phys. Eng. Sci. 368(1912), 635–654 (2010)

    Article  Google Scholar 

  22. Marquez, J.P., Genin, G.M., Pryse, K.M., Elson, E.L.: Cellular and matrix contributions to tissue construct stiffness increase with cellular concentration. Ann. Biomed. Eng. 34(9), 1475–1482 (2006)

    Article  Google Scholar 

  23. Marquez, J.P., Genin, G.M., Zahalak, G.I., Elson, E.L.: Thin bio-artificial tissues in plane stress: the relationship between cell and tissue strain, and an improved constitutive model. Biophys. J. 88(2), 765–777 (2005)

    Article  Google Scholar 

  24. Marquez, J.P., Genin, G.M., Zahalak, G.I., Elson, E.L.: The relationship between cell and tissue strain in three-dimensional bio-artificial tissues. Biophys. J. 88(2), 778–789 (2005)

    Article  Google Scholar 

  25. Butler, J.P., Tolić-Nørrelykke, I.M., Fabry, B., Fredberg, J.J.: Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol-Cell Physiol. 282(3), C595–C605 (2002)

    Google Scholar 

  26. Legant, W.R., Miller, J.S., Blakely, B.L., Cohen, D.M., Genin, G.M., Chen, C.S.: Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods 7(12), 969–971 (2010)

    Article  Google Scholar 

  27. Oliver, T., Jacobson, K., Dembo, M.: Traction forces in locomoting cells. Cell Motil. Cytoskelet. 31(3), 225–240 (1995)

    Article  Google Scholar 

  28. Kastelic, J.: A structural mechanical model for tendon crimping. J. Biomech. 13, 887–893 (1980)

    Article  Google Scholar 

  29. Stouffer, D.C., Butler, D.L., Hosny, D.: The relationship between crimp pattern and mechanical response of human patellar tendon-bone units. J. Biomech. Eng. 107(2), 158–165 (1985)

    Article  Google Scholar 

  30. Hansen, K.A., Weiss, J.A., Barton, J.K.: Recruitment of tendon crimp with applied tensile strain. J. Biomech. Eng. 124(1), 72–77 (2002)

    Article  Google Scholar 

  31. Lanir, Y.: Two dimensional mechanical properties of mammalian skin- II. Experimental results. J. Biomech. 7, 171–182 (1974)

    Article  Google Scholar 

  32. Lanir, Y.: Structure-function relations in mammalian tendon: the effect of geometrical nonuniformity. J. Bioeng. 2(1–2), 119–128 (1978)

    Google Scholar 

  33. Lanir, Y.: A structural theory for the homogeneous biaxial stress-strain relationship in flat collagenous tissues. J. Biomech. 12, 423–436 (1979)

    Article  Google Scholar 

  34. Lanir, Y.: A microstructure model for the rheology of mammalian tendon. J. Biomech. Eng. 102(4), 332–339 (1980)

    Article  Google Scholar 

  35. Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16(1), 1–12 (1983)

    Article  Google Scholar 

  36. Sacks, M.S.: Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J. Biomech. Eng. 125(2), 280–287 (2003)

    Article  Google Scholar 

  37. De Vita, R., Slaughter, W.S.: A structural constitutive model for the strain rate-dependent behavior of anterior cruciate ligaments. Int. J. Solids Struct. 43(6), 1561–1570 (2006)

    Article  MATH  Google Scholar 

  38. Genin, G.M., Kent, A., Birman, V., Wopenka, B., Pasteris, J.D., Marquez, P.J., Thomopoulos, S.: Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys. J. 97(4), 976–985 (2009)

    Article  Google Scholar 

  39. Thomopoulos, S., Marquez, J.P., Weinberger, B., Birman, V., Genin, G.M.: Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J. Biomech. 39(10), 1842–1851 (2006)

    Article  Google Scholar 

  40. Raghupathy, R., Barocas, V.H.: A closed-form structural model of planar fibrous tissue mechanics. J. Biomech. 42(10), 1424–1428 (2009)

    Article  Google Scholar 

  41. Raghupathy, R., Barocas, V.H.: Generalized anisotropic inverse mechanics for soft tissues. J. Biomech. Eng. 132(8), 081006 (2010)

    Article  Google Scholar 

  42. Raghupathy, R., Witzenburg, C., Lake, S.P., Sander, E.A., Barocas, V.H.: Identification of regional mechanical anisotropy in soft tissue analogs. J. Biomech. Eng. 133(9), 091011 (2011)

    Article  Google Scholar 

  43. Zahalak, G.I., Wagenseil, J.E., Wakatsuki, T., Elson, E.L.: A cell-based constitutive relation for bio-artificial tissues. Biophys. J. 79(5), 2369–2381 (2000)

    Article  Google Scholar 

  44. Hollander, Y., Durban, D., Lu, X., Kassab, G.S., Lanir, Y.: Constitutive modeling of coronary arterial media: comparison of three model classes. J. Biomech. Eng. 133, 061008 (2011)

    Article  Google Scholar 

  45. Coleman, B.D., Noll, W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. 33(2), 239 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  46. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rat. Mech. Anal. 13(1), 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  47. Schapery, R.: Nonlinear viscoelastic solids. Int. J. Solids Struct. 37(1), 359–366 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Fung, Y.C.: Ch 7: stress-strain-history relations of soft tissues in simple elongation. In: Fung, Y.C., Perrone, N., Anliker, M. (eds.) Biomechanics: Its Foundations and Objectives, pp. 181–208. Prentice-Hall, San Diego (1972)

    Google Scholar 

  49. Quaia, C., Ying, H.S., Nichols, A.M., Optican, L.M.: The viscoelastic properties of passive eye muscle in primates. I: Static forces and step responses. PLoS One 4(4), e4850 (2009)

    Article  Google Scholar 

  50. Quaia, C., Ying, H.S., Optican, L.M.: The viscoelastic properties of passive eye muscle in primates. II: testing the quasi-linear theory. PLoS One 4(8), e6480 (2009). doi:10.1371/journal.pone.0006480

    Article  Google Scholar 

  51. Quaia, C., Ying, H.S., Optican, L.M.: The viscoelastic properties of passive eye muscle in primates. III: force elicited by natural elongations. PLoS One 5(3), e9595 (2010)

    Article  Google Scholar 

  52. Hingorani, R.V., Provenzano, P.P., Lakes, R.S., Escarcega, A., Vanderby Jr, R.: Nonlinear viscoelasticity in rabbit medial collateral ligament. Ann Biomed Eng 32(2), 306–312 (2004)

    Article  Google Scholar 

  53. Provenzano, P., Lakes, R., Corr, D., Vanderby, R.: Application of nonlinear viscoelastic models to describe ligament behavior. Biomech Model. Mechanobiol. 1(1), 45–57 (2002)

    Article  Google Scholar 

  54. Provenzano, P., Lakes, R., Keenan, T., Vanderby Jr, R.: Nonlinear ligament viscoelasticity. Ann. Biomed. Eng. 29(10), 908–914 (2001)

    Article  Google Scholar 

  55. Nekouzadeh, A., Pryse, K.M., Elson, E.L., Genin, G.M.: A simplified approach to quasi-linear viscoelastic modeling. J. Biomech. 40(14), 3070–3078 (2007)

    Article  Google Scholar 

  56. Pryse, K.M., Nekouzadeh, A., Genin, G.M., Elson, E.L., Zahalak, G.I.: Incremental mechanics of collagen gels: new experiments and a new viscoelastic model. Ann. Biomed. Eng. 31(10), 1287–1296 (2003)

    Article  Google Scholar 

  57. Truesdell, C., Noll, W., Antman, S.S.: The non-linear field theories of mechanics, vol. 3. Springer, New York (2004)

    Google Scholar 

  58. Rivlin, R.: Further remarks on the stress-deformation relastions for isotropic materials. J. Rat. Mech. Anal. 4, 681–702 (1955)

    MathSciNet  MATH  Google Scholar 

  59. Spencer, A., Rivlin, R.: The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Rat. Mech. Anal. 2(1), 309–336 (1958)

    Article  MathSciNet  Google Scholar 

  60. Pipkin, A.: Small finite deformations of viscoelastic solids. Rev. Mod. Phys. 36(4), 1034 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  61. Pipkin, A., Rogers, T.: A non-linear integral representation for viscoelastic behaviour. J. Mech. Phys. Solids 16(1), 59–72 (1968)

    Article  MATH  Google Scholar 

  62. Neubert, H.K.P.: A simple model representing internal damping in solid materials. Aeronaut. Q 14, 171–182 (1963)

    Google Scholar 

  63. Fung, Y.C.: Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York (1993)

    Google Scholar 

  64. Nekouzadeh, A., Genin, G.M., Bayly, P.V., Elson, E.L.: Wave motion in relaxation-testing of nonlinear elastic media. Proc. Roy. Soc. Lond. A 461, 1599–1626 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  65. Chun K.J, Hubbard R.P.: Development of a reduced relaxation function and comparison of stress relaxation for anatomically paired tendons. J. Mech. Sci. Technol. 23 (7):1893–1898 (2009). doi:10.1007/s12206-009-0504-3

    Google Scholar 

  66. Duenwald, S.E., Vanderby, R., Lakes, R.S.: Constitutive equations for ligament and other soft tissue: evaluation by experiment. Acta. Mech. 205(1–4), 23–33 (2009)

    Article  MATH  Google Scholar 

  67. Wagenseil, J.E., Elson, E.L., Okamoto, R.J.: Cell orientation influences the biaxial mechanical properties of fibroblast populated collagen vessels. Ann. Biomed. Eng. 32(5), 720–731 (2004)

    Article  Google Scholar 

  68. Wagenseil, J.E., Wakatsuki, T., Okamoto, R.J., Zahalak, G.I., Elson, E.L.: One-dimensional viscoelastic behavior of fibroblast populated collagen matrices. J. Biomech. Eng. 125(5), 719–725 (2003)

    Article  Google Scholar 

  69. Wakatsuki, T., Kolodney, M.S., Zahalak, G.I., Elson, E.L.: Cell mechanics studied by a reconstituted model tissue. Biophysical. J. 79(5), 2353–2368 (2000)

    Article  Google Scholar 

  70. Thomopoulos, S., Fomovsky, G.M., Holmes, J.W.: The development of structural and mechanical anisotropy in fibroblast populated collagen gels. J. Biomech. Eng. 127(5), 742–750 (2005)

    Article  Google Scholar 

  71. Barocas, V.H., Girton, T.S., Tranquillo, R.T.: Engineered alignment in media equivalents: magnetic prealignment and mandrel compaction. J. Biomech. Eng. 120(5), 660–666 (1998)

    Article  Google Scholar 

  72. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  73. Bower, A.F.: Applied Mechanics of Solids. CRC, New York (2009)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health (HL079165) and by the Johanna D. Bemis trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy M. Genin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nekouzadeh, A., Genin, G.M. (2012). Adaptive Quasi-Linear Viscoelastic Modeling. In: Geris, L. (eds) Computational Modeling in Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_142

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_142

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32562-5

  • Online ISBN: 978-3-642-32563-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics