Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 410))

Abstract

Immunity developed to defend our bodies from foreign particles, including bacteria and viruses. Although effector cells responsible for acquired immunity, mainly T cells, and B cells, are able to distinguish self from non-self, they sometimes attack the body’s tissues because of imperfect central tolerance. Several immune check points developed to limit overactivation of these cells. One of the most important immune checkpoints is programmed cell death-1 (PD-1), which is expressed mainly on activated lymphocytes. As its ligands (PD-Ls) are expressed widely in the body and affect the responses against self and foreign antigens, controlling PD-1/PD-L interactions enables the management of several immune-related diseases such as autoimmune disease, virus infection, and cancers. Currently, the strategy of PD-1/ PD-L1 blockade has already been applied to clinical cancer therapy, providing evidences that PD-1 signal is one of the main factors of cancer immune escape in humans. The dramatic efficacy of PD-1 blockade in cancer immunotherapy, promises the control of other immune diseases by PD-1 signal modulation. In this review, we summarize the history of PD-1, subsequent basic studies, and their application to the clinic.

Kenji Chamoto and Muna Al-Habsi equally contributed to this work.

The original version of this chapter was revised: Several missing figure sources have been included. The erratum to this chapter is available at https://doi.org/10.1007/978-3-319-68929-6_69

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Change history

  • 20 September 2017

    An erratum has been published.

References

  • Agata Y et al (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772

    Article  CAS  PubMed  Google Scholar 

  • Ahmadzadeh M et al (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114:1537–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari MJ et al (2003) The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 198:63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bally AP et al (2015) NF-kappaB regulates PD-1 expression in macrophages. J Immunol 194:4545–4554

    Article  CAS  PubMed  Google Scholar 

  • Barber DL et al (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687

    Article  CAS  PubMed  Google Scholar 

  • Bardhan K, Anagnostou T, Boussiotis VA (2016) The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front Immunol 7:550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beck KE et al (2006) Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol 24:2283–2289

    Article  CAS  PubMed  Google Scholar 

  • Bertsias GK et al (2009) Genetic, immunologic, and immunohistochemical analysis of the programmed death 1/programmed death ligand 1 pathway in human systemic lupus erythematosus. Arthritis Rheum 60:207–218

    Article  CAS  PubMed  Google Scholar 

  • Bishop KD et al (2009) Depletion of the programmed death-1 receptor completely reverses established clonal anergy in CD4(+) T lymphocytes via an interleukin-2-dependent mechanism. Cell Immunol 256:86–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blank C et al (2003) Absence of programmed death receptor 1 alters thymic development and enhances generation of CD4/CD8 double-negative TCR-transgenic T cells. J Immunol 171:4574–4581

    Article  CAS  PubMed  Google Scholar 

  • Boland JM et al (2013) Tumor B7-H1 and B7-H3 expression in squamous cell carcinoma of the lung. Clin Lung Cancer 14:157–163

    Article  CAS  PubMed  Google Scholar 

  • Boni C et al (2007) Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol 81:4215–4225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borghaei H et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brahmer JR et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28:3167–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brahmer J et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JA et al (2003) Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 170:1257–1266

    Article  CAS  PubMed  Google Scholar 

  • Chang CH et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–1241

    Google Scholar 

  • Champiat S et al (2016) Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper. Ann Oncol: Off J Eur Soc Med Oncol 27:559–574

    Article  CAS  Google Scholar 

  • Chamoto K et al (2017) Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci USA 114:E761–E770

    Google Scholar 

  • Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL (2004) SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 173:945–954

    Article  CAS  PubMed  Google Scholar 

  • Chikuma S et al (2009) PD-1-mediated suppression of IL-2 production induces CD8 + T cell anergy in vivo. J Immunol 182:6682–6689

    Article  CAS  PubMed  Google Scholar 

  • Cho HY, Lee SW, Seo SK, Choi IW, Choi I (2008) Interferon-sensitive response element (ISRE) is mainly responsible for IFN-alpha-induced upregulation of programmed death-1 (PD-1) in macrophages. Biochim Biophys Acta 1779:811–819

    Article  CAS  PubMed  Google Scholar 

  • Cho HY et al (2009) Programmed death-1 receptor negatively regulates LPS-mediated IL-12 production and differentiation of murine macrophage RAW264.7 cells. Immunol Lett 127:39–47

    Article  CAS  PubMed  Google Scholar 

  • Chunyang L, Xu X, Wang H, Wei B (2012) PD-1 and CTLA-4 mediated inhibitory signaling for T cell exhaustion during chronic viral infections. Clin Cell Immunol S12:010

    Google Scholar 

  • Cooper WA et al (2015) PD-L1 expression is a favorable prognostic factor in early stage non-small cell carcinoma. Lung Cancer 89:181–188

    Article  PubMed  Google Scholar 

  • Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14:135–146

    Article  CAS  PubMed  Google Scholar 

  • Cousin S, Italiano A (2016) Molecular Pathways: Immune Checkpoint Antibodies and their Toxicities. Clin Cancer Res 22:4550–4555

    Article  CAS  PubMed  Google Scholar 

  • Day CL et al (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443:350–354

    Article  CAS  PubMed  Google Scholar 

  • Ding H et al (2006) Delivering PD-1 inhibitory signal concomitant with blocking ICOS co-stimulation suppresses lupus-like syndrome in autoimmune BXSB mice. Clin Immunol 118:258–267

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Zhu G, Tamada K, Chen L (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369

    Article  CAS  PubMed  Google Scholar 

  • Dong H et al (2003) Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J Clin Invest 111:363–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immune-surveillance to tumor escape. Nat Immunol 3:991

    Google Scholar 

  • D’Souza M et al (2007) Programmed death 1 expression on HIV-specific CD4 + T cells is driven by viral replication and associated with T cell dysfunction. J Immunol 179:1979–1987

    Article  PubMed  Google Scholar 

  • Francisco LM et al (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206:3015–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman GJ, Wherry EJ, Ahmed R, Sharpe AH (2006) Reinvigorating exhausted HIVspecific T cells via PD-1–PD-1 ligand blockade. J Exp Med 203:2223

    Google Scholar 

  • Freeman GJ (2008) Structures of PD-1 with its ligands: sideways and dancing cheek to cheek. Proc Natl Acad Sci USA 105:10275–10276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman GJ et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golden-Mason L et al (2007) Upregulation of PD-1 expression on circulating and intrahepatic hepatitis C virus-specific CD8 + T cells associated with reversible immune dysfunction. J Virol 81:9249–9258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gros A et al (2016) Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 22:433–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guleria I et al (2005) A critical role for the programmed death ligand 1 in fetomaternal tolerance. J Exp Med 202:231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamanishi J et al (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8 + T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A 104:3360–3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi M, Kouki T, Takasu N, Sunagawa S, Komiya I (2008) Association of an A/C single nucleotide polymorphism in programmed cell death-ligand 1 gene with Graves’ disease in Japanese patients. Eur J Endocrinol 158:817–822

    Article  CAS  PubMed  Google Scholar 

  • He J, Hu Y, Hu M, Li B (2015) Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep 5:13110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata S et al (2005) Prevention of experimental autoimmune encephalomyelitis by transfer of embryonic stem cell-derived dendritic cells expressing myelin oligodendrocyte glycoprotein peptide along with TRAIL or programmed death-1 ligand. J Immunol 174:1888–1897

    Article  CAS  PubMed  Google Scholar 

  • Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holets LM, Hunt JS, Petroff MG (2006) Trophoblast CD274 (B7-H1) is differentially expressed across gestation: influence of oxygen concentration. Biol Reprod 74:352–358

    Article  CAS  PubMed  Google Scholar 

  • Huang Y et al (2015) The prognostic significance of PD-L1 in bladder cancer. Oncol Rep 33:3075–3084

    Article  CAS  PubMed  Google Scholar 

  • Inoue H et al (2016) Intratumoral expression levels of PD-L1, GZMA, and HLA-A along with oligoclonal T cell expansion associate with response to nivolumab in metastatic melanoma. Oncoimmunology 5:e1204507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99:12293–12297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai Y, Hamanishi J, Chamoto K, Honjo T (2017) Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci 24:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin HT et al (2010) Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci USA 107:14733–14738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin HT, Ahmed R, Okazaki T (2011) Role of PD-1 in regulating T-cell immunity. Curr Top Microbiol Immunol 350:17–37

    CAS  PubMed  Google Scholar 

  • Kakavand H et al (2015) Tumor PD-L1 expression, immune cell correlates and PD-1 + lymphocytes in sentinel lymph node melanoma metastases. Mod Pathol 28:1535–1544

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto S et al (2012) The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336:485–489

    Article  CAS  PubMed  Google Scholar 

  • Keir ME, Latchman YE, Freeman GJ, Sharpe AH (2005) Programmed death-1 (PD-1):PD-ligand 1 interactions inhibit TCR-mediated positive selection of thymocytes. J Immunol 175:7372–7379

    Article  CAS  PubMed  Google Scholar 

  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  Google Scholar 

  • Kroner A et al (2005) A PD-1 polymorphism is associated with disease progression in multiple sclerosis. Ann Neurol 58:50–57

    Article  CAS  PubMed  Google Scholar 

  • Larkin J et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Latchman Y et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268

    Article  CAS  PubMed  Google Scholar 

  • Lazar-Molnar E et al (2008) Crystal structure of the complex between programmed death-1 (PD-1) and its ligand PD-L2. Proc Natl Acad Sci USA 105:10483–10488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH et al (2006) Association of the programmed cell death 1 (PDCD1) gene polymorphism with ankylosing spondylitis in the Korean population. Arthritis Res Therapy 8:R163

    Article  CAS  Google Scholar 

  • Liang SC et al (2003) Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 33:2706–2716

    Article  CAS  PubMed  Google Scholar 

  • Lin DY et al (2008) The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc Natl Acad Sci USA 105:3011–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu P et al (2014) Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection. J Exp Med 211:515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maker AV et al (2006) Intrapatient dose escalation of anti-CTLA-4 antibody in patients with metastatic melanoma. J Immunother 29:455–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Márquez-Rodas et al. (2015) Immune checkpoint inhibitors: therapeutic advances in melanoma. Ann Transl Med 3: 267

    Google Scholar 

  • Mittendorf EA et al (2014) PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2:361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motzer RJ et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naidoo J et al (2016) Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol: Off J Eur Soc Med Oncol 27:1362

    Article  CAS  Google Scholar 

  • Nakae S et al (2006) Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J Immunol 176:2238–2248

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi J et al (2007) Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother 56:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Nduom EK et al (2016) PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol 18:195–205

    Article  CAS  PubMed  Google Scholar 

  • Nielsen C, Hansen D, Husby S, Jacobsen BB, Lillevang ST (2003) Association of a putative regulatory polymorphism in the PD-1 gene with susceptibility to type 1 diabetes. Tissue Antigens 62:492–497

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H et al (1996) Developmentally regulated expression of the PD-1 protein on the surface of double-negative (CD4-CD8-) thymocytes. Int Immunol 8:773–780

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Honjo T, Minato N (2000) Facilitation of beta selection and modification of positive selection in the thymus of PD-1-deficient mice. J Exp Med 191:891–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura H et al (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322

    Article  CAS  PubMed  Google Scholar 

  • Nomi T et al (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13:2151–2157

    Article  CAS  PubMed  Google Scholar 

  • Oestreich KJ, Yoon H, Ahmed R, Boss JM (2008) NFATc1 regulates PD-1 expression upon T cell activation. J Immunol 181:4832–4839

    Article  CAS  PubMed  Google Scholar 

  • Ohigashi Y et al (2005) Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res 11:2947–2953

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19:813–824

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci USA 98:13866–13871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T (2013) A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 14:1212–1218

    Article  CAS  PubMed  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry RV et al (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25:9543–9553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauken KE et al (2016) Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354:1160–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M (2005) Resting dendritic cells induce peripheral CD8 + T cell tolerance through PD-1 and CTLA-4. Nat Immunol 6:280–286

    Article  CAS  PubMed  Google Scholar 

  • Prokunina L et al (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32:666–669

    Article  CAS  PubMed  Google Scholar 

  • Prokunina L et al (2004) Association of the PD-1.3A allele of the PDCD1 gene in patients with rheumatoid arthritis negative for rheumatoid factor and the shared epitope. Arthritis Rheum 50:1770–1773

    Article  CAS  PubMed  Google Scholar 

  • Robert C et al (2015a) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330

    Article  CAS  PubMed  Google Scholar 

  • Robert C et al (2015b) Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532

    Article  CAS  PubMed  Google Scholar 

  • Said EA et al (2010) Programmed death-1-induced interleukin-10 production by monocytes impairs CD4 + T cell activation during HIV infection. Nat Med 16:452–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito T et al (2016) Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 22:679–684

    Article  CAS  PubMed  Google Scholar 

  • Salama AD et al (2003) Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 198:71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  CAS  PubMed  Google Scholar 

  • Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348:69–74

    Article  CAS  PubMed  Google Scholar 

  • Sfanos KS et al (2009) Human prostate-infiltrating CD8 + T lymphocytes are oligoclonal and PD-1+. Prostate 69:1694–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheppard KA et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574:37–41

    Article  CAS  PubMed  Google Scholar 

  • Sivan A et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staron MM et al (2014) The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection. Immunity 41:802–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terawaki S et al (2011) IFN-alpha directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J Immunol 186:2772–2779

    Article  CAS  PubMed  Google Scholar 

  • Thompson RH et al (2004) Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA 101:17174–17179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng SY et al (2001) B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med 193:839–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tumeh PC et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbani S et al (2006) PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion. J Virol 80:11398–11403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Bruggen P et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647

    Article  PubMed  Google Scholar 

  • van der Vlist M, Kuball J, Radstake TR, Meyaard L (2016) Immune checkpoints and rheumatic diseases: what can cancer immunotherapy teach us? Nat Rev Rheumatol 12:593–604

    Article  PubMed  CAS  Google Scholar 

  • Velcheti V et al (2014) Programmed death ligand-1 expression in non-small cell lung cancer. Lab Invest 94:107–116

    Article  CAS  PubMed  Google Scholar 

  • Velu V et al (2009) Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 458:206–210

    Article  CAS  PubMed  Google Scholar 

  • Wang J et al (2005) Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci USA 102:11823–11828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J et al (2010) PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int Immunol 22:443–452

    Article  CAS  PubMed  Google Scholar 

  • Weber JS et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384

    Article  CAS  PubMed  Google Scholar 

  • Wherry EJ, Ahmed R (2004) Memory CD8 T-cell differentiation during viral infection. J Virol 78:5535–5545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C et al (2006) Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem 108:19–24

    Article  PubMed  Google Scholar 

  • Yamazaki T et al (2002) Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 169:5538–5545

    Article  CAS  PubMed  Google Scholar 

  • Youngblood B et al (2011) Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 35:400–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuasa T, Masuda H, Yamamoto S, Numao N, Yonese J (2017) Biomarkers to predict prognosis and response to checkpoint inhibitors. Int J Clin Oncol 22:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakharia Y, McWilliams R, Shaheen M et al (2017) Interim analysis of the phase 2 clinical trial of the IDO pathway inhibitor indoximod in combination with pembrolizumab for patients with advanced melanoma. Presented at: 2017 AACR Annual Meeting; 1–5 Apr 2017; San Washington, DC. Abstract CT117

    Google Scholar 

  • Zhang X et al (2004) Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 20:337–347

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Chikuma S, Hori S, Fagarasan S, Honjo T (2016) Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model. Proc Natl Acad Sci USA 113:8490–8495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong X, Tumang JR, Gao W, Bai C, Rothstein TL (2007) PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding. Eur J Immunol 37:2405–2410

    Article  CAS  PubMed  Google Scholar 

  • Zhu B et al (2006) Differential role of programmed death-ligand 1 [corrected] and programmed death-ligand 2 [corrected] in regulating the susceptibility and chronic progression of experimental autoimmune encephalomyelitis. J Immunol 176:3480–3489

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasuku Honjo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chamoto, K., Al-Habsi, M., Honjo, T. (2017). Role of PD-1 in Immunity and Diseases. In: Yoshimura, A. (eds) Emerging Concepts Targeting Immune Checkpoints in Cancer and Autoimmunity. Current Topics in Microbiology and Immunology, vol 410. Springer, Cham. https://doi.org/10.1007/82_2017_67

Download citation

Publish with us

Policies and ethics