Skip to main content

GABAB Receptors and Pain

  • Chapter
  • First Online:
Behavioral Neurobiology of GABAB Receptor Function

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 52))

Abstract

A substantial fraction of the human population suffers from chronic pain states, which often cannot be sufficiently treated with existing drugs. This calls for alternative targets and strategies for the development of novel analgesics. There is substantial evidence that the G protein-coupled GABAB receptor is involved in the processing of pain signals and thus has long been considered a valuable target for the generation of analgesics to treat chronic pain. In this review, the contribution of GABAB receptors to the generation and modulation of pain signals, their involvement in chronic pain states as well as their target suitability for the development of novel analgesics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht PJ, Rice FL (2010) Role of small-fiber afferents in pain mechanisms with implications on diagnosis and treatment. Curr Pain Headache Rep 14(3):179–188. https://doi.org/10.1007/s11916-010-0105-y

    Article  PubMed  Google Scholar 

  • Almeida A, Storkson R, Lima D, Hole K, Tjolsen A (1999) The medullary dorsal reticular nucleus facilitates pain behaviour induced by formalin in the rat. Eur J Neurosci 11(1):110–122

    CAS  PubMed  Google Scholar 

  • Almeida A, Tjolsen A, Lima D, Coimbra A, Hole K (1996) The medullary dorsal reticular nucleus facilitates acute nociception in the rat. Brain Res Bull 39(1):7–15

    CAS  PubMed  Google Scholar 

  • Andrade R, Malenka RC, Nicoll RA (1986) A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234(4781):1261–1265

    CAS  PubMed  Google Scholar 

  • Ataka T, Kumamoto E, Shimoji K, Yoshimura M (2000) Baclofen inhibits more effectively C-afferent than Aδ-afferent glutamatergic transmission in substantia gelatinosa neurons of adult rat spinal cord slices. Pain 86(3):273–282

    CAS  PubMed  Google Scholar 

  • Aziz-Donnelly A, Harrison TB (2017) Update of HIV-associated sensory neuropathies. Curr Treat Options Neurol 19(10):36. https://doi.org/10.1007/s11940-017-0472-3

    Article  PubMed  Google Scholar 

  • Bai HP, Liu P, Wu YM, Guo WY, Guo YX, Wang XL (2014) Activation of spinal GABAB receptors normalizes N-methyl-D-aspartate receptor in diabetic neuropathy. J Neurol Sci 341(1–2):68–72. https://doi.org/10.1016/j.jns.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  • Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284. https://doi.org/10.1016/j.cell.2009.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassi GS, do Malvar CD, Cunha TM, Cunha FQ, Kanashiro A (2016) Spinal GABAB receptor modulates neutrophil recruitment to the knee joint in zymosan-induced arthritis. Naunyn Schmiedebergs Arch Pharmacol 389(8):851–861. https://doi.org/10.1007/s00210-016-1248-0

    Article  CAS  PubMed  Google Scholar 

  • Bean BP (1989) Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340(6229):153–156. https://doi.org/10.1038/340153a0

    Article  CAS  PubMed  Google Scholar 

  • Bell A (2018) The neurobiology of acute pain. Vet J 237:55–62. https://doi.org/10.1016/j.tvjl.2018.05.004

    Article  CAS  PubMed  Google Scholar 

  • Benke D, Honer M, Michel C, Bettler B, Mohler H (1999) γ-Aminobutyric acid type B receptor splice variant proteins GBR1a and GBR1b are both associated with GBR2 in situ and display differential regional and subcellular distribution. J Biol Chem 274:27323–27330

    CAS  PubMed  Google Scholar 

  • Bennett DL, Woods CG (2014) Painful and painless channelopathies. Lancet Neurol 13(6):587–599. https://doi.org/10.1016/s1474-4422(14)70024-9

    Article  CAS  PubMed  Google Scholar 

  • Berecki G, McArthur JR, Cuny H, Clark RJ, Adams DJ (2014) Differential Cav2.1 and Cav2.3 channel inhibition by baclofen and alpha-conotoxin Vc1.1 via GABAB receptor activation. J Gen Physiol 143(4):465–479. https://doi.org/10.1085/jgp.201311104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan PM, Whittle IR (2008) Intrathecal baclofen therapy for neurological disorders: a sound knowledge base but many challenges remain. Br J Neurosurg 22(4):508–519. https://doi.org/10.1080/02688690802233364

    Article  CAS  PubMed  Google Scholar 

  • Brewer CL, Baccei ML (2018) Enhanced Postsynaptic GABAB Receptor Signaling in Adult Spinal Projection Neurons after Neonatal Injury. Neuroscience 384:329–339. https://doi.org/10.1016/j.neuroscience.2018.05.046

    Article  CAS  PubMed  Google Scholar 

  • Brusberg M, Ravnefjord A, Martinsson R, Larsson H, Martinez V, Lindström E (2009) The GABAB receptor agonist, baclofen, and the positive allosteric modulator, CGP7930, inhibit visceral pain-related responses to colorectal distension in rats. Neuropharmacology 56(2):362–367

    CAS  PubMed  Google Scholar 

  • Buritova J, Chapman V, Honore P, Besson JM (1996) The contribution of GABAB receptor-mediated events to inflammatory pain processing: carrageenan oedema and associated spinal c-Fos expression in the rat. Neuroscience 73(2):487–496

    CAS  PubMed  Google Scholar 

  • Bussieres N, El Manira A (1999) GABAB receptor activation inhibits N- and P/Q-type calcium channels in cultured lamprey sensory neurons. Brain Res 847(2):175–185

    CAS  PubMed  Google Scholar 

  • Callaghan B, Haythornthwaite A, Berecki G, Clark RJ, Craik DJ, Adams DJ (2008) Analgesic alpha-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABAB receptor activation. J Neurosci 28(43):10943–10951. https://doi.org/10.1523/jneurosci.3594-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro-Lopes JM, Malcangio M, Pan BH, Bowery NG (1995) Complex changes of GABAA and GABAB receptor binding in the spinal cord dorsal horn following peripheral inflammation or neurectomy. Brain Res 679(2):289–297

    CAS  PubMed  Google Scholar 

  • Castro AR, Morgado C, Lima D, Tavares I (2006) Differential expression of NK1 and GABAB receptors in spinal neurones projecting to antinociceptive or pronociceptive medullary centres. Brain Res Bull 69(3):266–275. https://doi.org/10.1016/j.brainresbull.2005.12.004

    Article  CAS  PubMed  Google Scholar 

  • Castro J, Harrington AM, Garcia-Caraballo S, Maddern J, Grundy L, Zhang J, Page G, Miller PE, Craik DJ, Adams DJ, Brierley SM (2017) α-Conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABAB receptors. Gut 66(6):1083–1094. https://doi.org/10.1136/gutjnl-2015-310971

    Article  CAS  PubMed  Google Scholar 

  • Charles KJ, Evans ML, Robbins MJ, Calver AR, Leslie RA, Pangalos MN (2001) Comparative immunohistochemical localisation of GABAB1a, GABAB1b and GABAB2 subunits in rat brain, spinal cord and dorsal root ganglion. Neuroscience 106(3):447–467

    CAS  PubMed  Google Scholar 

  • Chen G, van den Pol AN (1998) Presynaptic GABAB autoreceptor modulation of P/Q-type calcium channels and GABA release in rat suprachiasmatic nucleus neurons. J Neurosci 18(5):1913–1922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Shao C, Zhou H, Ma R, Jiang P, Yang K (2017) Differential sensitivity of presynaptic and postsynaptic GABAB receptors in rat ventrolateral periaqueductal gray. Neuroreport 28(18):1221–1224. https://doi.org/10.1097/wnr.0000000000000906

    Article  PubMed  Google Scholar 

  • Cuny H, de Faoite A, Huynh TG, Yasuda T, Berecki G, Adams DJ (2012) γ-Aminobutyric acid type B (GABAÎ’) receptor expression is needed for inhibition of N-type (Cav2.2) calcium channels by analgesic alpha-conotoxins. J Biol Chem 287(28):23948–23957. https://doi.org/10.1074/jbc.M112.342998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis MP (2018) Cancer-Related Neuropathic Pain: Review and Selective Topics. Hematol Oncol Clin North Am 32(3):417–431. https://doi.org/10.1016/j.hoc.2018.01.005

    Article  PubMed  Google Scholar 

  • Delaney AJ, Crane JW (2016) Presynaptic GABAB receptors reduce transmission at parabrachial synapses in the lateral central amygdala by inhibiting N-type calcium channels. Sci Rep 6:19255. https://doi.org/10.1038/srep19255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desarmenien M, Feltz P, Occhipinti G, Santangelo F, Schlichter R (1984) Coexistence of GABAA and GABAB receptors on A delta and C primary afferents. Br J Pharmacol 81(2):327–333. https://doi.org/10.1111/j.1476-5381.1984.tb10082.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias QM, Prado WA (2016) The lesion of dorsolateral funiculus changes the antiallodynic effect of the intrathecal muscimol and baclofen in distinct phases of neuropathic pain induced by spinal nerve ligation in rats. Brain Res Bull 124:103–115. https://doi.org/10.1016/j.brainresbull.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  • Dirig DM, Yaksh TL (1995) Intrathecal baclofen and muscimol, but not midazolam, are antinociceptive using the rat-formalin model. J Pharmacol Exp Ther 275(1):219–227

    CAS  PubMed  Google Scholar 

  • Duan B, Cheng L, Bourane S, Britz O, Padilla C, Garcia-Campmany L, Krashes M, Knowlton W, Velasquez T, Ren X, Ross S, Lowell BB, Wang Y, Goulding M, Ma Q (2014) Identification of spinal circuits transmitting and gating mechanical pain. Cell 159(6):1417–1432. https://doi.org/10.1016/j.cell.2014.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton MJ, Plunkett JA, Karmally S, Martinez MA, Montanez K (1998) Changes in GAD- and GABA- immunoreactivity in the spinal dorsal horn after peripheral nerve injury and promotion of recovery by lumbar transplant of immortalized serotonergic precursors. J Chem Neuroanat 16(1):57–72

    CAS  PubMed  Google Scholar 

  • Engle MP, Gassman M, Sykes KT, Bettler B, Hammond DL (2006) Spinal nerve ligation does not alter the expression or function of GABAB receptors in spinal cord and dorsal root ganglia of the rat. Neuroscience 138(4):1277–1287

    CAS  PubMed  Google Scholar 

  • Engle MP, Merrill MA, Marquez De Prado B, Hammond DL (2012) Spinal nerve ligation decreases γ-aminobutyric acidB receptors on specific populations of immunohistochemically identified neurons in L5 dorsal root ganglion of the rat. J Comp Neurol 520(8):1663–1677. https://doi.org/10.1002/cne.23005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enna SJ, McCarson KE (2006) The role of GABA in the mediation and perception of pain. Adv Pharmacol 54:1–27

    CAS  PubMed  Google Scholar 

  • Foster E, Wildner H, Tudeau L, Haueter S, Ralvenius WT, Jegen M, Johannssen H, Hosli L, Haenraets K, Ghanem A, Conzelmann KK, Bosl M, Zeilhofer HU (2015) Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. Neuron 85(6):1289–1304. https://doi.org/10.1016/j.neuron.2015.02.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritschy JM, Meskenaite V, Weinmann O, Honer M, Benke D, Mohler H (1999) GABAB receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution and extrasynaptic localization. Eur J Neurosci 11(3):761–768

    CAS  PubMed  Google Scholar 

  • Fritschy JM, Sidler C, Parpan F, Gassmann M, Kaupmann K, Bettler B, Benke D (2004) Independent maturation of the GABAB receptor subunits GABAB1 and GABAB2 during postnatal development in rodent brain. J Comp Neurol 477(3):235–252

    CAS  PubMed  Google Scholar 

  • Froestl W (2010) Novel GABAB receptor positive modulators: a patent survey. Expert Opin Ther Pat 20(8):1007–1017

    CAS  PubMed  Google Scholar 

  • Fromm GH, Terrence CF (1987) Comparison of L-baclofen and racemic baclofen in trigeminal neuralgia. Neurology 37(11):1725–1728. https://doi.org/10.1212/wnl.37.11.1725

    Article  CAS  PubMed  Google Scholar 

  • Fromm GH, Terrence CF, Chattha AS (1984) Baclofen in the treatment of trigeminal neuralgia: double-blind study and long-term follow-up. Ann Neurol 15(3):240–244. https://doi.org/10.1002/ana.410150306

    Article  CAS  PubMed  Google Scholar 

  • Fuchs PN, Peng YB, Boyette-Davis JA, Uhelski ML (2014) The anterior cingulate cortex and pain processing. Front Integr Neurosci 8:35. https://doi.org/10.3389/fnint.2014.00035

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaillard S, Lo Re L, Mantilleri A, Hepp R, Urien L, Malapert P, Alonso S, Deage M, Kambrun C, Landry M, Low SA, Alloui A, Lambolez B, Scherrer G, Le Feuvre Y, Bourinet E, Moqrich A (2014) GINIP, a G-interacting protein, functions as a key modulator of peripheral GABA receptor-mediated analgesia. Neuron 84:123–136. https://doi.org/10.1016/j.neuron.2014.08.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangadharan V, Agarwal N, Brugger S, Tegeder I, Bettler B, Kuner R, Kurejova M (2009) Conditional gene deletion reveals functional redundancy of GABAB receptors in peripheral nociceptors in vivo. Mol Pain 5:68

    PubMed  PubMed Central  Google Scholar 

  • Gangadharan V, Kuner R (2013) Pain hypersensitivity mechanisms at a glance. Dis Model Mech 6(4):889–895. https://doi.org/10.1242/dmm.011502

    Article  PubMed  PubMed Central  Google Scholar 

  • Gassmann M, Bettler B (2012) Regulation of neuronal GABAB receptor functions by subunit composition. Nat Rev Neurosci 13(6):380–394. https://doi.org/10.1038/nrn3249

    Article  CAS  PubMed  Google Scholar 

  • Gassmann M, Shaban H, Vigot R, Sansig G, Haller C, Barbieri S, Humeau Y, Schuler V, Müller M, Kinzel B, Klebs K, Schmutz M, Froestl W, Heid J, Kelly PH, Gentry C, Jaton AL, Van der Putten H, Mombereau C, Lecourtier L, Mosbacher J, Cryan JF, Fritschy JM, Lüthi A, Kaupmann K, Bettler B (2004) Redistribution of GABAB1 protein and atypical GABAB responses in GABAB2-deficient mice. J Neurosci 24(27):6086–6097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gatscher S, Becker R, Uhle E, Bertalanffy H (2002) Combined intrathecal baclofen and morphine infusion for the treatment of spasticity related pain and central deafferentiation pain. Acta Neurochir Suppl 79:75–76

    CAS  PubMed  Google Scholar 

  • Goto S, Taira T, Horisawa S, Yokote A, Sasaki T, Okada Y (2013) Spinal cord stimulation and intrathecal baclofen therapy: combined neuromodulation for treatment of advanced complex regional pain syndrome. Stereotact Funct Neurosurg 91(6):386–391. https://doi.org/10.1159/000350022

    Article  PubMed  Google Scholar 

  • Greif GJ, Sodickson DL, Bean BP, Neer EJ, Mende U (2000) Altered regulation of potassium and calcium channels by GABAB and adenosine receptors in hippocampal neurons from mice lacking Gαo. J Neurophysiol 83(2):1010–1018

    CAS  PubMed  Google Scholar 

  • Guetg N, Aziz SA, Holbro N, Turecek R, Rose T, Seddik R, Gassmann M, Moes S, Jenoe P, Oertner TG, Casanova E, Bettler B (2010) NMDA receptor-dependent GABAB receptor internalization via CaMKII phosphorylation of serine 867 in GABAB1. Proc Natl Acad Sci U S A 107(31):13924–13929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guyon A, Kussrow A, Olmsted IR, Sandoz G, Bornhop DJ, Nahon JL (2013) Baclofen and other GABAB receptor agents are allosteric modulators of the CXCL12 chemokine receptor CXCR4. J Neurosci 33(28):11643–11654. https://doi.org/10.1523/jneurosci.6070-11.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwak YS, Hulsebosch CE (2011) GABA and central neuropathic pain following spinal cord injury. Neuropharmacology 60(5):799–808. https://doi.org/10.1016/j.neuropharm.2010.12.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwak YS, Tan HY, Nam TS, Paik KS, Hulsebosch CE, Leem JW (2006) Activation of spinal GABA receptors attenuates chronic central neuropathic pain after spinal cord injury. J Neurotrauma 23(7):1111–1124. https://doi.org/10.1089/neu.2006.23.1111

    Article  PubMed  Google Scholar 

  • Hammond DL (1997) Inhibitory neurotransmitters and nociception: role of GABA and glycine. In: Dickenson A, Besson JM (eds) The pharmacology of pain. Springer, Berlin, pp 361–383. https://doi.org/10.1007/978-3-642-60777-6_14

    Chapter  Google Scholar 

  • Hanack C, Moroni M, Lima WC, Wende H, Kirchner M, Adelfinger L, Schrenk-Siemens K, Tappe-Theodor A, Wetzel C, Kuich PH, Gassmann M, Roggenkamp D, Bettler B, Lewin GR, Selbach M, Siemens J (2015) GABA blocks pathological but not acute TRPV1 pain signals. Cell 160(4):759–770. https://doi.org/10.1016/j.cell.2015.01.022

    Article  CAS  PubMed  Google Scholar 

  • Hang LH, Yang JP, Shao DH, Chen Z, Wang H (2013) Involvement of spinal PKA/CREB signaling pathway in the development of bone cancer pain. Pharmacol Rep 65(3):710–716

    CAS  PubMed  Google Scholar 

  • Harmer JP, Larson BS (2002) Pain relief from baclofen analgesia in a neuropathic pain patient who failed opioid and pharmacotherapy: case report. J Pain Palliat Care Pharmacother 16(3):61–64

    PubMed  Google Scholar 

  • Hawrot E, Xiao Y, Shi QL, Norman D, Kirkitadze M, Barlow PN (1998) Demonstration of a tandem pair of complement protein modules in GABAB receptor 1a. FEBS Lett 432(3):103–108

    CAS  PubMed  Google Scholar 

  • Herman RM, D'Luzansky SC, Ippolito R (1992) Intrathecal baclofen suppresses central pain in patients with spinal lesions. A pilot study. Clin J Pain 8(4):338–345

    CAS  PubMed  Google Scholar 

  • Hosny A, Simopoulos T, Collins B (2004) Response of intractable post herpetic neuralgia to intrathecal baclofen. Pain Physician 7(3):345–347

    PubMed  Google Scholar 

  • Hu C, Zhang G, Zhao YT (2014) Fucoidan attenuates the existing allodynia and hyperalgesia in a rat model of neuropathic pain. Neurosci Lett 571:66–71. https://doi.org/10.1016/j.neulet.2014.04.030

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Zhao YT, Zhang G, Xu MF (2017) Antinociceptive effects of fucoidan in rat models of vincristine-induced neuropathic pain. Mol Med Rep 15(2):975–980. https://doi.org/10.3892/mmr.2016.6071

    Article  CAS  PubMed  Google Scholar 

  • Hwang JH, Yaksh TL (1997) The effect of spinal GABA receptor agonists on tactile allodynia in a surgically-induced neuropathic pain model in the rat. Pain 70(1):15–22

    CAS  PubMed  Google Scholar 

  • Ibuki T, Hama AT, Wang XT, Pappas GD, Sagen J (1997) Loss of GABA-immunoreactivity in the spinal dorsal horn of rats with peripheral nerve injury and promotion of recovery by adrenal medullary grafts. Neuroscience 76(3):845–858

    CAS  PubMed  Google Scholar 

  • Iyadomi M, Iyadomi I, Kumamoto E, Tomokuni K, Yoshimura M (2000) Presynaptic inhibition by baclofen of miniature EPSCs and IPSCs in substantia gelatinosa neurons of the adult rat spinal dorsal horn. Pain 85(3):385–393

    CAS  PubMed  Google Scholar 

  • Jergova S, Hentall ID, Gajavelli S, Varghese MS, Sagen J (2012) Intraspinal transplantation of GABAergic neural progenitors attenuates neuropathic pain in rats: a pharmacologic and neurophysiological evaluation. Exp Neurol 234(1):39–49. https://doi.org/10.1016/j.expneurol.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  • Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao W-J, Johnson M, Gunwaldsen C, Huang L-Y, Tang C, Shen Q, Salon JA, Morse K, Laz T, Smith KE, Nagarathnam D, Noble SA, Branchek TA, Gerald C (1998) GABAB receptor function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396:674–679

    CAS  PubMed  Google Scholar 

  • Jones TL, Sweitzer SM, Peters MC, Wilson SP, Yeomans DC (2005) GABAB receptors on central terminals of C-afferents mediate intersegmental Aδ-afferent evoked hypoalgesia. Eur J Pain 9(3):233–242

    CAS  PubMed  Google Scholar 

  • Kalinichev M, Donovan-Rodriguez T, Girard F, Haddouk H, Royer-Urios I, Schneider M, Bate ST, Marker C, Pomonis JD, Poli S (2017) ADX71943 and ADX71441, novel positive allosteric modulators of the GABAB receptor with distinct central/peripheral profiles, show efficacy in the monosodium iodoacetate model of chronic osteoarthritis pain in the rat. Eur J Pharmacol 795:43–49. https://doi.org/10.1016/j.ejphar.2016.11.056

    Article  CAS  PubMed  Google Scholar 

  • Kalinichev M, Donovan-Rodriguez T, Girard F, Riguet E, Rouillier M, Bournique B, Haddouk H, Mutel V, Poli S (2014) Evaluation of peripheral versus central effects of GABAB receptor activation using a novel, positive allosteric modulator of the GABAB receptor ADX71943, a pharmacological tool compound with a fully peripheral activity profile. Br J Pharmacol 171(21):4941–4954. https://doi.org/10.1111/bph.12812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannampalli P, Poli SM, Bolea C, Sengupta JN (2017) Analgesic effect of ADX71441, a positive allosteric modulator (PAM) of GABAB receptor in a rat model of bladder pain. Neuropharmacology 126:1–11. https://doi.org/10.1016/j.neuropharm.2017.08.023

    Article  CAS  PubMed  Google Scholar 

  • Kantamneni S, Gonzalez-Gonzalez IM, Luo J, Cimarosti H, Jacobs SC, Jaafari N, Henley JM (2014) Differential regulation of GABAB receptor trafficking by different modes of N-methyl-D-aspartate (NMDA) receptor signaling. J Biol Chem 289(10):6681–6694. https://doi.org/10.1074/jbc.M113.487348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froestl W, Bettler B (1997) Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386:239–246

    CAS  PubMed  Google Scholar 

  • Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karshin A, Bettler B (1998) GABAB receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687

    CAS  PubMed  Google Scholar 

  • Khan N, Smith MT (2014) Multiple sclerosis-induced neuropathic pain: pharmacological management and pathophysiological insights from rodent EAE models. Inflammopharmacology 22(1):1–22. https://doi.org/10.1007/s10787-013-0195-3

    Article  CAS  PubMed  Google Scholar 

  • Kim SE, Chang L (2012) Overlap between functional GI disorders and other functional syndromes: what are the underlying mechanisms? Neurogastroenterol Motil 24(10):895–913. https://doi.org/10.1111/j.1365-2982.2012.01993.x

    Article  CAS  PubMed  Google Scholar 

  • Kopsky DJ, Keppel Hesselink JM, Casale R (2015) Walking with neuropathic pain: paradoxical shift from burden to support? Case Rep Med 2015:764950. https://doi.org/10.1155/2015/764950

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulik A, Nakadate K, Nyiri G, Notomi T, Malitschek B, Bettler B, Shigemoto R (2002) Distinct localization of GABA(B) receptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus. Eur J Neurosci 15(2):291–307

    PubMed  Google Scholar 

  • Kulik A, Vida I, Fukazawa Y, Guetg N, Kasugai Y, Marker CL, Rigato F, Bettler B, Wickman K, Frotscher M, Shigemoto R (2006) Compartment-dependent colocalization of Kir3.2-containing K+ channels and GABAB receptors in hippocampal pyramidal cells. J Neurosci 26(16):4289–4297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulik A, Vida I, Lujan R, Haas CA, Lopez-Bendito G, Shigemoto R, Frotscher M (2003) Subcellular localization of metabotropic GABAB receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus. J Neurosci 23(35):11026–11035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laffray S, Bouali-Benazzouz R, Papon MA, Favereaux A, Jiang Y, Holm T, Spriet C, Desbarats P, Fossat P, Le Feuvre Y, Decossas M, Heliot L, Langel U, Nagy F, Landry M (2012) Impairment of GABAB receptor dimer by endogenous 14-3-3ζ in chronic pain conditions. EMBO J 31(15):3239–3251. https://doi.org/10.1038/emboj.2012.161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert NA, Wilson WA (1996) High-threshold Ca2+ currents in rat hippocampal interneurones and their selective inhibition by activation of GABAB receptors. J Physiol 492:115–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lau BK, Vaughan CW (2014) Descending modulation of pain: the GABA disinhibition hypothesis of analgesia. Curr Opin Neurobiol 29C:159–164. https://doi.org/10.1016/j.conb.2014.07.010

    Article  CAS  Google Scholar 

  • Lee B, Kim J, Kim SJ, Lee H, Chang JW (2007) Constitutive GABA expression via a recombinant adeno-associated virus consistently attenuates neuropathic pain. Biochem Biophys Res Commun 357(4):971–976. https://doi.org/10.1016/j.bbrc.2007.04.061

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Back SK, Lim EJ, Cho GC, Kim MA, Kim HJ, Lee MH, Na HS (2010) Are spinal GABAergic elements related to the manifestation of neuropathic pain in rat? Korean J Physiol Pharmacol 14(2):59–69. https://doi.org/10.4196/kjpp.2010.14.2.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legrain V, Iannetti GD, Plaghki L, Mouraux A (2011) The pain matrix reloaded: a salience detection system for the body. Prog Neurobiol 93(1):111–124. https://doi.org/10.1016/j.pneurobio.2010.10.005

    Article  PubMed  Google Scholar 

  • Lever I, Cunningham J, Grist J, Yip PK, Malcangio M (2003) Release of BDNF and GABA in the dorsal horn of neuropathic rats. Eur J Neurosci 18(5):1169–1174

    PubMed  Google Scholar 

  • Levy RA, Proudfit HK (1979) Analgesia produced by microinjection of baclofen and morphine at brain stem sites. Eur J Pharmacol 57(1):43–55. https://doi.org/10.1016/0014-2999(79)90102-x

    Article  CAS  PubMed  Google Scholar 

  • Li G, Shao C, Chen Q, Wang Q, Yang K (2017) Accumulated GABA activates presynaptic GABAB receptors and inhibits both excitatory and inhibitory synaptic transmission in rat midbrain periaqueductal gray. Neuroreport 28(6):313–318. https://doi.org/10.1097/wnr.0000000000000756

    Article  CAS  PubMed  Google Scholar 

  • Lind G, Schechtmann G, Winter J, Meyerson BA, Linderoth B (2008) Baclofen-enhanced spinal cord stimulation and intrathecal baclofen alone for neuropathic pain: Long-term outcome of a pilot study. Eur J Pain 12(1):132–136

    CAS  PubMed  Google Scholar 

  • Liu F, Zhang YY, Song N, Lin J, Liu MK, Huang CL, Zhou C, Wang H, Wang M, Shen JF (2019) GABAB receptor activation attenuates inflammatory orofacial pain by modulating interleukin-1beta in satellite glial cells: role of NF-kappaB and MAPK signaling pathways. Brain Res Bull 149:240–250. https://doi.org/10.1016/j.brainresbull.2019.04.018

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Guo WY, Zhao XN, Bai HP, Wang Q, Wang XL, Zhang YZ (2014) Intrathecal baclofen, a GABAB receptor agonist, inhibits the expression of p-CREB and NR2B in the spinal dorsal horn in rats with diabetic neuropathic pain. Can J Physiol Pharmacol 92(8):655–660. https://doi.org/10.1139/cjpp-2013-0463

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Yuan HB, Zhao S, Liu FF, Jiang YQ, Guo YX, Wang XL (2018) Activation of GABAB receptor suppresses diabetic neuropathic pain through toll-like receptor 4 signaling pathway in the spinal dorsal horn. Mediators Inflamm 2018:6016272. https://doi.org/10.1155/2018/6016272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeza-Alcocer E, McPherson TP, Gold MS (2019) Peripheral GABA receptors regulate colonic afferent excitability and visceral nociception. J Physiol 597(13):3425–3439. https://doi.org/10.1113/jp278025

    Article  CAS  PubMed  Google Scholar 

  • Luscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA (1997) G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19(3):687–695

    CAS  PubMed  Google Scholar 

  • Magnaghi V, Castelnovo LF, Faroni A, Cavalli E, Caffino L, Colciago A, Procacci P, Pajardi G (2014) Nerve regenerative effects of GABAB ligands in a model of neuropathic pain. Biomed Res Int 2014:368678. https://doi.org/10.1155/2014/368678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier PJ, Marin I, Grampp T, Sommer A, Benke D (2010) Sustained glutamate receptor activation down-regulates GABAB receptors by shifting the balance from recycling to lysosomal degradation. J Biol Chem 285(46):35606–35614. https://doi.org/10.1074/jbc.M110.142406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malan TP, Mata HP, Porreca F (2002) Spinal GABAA and GABAB receptor pharmacology in a rat model of neuropathic pain. Anesthesiology 96(5):1161–1167

    CAS  PubMed  Google Scholar 

  • Malykhina AP, Wyndaele JJ, Andersson KE, De Wachter S, Dmochowski RR (2012) Do the urinary bladder and large bowel interact, in sickness or in health? ICI-RS 2011. NeurourolUrodyn 31(3):352–358. https://doi.org/10.1002/nau.21228

    Article  Google Scholar 

  • Martins I, Carvalho P, de Vries MG, Teixeira-Pinto A, Wilson SP, Westerink BH, Tavares I (2015) GABA acting on GABAB receptors located in a medullary pain facilitatory area enhances nociceptive behaviors evoked by intraplantar formalin injection. Pain 156(8):1555–1565. https://doi.org/10.1097/j.pain.0000000000000203

    Article  CAS  PubMed  Google Scholar 

  • Martins I, Tavares I (2017) Reticular formation and pain: the past and the future. Front Neuroanat 11:51. https://doi.org/10.3389/fnana.2017.00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May A (2007) Neuroimaging: visualising the brain in pain. Neurol Sci 28(Suppl 2):S101–S107. https://doi.org/10.1007/s10072-007-0760-x

    Article  PubMed  Google Scholar 

  • McCarson KE, Enna SJ (1999) Nociceptive regulation of GABAB receptor gene expression in rat spinal cord. Neuropharmacology 38(11):1767–1773

    CAS  PubMed  Google Scholar 

  • McIntosh JM, Absalom N, Chebib M, Elgoyhen AB, Vincler M (2009) Alpha9 nicotinic acetylcholine receptors and the treatment of pain. Biochem Pharmacol 78(7):693–702. https://doi.org/10.1016/j.bcp.2009.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melin C, Jacquot F, Dallel R, Artola A (2013) Segmental disinhibition suppresses C-fiber inputs to the rat superficial medullary dorsal horn via the activation of GABAB receptors. Eur J Neurosci 37(3):417–428. https://doi.org/10.1111/ejn.12048

    Article  PubMed  Google Scholar 

  • Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150(3699):971–979

    CAS  PubMed  Google Scholar 

  • Menetrey D, Besson JM (1982) Electrophysiological characteristics of dorsal horn cells in rats with cutaneous inflammation resulting from chronic arthritis. Pain 13(4):343–364

    PubMed  Google Scholar 

  • Migita K, Matsuzaki Y, Koga K, Matsumoto T, Mishima K, Hara S, Honda K (2018) Involvement of GABAB receptor in the antihypersensitive effect in anterior cingulate cortex of partial sciatic nerve ligation model. J Pharmacol Sci 137(2):233–236. https://doi.org/10.1016/j.jphs.2018.05.009

    Article  CAS  PubMed  Google Scholar 

  • Mintz IM, Bean BP (1993) GABAB receptor inhibition of P-type Ca2+ channels in central neurons. Neuron 10(5):889–898

    CAS  PubMed  Google Scholar 

  • Moore C, Gupta R, Jordt SE, Chen Y, Liedtke WB (2018) Regulation of pain and itch by TRP channels. Neurosci Bull 34(1):120–142. https://doi.org/10.1007/s12264-017-0200-8

    Article  CAS  PubMed  Google Scholar 

  • Naderi N, Shafaghi B, Khodayar MJ, Zarindast MR (2005) Interaction between gamma-aminobutyric acid GABAB and cannabinoid CB1 receptors in spinal pain pathways in rat. Eur J Pharmacol 514(2-3):159–164. https://doi.org/10.1016/j.ejphar.2005.03.037

    Article  CAS  PubMed  Google Scholar 

  • Nashawi H, Masocha W, Edafiogho IO, Kombian SB (2016) Paclitaxel causes electrophysiological changes in the anterior cingulate cortex via modulation of the γ-aminobutyric acid-ergic system. Med Princ Pract 25(5):423–428. https://doi.org/10.1159/000447775

    Article  PubMed  PubMed Central  Google Scholar 

  • Neugebauer V, Li W, Bird GC, Han JS (2004) The amygdala and persistent pain. Neuroscientist 10(3):221–234. https://doi.org/10.1177/1073858403261077

    Article  PubMed  Google Scholar 

  • Ng GYK, Clark J, Coulombe N, Ethier N, Hebert TE, Sullivan R, Kargman S, Chateauneuf A, Tsukamoto N, McDonald T, Whiting P, Mezey E, Johnson MP, Liu QY, Kolakowski LF, Evans JF, Bonner TI, O'Neill GP (1999) Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J Biol Chem 274(12):7607–7610

    CAS  PubMed  Google Scholar 

  • Otis TS, De Koninck Y, Mody I (1993) Characterization of synaptically elicited GABAB responses using patch-clamp recordings in rat hippocampal slices. J Physiol 463:391–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Page AJ, O'Donnell TA, Blackshaw LA (2006) Inhibition of mechanosensitivity in visceral primary afferents by GABAB receptors involves calcium and potassium channels. Neuroscience 137(2):627–636. https://doi.org/10.1016/j.neuroscience.2005.09.016

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Naeem S, Kesingland A, Froestl W, Capogna M, Urban L, Fox A (2001) The effects of GABAB agonists and gabapentin on mechanical hyperalgesia in models of neuropathic and inflammatory pain in the rat. Pain 90(3):217–226

    CAS  PubMed  Google Scholar 

  • Pérez-Garci E, Gassmann M, Bettler B, Larkum ME (2006) The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 50(4):603–616

    PubMed  Google Scholar 

  • Pinto M, Sousa M, Lima D, Tavares I (2008) Participation of mu-opioid, GABAB, and NK1 receptors of major pain control medullary areas in pathways targeting the rat spinal cord: implications for descending modulation of nociceptive transmission. J Comp Neurol 510(2):175–187

    CAS  PubMed  Google Scholar 

  • Potes CS, Neto FL, Castro-Lopes JM (2006a) Administration of baclofen, a γ-aminobutyric acid type B agonist in the thalamic ventrobasal complex, attenuates allodynia in monoarthritic rats subjected to the ankle-bend test. J Neurosci Res 83(3):515–523. https://doi.org/10.1002/jnr.20737

    Article  CAS  PubMed  Google Scholar 

  • Potes CS, Neto FL, Castro-Lopes JM (2006b) Inhibition of pain behavior by GABAB receptors in the thalamic ventrobasal complex: effect on normal rats subjected to the formalin test of nociception. Brain Res 1115(1):37–47. https://doi.org/10.1016/j.brainres.2006.07.089

    Article  CAS  PubMed  Google Scholar 

  • Price GW, Kelly JS, Bowery NG (1987) The location of GABAB receptor binding sites in mammalian spinal cord. Synapse 1(6):530–538. https://doi.org/10.1002/syn.890010605

    Article  CAS  PubMed  Google Scholar 

  • Price GW, Wilkin GP, Turnbull MJ, Bowery NG (1984) Are baclofen-sensitive GABAB receptors present on primary afferent terminals of the spinal cord? Nature 307(5946):71–74

    CAS  PubMed  Google Scholar 

  • Reis GM, Duarte ID (2006) Baclofen, an agonist at peripheral GABAB receptors, induces antinociception via activation of TEA-sensitive potassium channels. Br J Pharmacol 149(6):733–739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren K, Anseloni V, Zou SP, Wade EB, Novikova SI, Ennis M, Traub RJ, Gold MS, Dubner R, Lidow MS (2004) Characterization of basal and re-inflammation-associated long-term alteration in pain responsivity following short-lasting neonatal local inflammatory insult. Pain 110(3):588–596. https://doi.org/10.1016/j.pain.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  • Sandkuhler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89(2):707–758. https://doi.org/10.1152/physrev.00025.2008

    Article  CAS  PubMed  Google Scholar 

  • Sands SA, McCarson KE, Enna SJ (2003) Differential regulation of GABAB receptor subunit expression and function. J Pharmacol Exp Ther 305(1):191–196

    CAS  PubMed  Google Scholar 

  • Schreiber AK, Nones CF, Reis RC, Chichorro JG, Cunha JM (2015) Diabetic neuropathic pain: Physiopathology and treatment. World J Diabetes 6(3):432–444. https://doi.org/10.4239/wjd.v6.i3.432

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuler V, Luscher C, Blanchet C, Klix N, Sansig G, Klebs K, Schmutz M, Heid J, Gentry C, Urban L, Fox A, Spooren W, Jaton AL, Vigouret J, Pozza M, Kelly PH, Mosbacher J, Froestl W, Kaslin E, Korn R, Bischoff S, Kaupmann K, van der Putten H, Bettler B (2001) Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABAB responses in mice lacking GABAB1. Neuron 31(1):47–58

    CAS  PubMed  Google Scholar 

  • Shaban H, Humeau Y, Herry C, Cassasus G, Shigemoto R, Ciocchi S, Barbieri S, van der Putten H, Kaupmann K, Bettler B, Lüthi A (2006) Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition. Nat Neurosci 9(8):1028–1035

    CAS  PubMed  Google Scholar 

  • Shafizadeh M, Semnanian S, Zarrindast MR, Hashemi B (1997) Involvement of GABAB receptors in the antinociception induced by baclofen in the formalin test. Gen Pharmacol 28(4):611–615

    CAS  PubMed  Google Scholar 

  • Slonimski M, Abram SE, Zuniga RE (2004) Intrathecal baclofen in pain management. Reg Anesth Pain Med 29(3):269–276

    CAS  PubMed  Google Scholar 

  • Smith GD, Harrison SM, Birch PJ, Elliott PJ, Malcangio M, Bowery NG (1994) Increased sensitivity to the antinociceptive activity of (+/−)-baclofen in an animal model of chronic neuropathic, but not chronic inflammatory hyperalgesia. Neuropharmacology 33(9):1103–1108

    CAS  PubMed  Google Scholar 

  • Soares Potes C, Lourenca Neto F, Manuel Castro-Lopes J (2006) Inhibition of pain behavior by GABAB receptors in the thalamic ventrobasal complex: Effect on normal rats subjected to the formalin test of nociception. Brain Res 1115(1):37–47

    Google Scholar 

  • Sokal DM, Chapman V (2003) Inhibitory effects of spinal baclofen on spinal dorsal horn neurones in inflamed and neuropathic rats in vivo. Brain Res 987(1):67–75

    CAS  PubMed  Google Scholar 

  • Somers DL, Clemente FR (2002) Dorsal horn synaptosomal content of aspartate, glutamate, glycine and GABA are differentially altered following chronic constriction injury to the rat sciatic nerve. Neurosci Lett 323(3):171–174. https://doi.org/10.1016/s0304-3940(02)00157-x

    Article  CAS  PubMed  Google Scholar 

  • Steiger JL, Bandyopadhyay S, Farb DH, Russek SJ (2004) cAMP response element-binding protein, activating transcription factor-4, and upstream stimulatory factor differentially control hippocampal GABABR1a and GABABR1b subunit gene expression through alternative promoters. J Neurosci 24:6115–6126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taira T, Hori T (2007) Intrathecal baclofen in the treatment of post-stroke central pain, dystonia, and persistent vegetative state. Acta Neurochir Suppl 97(Pt 1):227–229

    CAS  PubMed  Google Scholar 

  • Taira T, Kawamura H, Tanikawa T, Iseki H, Kawabatake H, Takakura K (1995) A new approach to control central deafferentation pain: spinal intrathecal baclofen. Stereotact Funct Neurosurg 65(1–4):101–105

    CAS  PubMed  Google Scholar 

  • Takazawa T, Choudhury P, Tong CK, Conway CM, Scherrer G, Flood PD, Mukai J, MacDermott AB (2017) Inhibition mediated by glycinergic and GABAergic receptors on excitatory neurons in mouse superficial dorsal horn is location-specific but modified by inflammation. J Neurosci 37(9):2336–2348. https://doi.org/10.1523/jneurosci.2354-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda M, Nasu M, Kanazawa T, Shimazu Y (2015) Activation of GABAB receptors potentiates inward rectifying potassium currents in satellite glial cells from rat trigeminal ganglia: in vivo patch-clamp analysis. Neuroscience 288:51–58. https://doi.org/10.1016/j.neuroscience.2014.12.024

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Takahashi M, Matsumoto S (2009) Contribution of the activation of satellite glia in sensory ganglia to pathological pain. Neurosci Biobehav Rev 33(6):784–792. https://doi.org/10.1016/j.neubiorev.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  • Terunuma M, Vargas KJ, Wilkins ME, Ramirez OA, Jaureguiberry-Bravo M, Pangalos MN, Smart TG, Moss SJ, Couve A (2010) Prolonged activation of NMDA receptors promotes dephosphorylation and alters postendocytic sorting of GABAB receptors. Proc Natl Acad Sci U S A 107(31):13918–13923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11(12):823–836. https://doi.org/10.1038/nrn2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Towers S, Princivalle A, Billinton A, Edmunds M, Bettler B, Urban L, Castro-Lopes J, Bowery NG (2000) GABAB receptor protein and mRNA distribution in rat spinal cord and dorsal root ganglia. Eur J Neurosci 12(9):3201–3210

    CAS  PubMed  Google Scholar 

  • Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, Koizumi S, Inoue K (2004) Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 45(1):89–95. https://doi.org/10.1002/glia.10308

    Article  PubMed  Google Scholar 

  • Urwyler S (2011) Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 63(1):59–126. https://doi.org/10.1124/pr.109.002501

    Article  CAS  PubMed  Google Scholar 

  • van der Plas AA, van Rijn MA, Marinus J, Putter H, van Hilten JJ (2013) Efficacy of intrathecal baclofen on different pain qualities in complex regional pain syndrome. Anesth Analg 116(1):211–215. https://doi.org/10.1213/ANE.0b013e31826f0a2e

    Article  CAS  PubMed  Google Scholar 

  • Vaysse L, Sol JC, Lazorthes Y, Courtade-Saidi M, Eaton MJ, Jozan S (2011) GABAergic pathway in a rat model of chronic neuropathic pain: modulation after intrathecal transplantation of a human neuronal cell line. Neurosci Res 69(2):111–120. https://doi.org/10.1016/j.neures.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  • Vigot R, Barbieri S, Bräuner-Osborne H, Turecek R, Shigemoto R, Zhang YP, Lujan R, Jacobson LH, Biermann B, Fritschy JM, Vacher CM, Müller M, Sansig G, Guetg N, Cryan JF, Kaupmann K, Gassmann M, Oertner TG, Bettler B (2006) Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 50(4):589–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Zhang T, Su YL, Wang JY, Luo F (2016) Differential modulation of electrical stimulation of periaqueductal gray and thalamus on nociceptive behaviors of rats. Sheng Li Xue Bao 68(2):115–125

    PubMed  Google Scholar 

  • Wang XL, Zhang HM, Chen SR, Pan HL (2007) Altered synaptic input and GABAB receptor function in spinal superficial dorsal horn neurons in rats with diabetic neuropathy. J Physiol 579(Pt 3):849–861. https://doi.org/10.1113/jphysiol.2006.126102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XL, Zhang Q, Zhang YZ, Liu YT, Dong R, Wang QJ, Guo YX (2011) Downregulation of GABAB receptors in the spinal cord dorsal horn in diabetic neuropathy. Neurosci Lett 490(2):112–115. https://doi.org/10.1016/j.neulet.2010.12.038

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xing M, Cao Q, Ji A, Liang H, Song S (2019) Biological activities of fucoidan and the factors mediating its therapeutic effects: A review of recent studies. Mar Drugs 17(3):E183. https://doi.org/10.3390/md17030183

    Article  CAS  PubMed  Google Scholar 

  • White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH (1998) Heterodimerization is required for the formation of functional GABAB receptors. Nature 396:679–682

    CAS  PubMed  Google Scholar 

  • White K, Targett M, Harris J (2018) Gainfully employing descending controls in acute and chronic pain management. Vet J 237:16–25. https://doi.org/10.1016/j.tvjl.2018.05.005

    Article  CAS  PubMed  Google Scholar 

  • Whitehead RA, Puil E, Ries CR, Schwarz SK, Wall RA, Cooke JE, Putrenko I, Sallam NA, Macleod BA (2012) GABAB receptor-mediated selective peripheral analgesia by the non-proteinogenic amino acid, isovaline. Neuroscience 213:154–160. https://doi.org/10.1016/j.neuroscience.2012.04.026

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Xu Y, Pu S, Jiang W, Du D (2011) p38/MAPK inhibitor modulates the expression of dorsal horn GABAB receptors in the spinal nerve ligation model of neuropathic pain. Neuroimmunomodulation 18(3):150–155. https://doi.org/10.1159/000323141

    Article  CAS  PubMed  Google Scholar 

  • Yam MF, Loh YC, Tan CS, Khadijah Adam S, Abdul Manan N, Basir R (2018) General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int J Mol Sci 19(8):E2164. https://doi.org/10.3390/ijms19082164

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Furue H, Kumamoto E, Dong YX, Yoshimura M (2003) Pre- and postsynaptic inhibition mediated by GABAB receptors in rat ventrolateral periaqueductal gray neurons. Biochem Biophys Res Commun 302(2):233–237. https://doi.org/10.1016/s0006-291x(03)00156-6

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Ma H (2011) Blockade of GABAB receptors facilitates evoked neurotransmitter release at spinal dorsal horn synapse. Neuroscience 193:411–420. https://doi.org/10.1016/j.neuroscience.2011.07.033

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Ma R, Wang Q, Jiang P, Li YQ (2015) Optoactivation of parvalbumin neurons in the spinal dorsal horn evokes GABA release that is regulated by presynaptic GABAB receptors. Neurosci Lett 594:55–59. https://doi.org/10.1016/j.neulet.2015.03.050

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Wang D, Li YQ (2001) Distribution and depression of the GABAB receptor in the spinal dorsal horn of adult rat. Brain Res Bull 55(4):479–485

    PubMed  Google Scholar 

  • Zeilhofer HU, Benke D, Yevenes GE (2012a) Chronic pain states: pharmacological strategies to restore diminished inhibitory spinal pain control. Annu Rev Pharmacol Toxicol 52:111–133. https://doi.org/10.1146/annurev-pharmtox-010611-134636

    Article  CAS  PubMed  Google Scholar 

  • Zeilhofer HU, Wildner H, Yevenes GE (2012b) Fast synaptic inhibition in spinal sensory processing and pain control. Physiol Rev 92(1):193–235

    CAS  PubMed  Google Scholar 

  • Zemoura K, Balakrishnan K, Grampp T, Benke D (2019) Ca2+/Calmodulin-dependent protein kinase II (CaMKII) β-dependent phosphorylation of GABAB1 triggers lysosomal degradation of GABAB Receptors via mind bomb-2 (MIB2)-mediated Lys-63-linked ubiquitination. Mol Neurobiol 56(2):1293–1309. https://doi.org/10.1007/s12035-018-1142-5

    Article  CAS  PubMed  Google Scholar 

  • Zemoura K, Ralvenius WT, Malherbe P, Benke D (2016) The positive allosteric GABAB receptor modulator rac-BHFF enhances baclofen-mediated analgesia in neuropathic mice. Neuropharmacology 108:172–178. https://doi.org/10.1016/j.neuropharm.2016.04.028

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Lu Y, Perl ER (2010) Inhibitory neurones of the spinal substantia gelatinosa mediate interaction of signals from primary afferents. J Physiol 588(Pt 12):2065–2075. https://doi.org/10.1113/jphysiol.2010.188052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou YQ, Chen SP, Liu DQ, Manyande A, Zhang W, Yang SB, Xiong BR, Fu QC, Song ZP, Rittner H, Ye DW, Tian YK (2017) The role of spinal GABAB receptors in cancer-induced bone pain in rats. J Pain 18(8):933–946. https://doi.org/10.1016/j.jpain.2017.02.438

    Article  PubMed  Google Scholar 

  • Zuniga RE, Schlicht CR, Abram SE (2000) Intrathecal baclofen is analgesic in patients with chronic pain. Anesthesiology 92(3):876–880

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Benke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benke, D. (2020). GABAB Receptors and Pain. In: Vlachou, S., Wickman, K. (eds) Behavioral Neurobiology of GABAB Receptor Function. Current Topics in Behavioral Neurosciences, vol 52. Springer, Cham. https://doi.org/10.1007/7854_2020_130

Download citation

Publish with us

Policies and ethics