Skip to main content

Reliably Measuring Cognitive Change in the Era of Chronic HIV Infection and Chronic HIV-Associated Neurocognitive Disorders

  • Chapter
  • First Online:
Neurocognitive Complications of HIV-Infection

Abstract

HIV infection has become a chronic disease managed across the life span. In this context, the cognitive health of HIV infection needs to have methods for monitoring over time, in order to better anticipate HIV-associated neurocognitive disorder (HAND) trajectories in relation to biomarkers, and predict prognosis and especially the risk of dementia as People Living with HIV (PLHIV) age. In this chapter, we critically review several statistical frameworks to quantify cognitive change. We then provide a critical review of naturalistic longitudinal studies and selected randomized clinical trials assessing neurocognitive change as a primary outcome in PLHIV, conducted since the advent of the combined antiretroviral therapy era (censored January 2019). Doing so, we distinguish between PLHIV who were treated early and did not experience AIDS (CDC 1993), versus treated late, after experiencing AIDS and more severe immune compromise. Highlighting strengths and limitations of these studies, we emphasize that issues of reliability pertaining to the use of neuropsychological tests need careful consideration for the robust quantification of cognitive change, including measurement error, practice effect, inter-individual variability, baseline level of functioning, demographic effects, timeframe between testing intervals, normative longitudinal data, and operationalization of clinically meaningful neurocognitive change. In addition, issues pertaining to longitudinal analyses including type, amount and pattern of missing data and/or participant attrition, regression toward the mean, and survivor bias need to be properly addressed. We conclude by proposing future research directions with emphasis on research translation to clinical participants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the CHARTER study, if an individual declined from baseline and never improved, they were classified as “decliner.” If an individual improved from baseline but never declined, they were classified as an “improver.” If neither, they were classified as “stable.” If both decline and improvement were detected, they were classified as “fluctuant” or were excluded depending on the analysis.

References

  • Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799

    CAS  PubMed  Google Scholar 

  • Aung HL, Kootar S, Gates TM, Brew BJ, Cysique LA (2019) How all-type dementia risk factors and modifiable risk interventions may be relevant to the first-generation aging with HIV infection? Eur Geriatr Med 10(2):227–238

    PubMed  Google Scholar 

  • Bland JM, Altman DG (1994) Statistics notes: correlation, regression, and repeated data. BMJ 308(6933):896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brew BJ (2004) Evidence for a change in AIDS dementia complex in the era of highly active antiretroviral therapy and the possibility of new forms of AIDS dementia complex. AIDS 18(Suppl 1):S75–S78

    CAS  PubMed  Google Scholar 

  • Brouillette MJ, Yuen T, Fellows LK, Cysique LA, Heaton RK, Mayo NE (2016) Identifying neurocognitive decline at 36 months among HIV-positive participants in the CHARTER cohort using group-based trajectory analysis. PLoS One 11(5):e0155766

    PubMed  PubMed Central  Google Scholar 

  • Byrd DA, Fellows RP, Morgello S, Franklin D, Heaton RK, Deutsch R et al (2011) Neurocognitive impact of substance use in HIV infection. J Acquir Immune Defic Syndr 58(2):154–162

    PubMed  PubMed Central  Google Scholar 

  • Calamia M, Markon K, Tranel D (2012) Scoring higher the second time around: meta-analyses of practice effects in neuropsychological assessment. Clin Neuropsychol 26(4):543–570

    PubMed  Google Scholar 

  • Calamia M, Markon K, Tranel D (2013) The robust reliability of neuropsychological measures: meta-analyses of test-retest correlations. Clin Neuropsychol 27(7):1077–1105

    PubMed  Google Scholar 

  • Clark US, Arce Renteria M, Hegde RR, Morgello S (2018) Early life stress-related elevations in reaction time variability are associated with brain volume reductions in HIV+ adults. Front Behav Neurosci 12(6):6

    PubMed  PubMed Central  Google Scholar 

  • Cole MA, Margolick JB, Cox C, Li X, Selnes OA, Martin EM et al (2007) Longitudinally preserved psychomotor performance in long-term asymptomatic HIV-infected individuals. Neurology 69(24):2213–2220

    CAS  PubMed  Google Scholar 

  • Cole JH, Caan MWA, Underwood J, De Francesco D, van Zoest RA, Wit F et al (2018) No evidence for accelerated aging-related brain pathology in treated human immunodeficiency virus: longitudinal neuroimaging results from the comorbidity in relation to AIDS (COBRA) project. Clin Infect Dis 66(12):1899–1909

    PubMed  Google Scholar 

  • Collie A, Maruff P, Darby DG, McStephen M (2003) The effects of practice on the cognitive test performance of neurologically normal individuals assessed at brief test-retest intervals. J Int Neuropsychol Soc 9(3):419–428

    PubMed  Google Scholar 

  • Collie A, Maruff P, Makdissi M, McStephen M, Darby DG, McCrory P (2004) Statistical procedures for determining the extent of cognitive change following concussion. Br J Sports Med 38(3):273–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cysique LA, Maruff P, Brew BJ (2006) Variable benefit in neuropsychological function in HIV-infected HAART-treated patients. Neurology 66(9):1447–1450

    PubMed  Google Scholar 

  • Cysique LA, Letendre SL, Ake C, Jin H, Franklin DR, Gupta S et al (2010) Incidence and nature of cognitive decline over 1 year among HIV-infected former plasma donors in China. AIDS 24:983–990

    PubMed  Google Scholar 

  • Cysique LA, Franklin D Jr, Abramson I, Ellis RJ, Letendre S, Collier A et al (2011a) Normative data and validation of a regression based summary score for assessing meaningful neuropsychological change. J Clin Exp Neuropsychol 7:1–18

    Google Scholar 

  • Cysique LA, Waters EK, Brew BJ (2011b) Central nervous system antiretroviral efficacy in HIV infection: a qualitative and quantitative review and implications for future research. BMC Neurol 11(148):148

    PubMed  PubMed Central  Google Scholar 

  • Cysique LA, Dermody N, Carr A, Brew BJ, Teesson M (2016) The role of depression chronicity and recurrence on neurocognitive dysfunctions in HIV-infected adults. J Neurovirol 22(1):56–65

    CAS  PubMed  Google Scholar 

  • Darby D, Maruff P, Collie A, McStephen M (2002) Mild cognitive impairment can be detected by multiple assessments in a single day. Neurology 59(7):1042–1046

    CAS  PubMed  Google Scholar 

  • Dikmen SS, Heaton RK, Grant I, Temkin NR (1999) Test-retest reliability and practice effects of expanded Halstead-Reitan neuropsychological test battery. J Int Neuropsychol Soc 5:346–356

    CAS  PubMed  Google Scholar 

  • Duff K (2012) Evidence-based indicators of neuropsychological change in the individual patient: relevant concepts and methods. Arch Clin Neuropsychol 27(3):248–261

    PubMed  PubMed Central  Google Scholar 

  • Duff K, Schoenberg MR, Patton D, Paulsen JS, Bayless JD, Mold J et al (2005) Regression-based formulas for predicting change in RBANS subtests with older adults. Arch Clin Neuropsychol 20:281–290

    PubMed  Google Scholar 

  • Duff K, Beglinger LJ, Moser DJ, Schultz SK, Paulsen JS (2010) Practice effects and outcome of cognitive training: preliminary evidence from a memory training course. Am J Geriatr Psychiatry 18(1):91

    PubMed  PubMed Central  Google Scholar 

  • Dufouil C, Richert L, Thiebaut R, Bruyand M, Amieva H, Dauchy FA et al (2015) Diabetes and cognitive decline in a French cohort of patients infected with HIV-1. Neurology 85(12):1065–1073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elicher IM, Byrd D, Clark US, Morgello S, Robinson-Papp J (2018) Motor function declines over time in human immunodeficiency virus and is associated with cerebrovascular disease, while HIV-associated neurocognitive disorder remains stable. J Neurovirol 24(4):514–522

    Google Scholar 

  • Falleti MG, Maruff P, Collie A, Darby DG (2006) Practice effects associated with the repeated assessment of cognitive function using the CogState battery at 10-minute, one week and one month test-retest intervals. J Clin Exp Neuropsychol 28(7):1095–1112

    PubMed  Google Scholar 

  • Gates TM, Cysique LA (2016) The chronicity of HIV infection should drive the research strategy of NeuroHIV treatment studies: a critical review. CNS Drugs 30:53–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaynes BN, O’Donnell J, Nelson E, Heine A, Zinski A, Edwards M et al (2015) Psychiatric comorbidity in depressed HIV-infected individuals: common and clinically consequential. Gen Hosp Psychiatry 37(4):277–282

    PubMed  PubMed Central  Google Scholar 

  • Gott C, Gates T, Dermody N, Brew BJ, Cysique LA (2017) Cognitive change trajectories in virally suppressed HIV-infected individuals indicate high prevalence of disease activity. PLoS One 12(3):e0171887

    PubMed  PubMed Central  Google Scholar 

  • Grund B, Wright EJ, Brew BJ, Price RW, Roediger MP, Bain MP et al (2013) Improved neurocognitive test performance in both arms of the SMART study: impact of practice effect. J Neurovirol 19(4):383–392

    PubMed  PubMed Central  Google Scholar 

  • Haynes BI, Pitkanen M, Kulasegaram R, Casey SJ, Schutte M, Towgood K et al (2018) HIV: ageing, cognition and neuroimaging at 4-year follow-up. HIV Med 19(6):376–385

    CAS  PubMed  Google Scholar 

  • Heaton RK, Temkin NR, Dikmen SS, Avitable N, Taylor MJ, Marcotte TD et al (2001) Detecting change: a comparison of three neuropsychological methods, using normal and clinical samples. Arch Clin Neuropsychol 16(1):75–91

    CAS  PubMed  Google Scholar 

  • Heaton RK, Franklin DR Jr, Deutsch R, Letendre S, Ellis RJ, Casaletto K et al (2015) Neurocognitive change in the era of HIV combination antiretroviral therapy: the longitudinal CHARTER study. Clin Infect Dis 60(3):473–480

    CAS  PubMed  Google Scholar 

  • Hedeker D, Gibbons RD (2006) Longitudinal data analysis. Wiley, Hoboken, p 337

    Google Scholar 

  • Henry D, Tolan P, Gorman-Smith D, Schoeny M (2017) Alternatives to randomized control trial designs for community-based prevention evaluation. Prev Sci 18(6):671–680

    PubMed  Google Scholar 

  • Hinton-Bayre AD (2016) Clarifying discrepancies in responsiveness between reliable change indices. Arch Clin Neuropsychol 31(7):754–768

    PubMed  Google Scholar 

  • Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Pérez JM, Evans AC, The Alzheimer’s Disease Neuroimaging Initiative (2016) Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun 7:11934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Kuhn T, Mahmood Z, Singer EJ, Hinkin CH, Thames AD (2018) Longitudinal intra-individual variability in neuropsychological performance relates to white matter changes in HIV. Neuropsychology 32(2):206–212

    PubMed  Google Scholar 

  • Kamminga J, Lal L, Wright EJ, Bloch M, Brew BJ, Cysique LA (2017) Monitoring HIV-associated neurocognitive disorder using screenings: a critical review including guidelines for clinical and research use. Curr HIV/AIDS Rep 14(3):83–92

    PubMed  Google Scholar 

  • Lazarus JV, Safreed-Harmon K, Barton SE, Costagliola D, Dedes N, Del Amo VJ et al (2016) Beyond viral suppression of HIV – the new quality of life frontier. BMC Med 14(1):94

    PubMed  PubMed Central  Google Scholar 

  • Linn Aung H, Kootar S, Gates TM, Brew BJ, Cysique LA et al (2019) Eur Geriatr Med 10(2):227–238

    Google Scholar 

  • Marquine MJ, Montoya JL, Umlauf A, Fazeli PL, Gouaux B, Heaton RK et al (2016) The Veterans Aging Cohort Study (VACS) index and neurocognitive change: a longitudinal study. Clin Infect Dis 63(5):694–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • McSweeny AJ, Naugle RI, Chelune GJ, Lüders H (1993) T scores for change: an illustration of a regression approach to depicting change in clinical neuropsychology. Clin Neuropsychol 7:300–312

    Google Scholar 

  • Molsberry SA, Lecci F, Kingsley L, Junker B, Reynolds S, Goodkin K et al (2015) Mixed membership trajectory models of cognitive impairment in the multicenter AIDS cohort study. AIDS 29(6):713–721

    PubMed  Google Scholar 

  • Paul R (2019) Neurocognitive phenotyping of HIV in the era of antiretroviral therapy. Curr HIV/AIDS Rep 16(3):230–235

    PubMed  PubMed Central  Google Scholar 

  • Petoumenos K, Choi JY, Hoy J, Kiertiburanakul S, Ng OT, Boyd M et al (2017) CD4:CD8 ratio comparison between cohorts of HIV-positive Asians and Caucasians upon commencement of antiretroviral therapy. Antivir Ther 22(8):659–668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfefferbaum A, Zahr NM, Sassoon SA, Kwon D, Pohl KM, Sullivan EV (2018) Accelerated and premature aging characterizing regional cortical volume loss in human immunodeficiency virus infection: contributions from alcohol, substance use, and hepatitis C coinfection. Biol Psychiatry Cogn Neurosci Neuroimaging 3(10):844–859

    PubMed  PubMed Central  Google Scholar 

  • Rabbitt P, Diggle P, Smith D, Holland F, McInnes L (2001) Identifying and separating the effects of practice and of cognitive ageing during a large longitudinal study of elderly community residents. Neuropsychologia 39(5):532–543

    CAS  PubMed  Google Scholar 

  • Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J et al (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 21(14):1915–1921

    PubMed  Google Scholar 

  • Robertson K, Jiang H, Kumwenda J, Supparatpinyo K, Evans S, Campbell TB et al (2012) Improved neuropsychological and neurological functioning across three antiretroviral regimens in diverse resource-limited settings: AIDS Clinical Trials Group study a5199, the International Neurological Study. Clin Infect Dis 55(6):868–876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rubin LH, Maki PM, Springer G, Benning L, Anastos K, Gustafson D et al (2017) Cognitive trajectories over 4 years among HIV-infected women with optimal viral suppression. Neurology 89(15):1594–1603

    PubMed  PubMed Central  Google Scholar 

  • Sacktor N (2018) Changing clinical phenotypes of HIV-associated neurocognitive disorders. J Neurovirol 24(2):141–145

    CAS  PubMed  Google Scholar 

  • Sacktor N, Skolasky RL, Seaberg E, Munro C, Becker JT, Martin E et al (2016) Prevalence of HIV-associated neurocognitive disorders in the Multicenter AIDS Cohort Study. Neurology 86(4):334–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saloner R, Cysique LA (2017) HIV-associated neurocognitive disorders: a global perspective. J Int Neuropsychol Soc 23(9–10):860–869

    PubMed  PubMed Central  Google Scholar 

  • Salthouse TA (2010) Influence of age on practice effects in longitudinal neurocognitive change. Neuropsychology 24(5):563–572

    PubMed  PubMed Central  Google Scholar 

  • Salthouse TA, Tucker-Drob EM (2008) Implications of short-term retest effects for the interpretation of longitudinal change. Neuropsychology 22:800–811

    PubMed  PubMed Central  Google Scholar 

  • Samboju V, Philippi CL, Chan P, Cobigo Y, Fletcher JLK, Robb M et al (2018) Structural and functional brain imaging in acute HIV. Neuroimage Clin 20:327–335

    PubMed  PubMed Central  Google Scholar 

  • Sawrie SM, Chelune GJ, Naugle RI, Lüders H (1996) Empirical methods for assessing meaningful neuropsychological change following epilepsy surgery. J Int Neuropsychol Soc 2:556–564

    CAS  PubMed  Google Scholar 

  • Seider TR, Luo X, Gongvatana A, Devlin KN, de la Monte SM, Chasman JD et al (2014) Verbal memory declines more rapidly with age in HIV infected versus uninfected adults. J Clin Exp Neuropsychol 36(4):356–367

    PubMed  PubMed Central  Google Scholar 

  • Sheppard DP, Woods SP, Bondi MW, Gilbert PE, Massman PJ, Doyle KL (2015) Does older age confer an increased risk of incident neurocognitive disorders among persons living with HIV disease? Clin Neuropsychol 29(5):656–677

    PubMed  PubMed Central  Google Scholar 

  • Smail RC, Brew BJ (2018) HIV-associated neurocognitive disorder. Handb Clin Neurol 152:75–97

    PubMed  Google Scholar 

  • Suchy Y, Kraybill ML, Franchow E (2011) Practice effect and beyond: reaction to novelty as an independent predictor of cognitive decline among older adults. J Int Neuropsychol Soc 17(1):101–111

    PubMed  Google Scholar 

  • Temkin N, Heaton R, Grant I, Dikmen S (1999) Detecting significant change in neuropsychological test performance: a comparison of four models. J Int Neuropsychol Soc 5(4):357–369

    CAS  PubMed  Google Scholar 

  • Thurn M, Gustafson DR (2017) Faces of frailty in aging with HIV infection. Curr HIV/AIDS Rep 14(1):31–37

    PubMed  PubMed Central  Google Scholar 

  • Tierney SM, Sheppard DP, Kordovski VM, Faytell MP, Avci G, Woods SP (2017) A comparison of the sensitivity, stability, and reliability of three diagnostic schemes for HIV-associated neurocognitive disorders. J Neurovirol 23(3):404–421

    PubMed  PubMed Central  Google Scholar 

  • UNAIDS (2018) Miles to go: closing gaps breaking barriers righting injustices. http://www.unaids.org/sites/default/files/media_asset/miles-to-go_en.pdf

  • Van der Elst W, Molenberghs G, Van Boxtel MP, Jolles J (2013) Establishing normative data for repeated cognitive assessment: a comparison of different statistical methods. Behav Res Methods 45(4):1073–1086

    PubMed  Google Scholar 

  • Vassallo M, Fabre R, Durant J, Lebrun-Frenay C, Joly H, Ticchioni M et al (2017) A decreasing CD4/CD8 ratio over time and lower CSF-penetrating antiretroviral regimens are associated with a higher risk of neurocognitive deterioration, independently of viral replication. J Neurovirol 23(2):216–225

    CAS  PubMed  Google Scholar 

  • Watzke S, Brieger P, Kuss O, Schoettke H, Wiedl KH (2008) A longitudinal study of learning potential and rehabilitation outcome in schizophrenia. Psychiatr Serv 59(3):248–255

    PubMed  Google Scholar 

  • Wechsler D (2009) Advanced clinical solutions for WAIS-IV and WMS-IV. Pearson, San Antonio

    Google Scholar 

  • Wilson RS, Capuano AW, Yu L, Yang J, Kim N, Leurgans SE et al (2018) Neurodegenerative disease and cognitive retest learning. Neurobiol Aging 66:122–130

    PubMed  PubMed Central  Google Scholar 

  • Wright EJ, Grund B, Cysique LA, Robertson KR, Brew BJ, Collins G et al (2015) Factors associated with neurocognitive test performance at baseline: a substudy of the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial. HIV Med 16(Suppl 1):97–108

    CAS  PubMed  Google Scholar 

  • Wright EJ, Grund B, Robertson KR, Cysique L, Brew BJ, Collins GL et al (2018) No neurocognitive advantage for immediate antiretroviral treatment in adults with greater than 500 CD4+ T-cell counts. AIDS 32(8):985–997

    CAS  PubMed  Google Scholar 

  • Xie H, Mayo N, Koski L (2011) Identifying and characterizing trajectories of cognitive change in older persons with mild cognitive impairment. Dement Geriatr Cogn Disord 31(2):165–172

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucette A. Cysique .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cysique, L.A., Casaletto, K.B., Heaton, R.K. (2019). Reliably Measuring Cognitive Change in the Era of Chronic HIV Infection and Chronic HIV-Associated Neurocognitive Disorders. In: Cysique, L.A., Rourke, S.B. (eds) Neurocognitive Complications of HIV-Infection. Current Topics in Behavioral Neurosciences, vol 50. Springer, Cham. https://doi.org/10.1007/7854_2019_116

Download citation

Publish with us

Policies and ethics