Skip to main content

Oxytocin Signaling in Pain: Cellular, Circuit, System, and Behavioral Levels

  • Chapter
  • First Online:
Behavioral Pharmacology of Neuropeptides: Oxytocin

Abstract

Originally confined to the initiation of parturition and milk ejection after birth, the hypothalamic nonapeptide oxytocin (OT) is now recognized as a critical determinant of social behavior and emotional processing. It accounts for the modulation of sensory processing and pain perception as OT displays a potent analgesic effect mediated by OT receptors (OTRs) expressed in the peripheral and central nervous systems. In our chapter, we will first systemically analyze known efferent and afferent OT neuron projections, which form the anatomical basis for OT modulation of somatosensory and pain processing. Next, we will focus on the synergy of distinct types of OT neurons (e.g., magno- and parvocellular OT neurons) which efficiently control acute inflammatory pain perception. Finally, we will describe how OT signaling mechanisms in the spinal cord control nociception, as well as how OT is able to modulate emotional pain processing within the central amygdala. In the conclusions at the end of the chapter, we will formulate perspectives in the study of OT effects on pain anticipation and pain memory, as well as propose some reasons for the application of exogenous OT for the treatment of certain types of pain in human patients.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/7854_2018_38.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acher R, Fromageot C (1955) Chemistry of posterior-pituitary hormones. Ergeb Physiol 48:286–327

    Google Scholar 

  • Affleck VS, Coote JH, Pyner S (2012) The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus. Neuroscience 219:48–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agren G, Lundeberg T, Uvnas-Moberg K, Sato A (1995) The oxytocin antagonist 1-deamino-2-D-Tyr-(Oet)-4-Thr-8-Orn-oxytocin reverses the increase in the withdrawal response latency to thermal, but not mechanical nociceptive stimuli following oxytocin administration or massage-like stroking in rats. Neurosci Lett 187(1):49–52

    Article  CAS  PubMed  Google Scholar 

  • Arletti R, Benelli A, Bertolini A (1993) Influence of oxytocin on nociception and morphine antinociception. Neuropeptides 24(3):125–129

    Article  CAS  PubMed  Google Scholar 

  • Armstrong WE (1995) Morphological and electrophysiological classification of hypothalamic supraoptic neurons. Prog Neurobiol 47(4–5):291–339

    Article  CAS  PubMed  Google Scholar 

  • Asmundson GJ, Katz J (2009) Understanding the co-occurrence of anxiety disorders and chronic pain: state-of-the-art. Depress Anxiety 26(10):888–901

    Article  PubMed  Google Scholar 

  • Blume A, Bosch OJ, Miklos S, Torner L, Wales L, Waldherr M, Neumann ID (2008) Oxytocin reduces anxiety via ERK1/2 activation: local effect within the rat hypothalamic paraventricular nucleus. Eur J Neurosci 27(8):1947–1956

    Article  PubMed  Google Scholar 

  • Bos PA, Montoya ER, Hermans EJ, Keysers C, van Honk J (2015) Oxytocin reduces neural activity in the pain circuitry when seeing pain in others. NeuroImage 113:217–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch OJ, Young LJ (2017) Oxytocin and social relationships: from attachment to bond disruption. Curr Top Behav Neurosci. https://doi.org/10.1007/7854_2017_10

  • Breton JD, Veinante P, Uhl-Bronner S, Vergnano AM, Freund-Mercier MJ, Schlichter R, Poisbeau P (2008) Oxytocin-induced antinociception in the spinal cord is mediated by a subpopulation of glutamatergic neurons in lamina I-II which amplify GABAergic inhibition. Mol Pain 4:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breton JD, Poisbeau P, Darbon P (2009) Antinociceptive action of oxytocin involves inhibition of potassium channel currents in lamina II neurons of the rat spinal cord. Mol Pain 5:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burbach JP, Luckman SM, Murphy D, Gainer H (2001) Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 81(3):1197–1267

    Article  CAS  PubMed  Google Scholar 

  • Busnelli M, Chini B (2017) Molecular basis of oxytocin receptor signalling in the brain: what we know and what we need to know. Curr Top Behav Neurosci. https://doi.org/10.1007/7854_2017_6

  • Busnelli M, Sauliere A, Manning M, Bouvier M, Gales C, Chini B (2012) Functional selective oxytocin-derived agonists discriminate between individual G protein family subtypes. J Biol Chem 287(6):3617–3629

    Article  CAS  PubMed  Google Scholar 

  • Ceccatelli S, Villar MJ, Goldstein M, Hokfelt T (1989) Expression of c-Fos immunoreactivity in transmitter-characterized neurons after stress. Proc Natl Acad Sci U S A 86(23):9569–9573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condes-Lara M, Maie IA, Dickenson AH (2005) Oxytocin actions on afferent evoked spinal cord neuronal activities in neuropathic but not in normal rats. Brain Res 1045(1–2):124–133

    Article  CAS  PubMed  Google Scholar 

  • Condes-Lara M, Rojas-Piloni G, Martinez-Lorenzana G, Rodriguez-Jimenez J, Lopez Hidalgo M, Freund-Mercier MJ (2006) Paraventricular hypothalamic influences on spinal nociceptive processing. Brain Res 1081(1):126–137

    Article  CAS  PubMed  Google Scholar 

  • Condes-Lara M, Rojas-Piloni G, Martinez-Lorenzana G, Rodriguez-Jimenez J (2009) Paraventricular hypothalamic oxytocinergic cells responding to noxious stimulation and projecting to the spinal dorsal horn represent a homeostatic analgesic mechanism. Eur J Neurosci 30(6):1056–1063

    Article  PubMed  Google Scholar 

  • Condes-Lara M, Martinez-Lorenzana G, Rubio-Beltran E, Rodriguez-Jimenez J, Rojas-Piloni G, Gonzalez-Hernandez A (2015) Hypothalamic paraventricular nucleus stimulation enhances c-Fos expression in spinal and supraspinal structures related to pain modulation. Neurosci Res 98:59–63

    Article  CAS  PubMed  Google Scholar 

  • Condes-Lara M, Zayas-Gonzalez H, Manzano-Garcia A, Cordova-Quiroz E, Granados-Mortera J, Garcia-Cuevas M, Morales-Gomez J, Gonzalez-Hernandez A (2016) Successful pain management with epidural oxytocin. CNS Neurosci Ther 22(6):532–534

    Article  PubMed  Google Scholar 

  • Cragg B, Ji G, Neugebauer V (2016) Differential contributions of vasopressin V1A and oxytocin receptors in the amygdala to pain-related behaviors in rats. Mol Pain 12

    Google Scholar 

  • DeLaTorre S, Rojas-Piloni G, Martinez-Lorenzana G, Rodriguez-Jimenez J, Villanueva L, Condes-Lara M (2009) Paraventricular oxytocinergic hypothalamic prevention or interruption of long-term potentiation in dorsal horn nociceptive neurons: electrophysiological and behavioral evidence. Pain 144(3):320–328

    Article  PubMed  Google Scholar 

  • du Vigneaud V (1954–1955) Hormones of the posterior pituitary gland: oxytocin and vasopressin. Harvey Lect 50:1–26

    Google Scholar 

  • Eliava M, Melchior M, Knobloch-Bollmann HS, Wahis J, da Silva Gouveia M, Tang Y, Ciobanu AC, Triana del Rio R, Roth LC, Althammer F, Chavant V, Goumon Y, Gruber T, Petit-Demouliere N, Busnelli M, Chini B, Tan LL, Mitre M, Froemke RC, Chao MV, Giese G, Sprengel R, Kuner R, Poisbeau P, Seeburg PH, Stoop R, Charlet A, Grinevich V (2016) A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron 89(6):1291–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engle MP, Ness TJ, Robbins MT (2012) Intrathecal oxytocin inhibits visceromotor reflex and spinal neuronal responses to noxious distention of the rat urinary bladder. Reg Anesth Pain Med 37(5):515–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauriau C, Bernard JF (2004) A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J Comp Neurol 468(1):24–56

    Article  PubMed  Google Scholar 

  • Ge Y, Lundeberg T, Yu LC (2002) Blockade effect of mu and kappa opioid antagonists on the anti-nociception induced by intra-periaqueductal grey injection of oxytocin in rats. Brain Res 15;927(2):204–207

    Article  CAS  PubMed  Google Scholar 

  • Geerling JC, Shin JW, Chimenti PC, Loewy AD (2010) Paraventricular hypothalamic nucleus: axonal projections to the brainstem. J Comp Neurol 518(9):1460–1499

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerendai I, Toth IE, Kocsis K, Boldogkoi Z, Medveczky I, Halasz B (2001) Transneuronal labelling of nerve cells in the CNS of female rat from the mammary gland by viral tracing technique. Neuroscience 108(1):103–118

    Article  CAS  PubMed  Google Scholar 

  • Gravati M, Busnelli M, Bulgheroni E, Reversi A, Spaiardi P, Parenti M, Toselli M, Chini B (2010) Dual modulation of inward rectifier potassium currents in olfactory neuronal cells by promiscuous G protein coupling of the oxytocin receptor. J Neurochem 114(5):1424–1435

    PubMed  CAS  Google Scholar 

  • Gu XL, Yu LC (2007) Involvement of opioid receptors in oxytocin-induced antinociception in the nucleus accumbens of rats. J Pain 8(1):85–90

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Yu LC (2009) Involvement of oxytocin and its receptor in nociceptive modulation in the central nucleus of amygdala of rats. Neurosci Lett 454(1):101–104

    Article  CAS  PubMed  Google Scholar 

  • Heinricher MM, Tavares I, Leith JL, Lumb BM (2009) Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev 60(1):214–225

    Article  CAS  PubMed  Google Scholar 

  • Heinrichs M, Baumgartner T, Kirschbaum C, Ehlert U (2003) Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol Psychiatry 54(12):1389–1398

    Article  CAS  PubMed  Google Scholar 

  • Insel TR, Shapiro LE (1992) Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc Natl Acad Sci U S A 89(13):5981–5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo YH, Stoeckel ME, Freund-Mercier MJ, Schlichter R (1998) Oxytocin modulates glutamatergic synaptic transmission between cultured neonatal spinal cord dorsal horn neurons. J Neurosci 18(7):2377–2386

    Article  CAS  PubMed  Google Scholar 

  • Juif PE, Poisbeau P (2013) Neurohormonal effects of oxytocin and vasopressin receptor agonists on spinal pain processing in male rats. Pain 154(8):1449–1456

    Article  CAS  PubMed  Google Scholar 

  • Juif PE, Breton JD, Rajalu M, Charlet A, Goumon Y, Poisbeau P (2013) Long-lasting spinal oxytocin analgesia is ensured by the stimulation of allopregnanolone synthesis which potentiates GABA(A) receptor-mediated synaptic inhibition. J Neurosci 33(42):16617–16626

    Article  CAS  PubMed  Google Scholar 

  • Jurek B, Slattery DA, Maloumby R, Hillerer K, Koszinowski S, Neumann ID, van den Burg EH (2012) Differential contribution of hypothalamic MAPK activity to anxiety-like behaviour in virgin and lactating rats. PLoS One 7(5):e37060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura T, Tanizawa O, Mori K, Brownstein MJ, Okayama H (1992) Structure and expression of a human oxytocin receptor. Nature 356(6369):526–529

    Article  CAS  Google Scholar 

  • Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhanti S, Gruppe H, Mattay VS, Gallhofer B, Meyer-Lindenberg A (2005) Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 25(49):11489–11493

    Article  CAS  PubMed  Google Scholar 

  • Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, Osten P, Schwarz MK, Seeburg PH, Stoop R, Grinevich V (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73(3):553–566

    Article  CAS  PubMed  Google Scholar 

  • Koves K, Gyorgyi Z, Szabo FK, Boldogkoi Z (2012) Characterization of the autonomic innervation of mammary gland in lactating rats studied by retrograde transynaptic virus labeling and immunohistochemistry. Acta Physiol Hung 99(2):148–158

    Article  PubMed  Google Scholar 

  • Lee HJ, Macbeth AH, Pagani JH, Young WS 3rd (2009) Oxytocin: the great facilitator of life. Prog Neurobiol 88(2):127–151

    PubMed  PubMed Central  CAS  Google Scholar 

  • Leng G, Pineda R, Sabatier N, Ludwig M (2015) 60 years of neuroendocrinology: the posterior pituitary, from Geoffrey Harris to our present understanding. J Endocrinol 226(2):T173–T185

    Article  CAS  PubMed  Google Scholar 

  • Lund I, Ge Y, Yu LC, Uvnas-Moberg K, Wang J, Yu C, Kurosawa M, Agren G, Rosen A, Lekman M, Lundeberg T (2002) Repeated massage-like stimulation induces long-term effects on nociception: contribution of oxytocinergic mechanisms. Eur J Neurosci 16(2):330–338

    Article  PubMed  Google Scholar 

  • Lundeberg T, Uvnas-Moberg K, Agren G, Bruzelius G (1994) Anti-nociceptive effects of oxytocin in rats and mice. Neurosci Lett 170(1):153–157

    Article  CAS  PubMed  Google Scholar 

  • Luther JA, Daftary SS, Boudaba C, Gould GC, Halmos KC, Tasker JG (2002) Neurosecretory and non-neurosecretory parvocellular neurones of the hypothalamic paraventricular nucleus express distinct electrophysiological properties. J Neuroendocrinol 14(12):929–932

    Article  CAS  PubMed  Google Scholar 

  • Mameli S, Pisanu GM, Sardo S, Marchi A, Pili A, Carboni M, Minerba L, Trincas G, Carta MG, Melis MR, Agabio R (2014) Oxytocin nasal spray in fibromyalgic patients. Rheumatol Int 34(8):1047–1052

    Article  CAS  PubMed  Google Scholar 

  • Miranda-Cardenas Y, Rojas-Piloni G, Martinez-Lorenzana G, Rodriguez-Jimenez J, Lopez-Hidalgo M, Freund-Mercier MJ, Condes-Lara M (2006) Oxytocin and electrical stimulation of the paraventricular hypothalamic nucleus produce antinociceptive effects that are reversed by an oxytocin antagonist. Pain 122(1–2):182–189

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Lopez Y, Martinez-Lorenzana G, Condes-Lara M, Rojas-Piloni G (2013) Identification of oxytocin receptor in the dorsal horn and nociceptive dorsal root ganglion neurons. Neuropeptides 47(2):117–123

    Article  CAS  PubMed  Google Scholar 

  • Morton A (1969) A quantitative analysis of the normal neuron population of the hypothalamic magnocellular nuclei in man and of their projections to the neurohypophysis. J Comp Neurol 136(2):143–157

    Article  CAS  PubMed  Google Scholar 

  • Neugebauer V, Galhardo V, Maione S, Mackey SC (2009) Forebrain pain mechanisms. Brain Res Rev 60(1):226–242

    Article  PubMed  Google Scholar 

  • Oettl LL, Ravi N, Schneider M, Scheller MF, Schneider P, Mitre M, da Silva Gouveia M, Froemke RC, Chao MV, Young WS, Meyer-Lindenberg A, Grinevich V, Shusterman R, Kelsch W (2016) Oxytocin enhances social recognition by modulating cortical control of early olfactory processing. Neuron 90(3):609–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersson M, Alster P, Lundeberg T, Uvnas-Moberg K (1996) Oxytocin increases nociceptive thresholds in a long-term perspective in female and male rats. Neurosci Lett 212(2):87–90

    Article  CAS  PubMed  Google Scholar 

  • Petersson M, Wiberg U, Lundeberg T, Uvnas-Moberg K (2001) Oxytocin decreases carrageenan induced inflammation in rats. Peptides 22(9):1479–1484

    Article  CAS  PubMed  Google Scholar 

  • Poisbeau P (2016) Spinal cord mechanisms in acute and chronic pain states. In: Sommer CL, Wallace MS, Cohen SP, Kress M (eds) Pain 2016 refresher course. IASP Press, Washington, pp 27–34

    Google Scholar 

  • Reiter MK, Kremarik P, Freund-Mercier MJ, Stoeckel ME, Desaulles E, Feltz P (1994) Localization of oxytocin binding sites in the thoracic and upper lumbar spinal cord of the adult and postnatal rat: a histoautoradiographic study. Eur J Neurosci 6(1):98–104

    Article  CAS  PubMed  Google Scholar 

  • Rhodes CH, Morrell JI, Pfaff DW (1981) Immunohistochemical analysis of magnocellular elements in rat hypothalamus: distribution and numbers of cells containing neurophysin, oxytocin, and vasopressin. J Comp Neurol 198(1):45–64

    Article  CAS  PubMed  Google Scholar 

  • Robinson DA, Wei F, Wang GD, Li P, Kim SJ, Vogt SK, Muglia LJ, Zhuo M (2002) Oxytocin mediates stress-induced analgesia in adult mice. J Physiol 540(Pt 2):593–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas-Piloni G, Mejia-Rodriguez R, Martinez-Lorenzana G, Condes-Lara M (2010) Oxytocin, but not vassopressin, modulates nociceptive responses in dorsal horn neurons. Neurosci Lett 476(1):32–35

    Article  CAS  PubMed  Google Scholar 

  • Rousselot P, Papadopoulos G, Merighi A, Poulain DA, Theodosis DT (1990) Oxytocinergic innervation of the rat spinal cord. An electron microscopic study. Brain Res 529(1–2):178–184

    Article  CAS  PubMed  Google Scholar 

  • Sah P, Faber ES, Lopez De Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83(3):803–834

    Article  CAS  PubMed  Google Scholar 

  • Sawchenko PE, Swanson LW (1982) Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 205(3):260–272

    Article  CAS  PubMed  Google Scholar 

  • Stoop R (2012) Neuromodulation by oxytocin and vasopressin. Neuron 76(1):142–159

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6:269–324

    Article  CAS  PubMed  Google Scholar 

  • Tracy LM, Georgiou-Karistianis N, Gibson SJ, Giummarra MJ (2015) Oxytocin and the modulation of pain experience: implications for chronic pain management. Neurosci Biobehav Rev 55:53–67

    Article  CAS  PubMed  Google Scholar 

  • Tzabazis A, Mechanic J, Miller J, Klukinov M, Pascual C, Manering N, Carson DS, Jacobs A, Qiao Y, Cuellar J, Frey WH 2nd, Jacobs D, Angst M, Yeomans DC (2016) Oxytocin receptor: expression in the trigeminal nociceptive system and potential role in the treatment of headache disorders. Cephalalgia 36(10):943–950

    Article  PubMed  Google Scholar 

  • Uhl-Bronner S, Waltisperger E, Martinez-Lorenzana G, Condes Lara M, Freund-Mercier MJ (2005) Sexually dimorphic expression of oxytocin binding sites in forebrain and spinal cord of the rat. Neuroscience 135(1):147–154

    Article  CAS  PubMed  Google Scholar 

  • van den Burg EH, Stindl J, Grund T, Neumann ID, Strauss O (2015) Oxytocin stimulates extracellular Ca2+ influx through TRPV2 channels in hypothalamic neurons to exert its anxiolytic effects. Neuropsychopharmacology 40(13):2938–2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veronneau-Longueville F, Rampin O, Freund-Mercier MJ, Tang Y, Calas A, Marson L, McKenna KE, Stoeckel ME, Benoit G, Giuliano F (1999) Oxytocinergic innervation of autonomic nuclei controlling penile erection in the rat. Neuroscience 93(4):1437–1447

    Article  CAS  PubMed  Google Scholar 

  • Viviani D, Charlet A, van den Burg E, Robinet C, Hurni N, Abatis M, Magara F, Stoop R (2011) Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science 333(6038):104–107

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Lundeberg T, Yu LC (2003) Antinociceptive role of oxytocin in the nucleus raphe magnus of rats, an involvement of mu-opioid receptor. Regul Pept 115(3):153–159

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Martinez V, Larauche M, Tache Y (2009) Proximal colon distension induces Fos expression in oxytocin-, vasopressin-, CRF- and catecholamines-containing neurons in rat brain. Brain Res 1247:79–91

    Article  CAS  PubMed  Google Scholar 

  • Wierda M, Goudsmit E, Van der Woude PF, Purba JS, Hofman MA, Bogte H, Swaab DF (1991) Oxytocin cell number in the human paraventricular nucleus remains constant with aging and in Alzheimer’s disease. Neurobiol Aging 12(5):511–516

    Article  CAS  PubMed  Google Scholar 

  • Williams AC, Craig KD (2016) Updating the definition of pain. Pain 157(11):2420–2423

    Article  PubMed  Google Scholar 

  • Yang J (1994) Intrathecal administration of oxytocin induces analgesia in low back pain involving the endogenous opiate peptide system. Spine (Phila Pa 1976) 19(8):867–871

    Article  CAS  Google Scholar 

  • Yang J, Yang Y, Chen JM, Liu WY, Wang CH, Lin BC (2007) Central oxytocin enhances antinociception in the rat. Peptides 28(5):1113–1119

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Li P, Liang JY, Pan YJ, Yan XQ, Yan FL, Hao F, Zhang XY, Zhang J, Qiu PY, Wang DX (2011a) Oxytocin in the periaqueductal grey regulates nociception in the rat. Regul Pept 169(1–3):39–42

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Liang JY, Li P, Pan YJ, Qiu PY, Zhang J, Hao F, Wang DX (2011b) Oxytocin in the periaqueductal gray participates in pain modulation in the rat by influencing endogenous opiate peptides. Peptides 32(6):1255–1261

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Takayanagi Y, Inoue K, Kimura T, Young LJ, Onaka T, Nishimori K (2009) Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci 29(7):2259–2271

    Article  CAS  PubMed  Google Scholar 

  • Yu SQ, Lundeberg T, Yu LC (2003) Involvement of oxytocin in spinal antinociception in rats with inflammation. Brain Res 983(1–2):13–22

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Charlet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Poisbeau, P., Grinevich, V., Charlet, A. (2017). Oxytocin Signaling in Pain: Cellular, Circuit, System, and Behavioral Levels. In: Hurlemann, R., Grinevich, V. (eds) Behavioral Pharmacology of Neuropeptides: Oxytocin. Current Topics in Behavioral Neurosciences, vol 35. Springer, Cham. https://doi.org/10.1007/7854_2017_14

Download citation

Publish with us

Policies and ethics