Skip to main content

Animal Models of Diabetes-Induced Neuropathic Pain

  • Chapter
  • First Online:
Behavioral Neurobiology of Chronic Pain

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 20))

Abstract

Neuropathy will afflict over half of the approximately 350 million people worldwide who currently suffer from diabetes and around one-third of diabetic patients with neuropathy will suffer from painful symptoms that may be spontaneous or stimulus evoked. Diabetes can be induced in rats or mice by genetic, dietary, or chemical means, and there are a variety of well-characterized models of diabetic neuropathy that replicate either type 1 or type 2 diabetes. Diabetic rodents display aspects of sensorimotor dysfunction such as stimulus-evoked allodynia and hyperalgesia that are widely used to model painful neuropathy. This allows investigation of pathogenic mechanisms and development of potential therapeutic interventions that may alleviate established pain or prevent onset of pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Danaei G et al (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378(9785):31–40

    CAS  PubMed  Google Scholar 

  • Nokoff NJ, Rewers M, Cree Green M (2012) The interplay of autoimmunity and insulin resistance in type 1 diabetes. Discov Med 13(69):115–122

    PubMed  Google Scholar 

  • Prentki M, Nolan CJ (2006) Islet beta cell failure in type 2 diabetes. J Clin Invest 116(7):1802–1812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramlo-Halsted BA, Edelman SV (1999) The natural history of type 2 diabetes. implications for clinical practice. Prim Care 26(4):771–789

    CAS  PubMed  Google Scholar 

  • Cheng D (2005) Prevalence, predisposition and prevention of type II diabetes. Nutr Metab (Lond) 2:29

    Google Scholar 

  • Ramarao P, Kaul CL (1999) Insulin resistance: current therapeutic approaches. Drugs Today (Barc) 35(12):895–911

    CAS  Google Scholar 

  • Biessels GJ, Deary IJ, Ryan CM (2008) Cognition and diabetes: a lifespan perspective. Lancet Neurol 7(2):184–190

    PubMed  Google Scholar 

  • Thomas PK (1999) Diabetic peripheral neuropathies: their cost to patient and society and the value of knowledge of risk factors for development of interventions. Eur Neurol 41(Suppl 1):35–43

    PubMed  Google Scholar 

  • Boulton AJ et al (2005) Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care 28(4):956–962

    PubMed  Google Scholar 

  • Boulton AJ (2012) Diabetic neuropathy: is pain God’s greatest gift to mankind? Semin Vasc Surg 25(2):61–65

    PubMed  Google Scholar 

  • Andersen H (2012) Motor dysfunction in diabetes. Diabetes Metab Res Rev 28(Suppl 1):89–92

    PubMed  Google Scholar 

  • Boulton AJ et al (2004) Diabetic somatic neuropathies. Diabetes Care 27(6):1458–1486

    PubMed  Google Scholar 

  • Boulton AJ et al (1982) Continuous subcutaneous insulin infusion in the management of painful diabetic neuropathy. Diabetes Care 5(4):386–390

    CAS  PubMed  Google Scholar 

  • Gibbons CH, Freeman R (2010) Treatment-induced diabetic neuropathy: a reversible painful autonomic neuropathy. Ann Neurol 67(4):534–541

    PubMed Central  PubMed  Google Scholar 

  • Tavakoli M et al (2010) Corneal confocal microscopy: a novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care 33(8):1792–1797

    PubMed Central  PubMed  Google Scholar 

  • Behse F, Buchthal F, Carlsen F (1977) Nerve biopsy and conduction studies in diabetic neuropathy. J Neurol Neurosurg Psychiatry 40(11):1072–1082

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown MJ, Martin JR, Asbury AK (1976) Painful diabetic neuropathy. a morphometric study. Arch Neurol 33(3):164–171

    CAS  PubMed  Google Scholar 

  • Archer AG et al (1983) The natural history of acute painful neuropathy in diabetes mellitus. J Neurol Neurosurg Psychiatry 46(6):491–499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kalichman MW, Powell HC, Mizisin AP (1998) Reactive, degenerative, and proliferative Schwann cell responses in experimental galactose and human diabetic neuropathy. Acta Neuropathol 95(1):47–56

    CAS  PubMed  Google Scholar 

  • Kennedy WR, Wendelschafer-Crabb G, Johnson T (1996) Quantitation of epidermal nerves in diabetic neuropathy. Neurology 47(4):1042–1048

    CAS  PubMed  Google Scholar 

  • Quattrini C et al (2007) Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes 56(8):2148–2154

    CAS  PubMed  Google Scholar 

  • Harris M, Eastman R, Cowie C (1993) Symptoms of sensory neuropathy in adults with NIDDM in the U.S. population. Diabetes Care 16(11):1446–1452

    CAS  PubMed  Google Scholar 

  • Partanen J et al (1995) Natural history of peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus. N Engl J Med 333(2):89–94

    CAS  PubMed  Google Scholar 

  • Boulton AJ et al (1985) The prevalence of symptomatic, diabetic neuropathy in an insulin-treated population. Diabetes Care 8(2):125–128

    CAS  PubMed  Google Scholar 

  • Sorensen L, Molyneaux L, Yue DK (2002) Insensate versus painful diabetic neuropathy: the effects of height, gender, ethnicity and glycaemic control. Diabetes Res Clin Pract 57(1):45–51

    CAS  PubMed  Google Scholar 

  • Abbott CA et al (2011) Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 34(10):2220–2224

    PubMed Central  PubMed  Google Scholar 

  • Daousi C et al (2004) Chronic painful peripheral neuropathy in an urban community: a controlled comparison of people with and without diabetes. Diabet Med 21(9):976–982

    CAS  PubMed  Google Scholar 

  • Lustman PJ et al (2000) Depression and poor glycemic control: a meta-analytic review of the literature. Diabetes Care 23(7):934–942

    CAS  PubMed  Google Scholar 

  • Grandner MA et al (2012) Sleep disturbance is associated with cardiovascular and metabolic disorders. J Sleep Res 21(4):427–433

    PubMed Central  PubMed  Google Scholar 

  • Tesfaye S et al (1996) Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: the EURODIAB IDDM complications study. Diabetologia 39(11):1377–1384

    CAS  PubMed  Google Scholar 

  • Group D.C.a.C.T.R (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 329(14):977–986

    Google Scholar 

  • Group D.C.a.C.T.R (1995) The effect of intensive diabetes therapy on the development and progression of neuropathy. The Diabetes Control and Complications Trial Research Group. Ann Intern Med 122(8):561–568

    Google Scholar 

  • Tesfaye S et al (2005) Vascular risk factors and diabetic neuropathy. N Engl J Med 352(4):341–350

    CAS  PubMed  Google Scholar 

  • Reese NB et al (2006) Restoration of frequency-dependent depression of the H-reflex by passive exercise in spinal rats. Spinal Cord 44(1):28–34

    CAS  PubMed  Google Scholar 

  • Wiggin TD et al (2009) Elevated triglycerides correlate with progression of diabetic neuropathy. Diabetes 58(7):1634–1640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomlinson DR, Gardiner NJ (2008) Glucose neurotoxicity. Nat Rev Neurosci 9(1):36–45

    CAS  PubMed  Google Scholar 

  • Calcutt NA et al (2009) Therapies for hyperglycaemia-induced diabetic complications: from animal models to clinical trials. Nat Rev Drug Discov 8(5):417–429

    CAS  PubMed  Google Scholar 

  • Hotta N et al (2012) Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on progression of diabetic neuropathy and other microvascular complications: multivariate epidemiological analysis based on patient background factors and severity of diabetic neuropathy. Diabet Med 29(12):1529–1533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ziegler D (2011) Current concepts in the management of diabetic polyneuropathy. Curr Diabetes Rev 7(3):208–220

    PubMed  Google Scholar 

  • Dyck PJ, Lambert EH, O’Brien PC (1976) Pain in peripheral neuropathy related to rate and kind of fiber degeneration. Neurology 26(5):466–471

    CAS  PubMed  Google Scholar 

  • Asbury AK, Fields HL (1984) Pain due to peripheral nerve damage: an hypothesis. Neurology 34(12):1587–1590

    CAS  PubMed  Google Scholar 

  • Britland ST et al (1990) Association of painful and painless diabetic polyneuropathy with different patterns of nerve fiber degeneration and regeneration. Diabetes 39(8):898–908

    CAS  PubMed  Google Scholar 

  • Llewelyn JG et al (1991) Sural nerve morphometry in diabetic autonomic and painful sensory neuropathy. a clinicopathological study. Brain 114(Pt 2):867–892

    PubMed  Google Scholar 

  • McCrimmon RJ, Ryan CM, Frier BM (2012) Diabetes and cognitive dysfunction. Lancet 379(9833):2291–2299

    PubMed  Google Scholar 

  • Selvarajah D et al (2011a) Microvascular perfusion abnormalities of the thalamus in painful but not painless diabetic polyneuropathy: a clue to the pathogenesis of pain in type 1 diabetes. Diabetes Care 34(3):718–720

    PubMed Central  PubMed  Google Scholar 

  • Selvarajah D et al (2008) Thalamic neuronal dysfunction and chronic sensorimotor distal symmetrical polyneuropathy in patients with type 1 diabetes mellitus. Diabetologia 51(11):2088–2092

    CAS  PubMed  Google Scholar 

  • Sorensen L et al (2008) Differences in metabolites in pain-processing brain regions in patients with diabetes and painful neuropathy. Diabetes Care 31(5):980–981

    PubMed  Google Scholar 

  • Selvarajah D et al (2011b) Central nervous system involvement in diabetic neuropathy. Curr Diab Rep 11(4):310–322

    PubMed  Google Scholar 

  • Selvarajah D et al (2006) Early involvement of the spinal cord in diabetic peripheral neuropathy. Diabetes Care 29(12):2664–2669

    PubMed  Google Scholar 

  • Baron R et al (2009) A cross-sectional cohort survey in 2,100 patients with painful diabetic neuropathy and postherpetic neuralgia: differences in demographic data and sensory symptoms. Pain 146(1–2):34–40

    PubMed  Google Scholar 

  • Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50(6):537–546

    CAS  PubMed  Google Scholar 

  • Calcutt NA (2004) Modeling diabetic sensory neuropathy in rats. Methods Mol Med 99:55–65

    PubMed  Google Scholar 

  • Freireich EJ et al (1966) Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother Rep 50(4):219–244

    CAS  PubMed  Google Scholar 

  • Kennedy JM, Zochodne DW (2005) Experimental diabetic neuropathy with spontaneous recovery: is there irreparable damage? Diabetes 54(3):830–837

    CAS  PubMed  Google Scholar 

  • Davidson E et al (2009a) The roles of streptozotocin neurotoxicity and neutral endopeptidase in murine experimental diabetic neuropathy. Exp Diabetes Res 2009:431980

    PubMed Central  PubMed  Google Scholar 

  • Romanovsky D et al (2006) Mechanical hyperalgesia correlates with insulin deficiency in normoglycemic streptozotocin-treated rats. Neurobiol Dis 24(2):384–394

    CAS  PubMed  Google Scholar 

  • Willars GB et al (1989) Substance P levels in peripheral nerve, skin, atrial myocardium and gastrointestinal tract of rats with long-term diabetes mellitus. effects of aldose reductase inhibition. J Neurol Sci 91(1–2):153–164

    CAS  PubMed  Google Scholar 

  • Singhal A et al (1997) Near nerve local insulin prevents conduction slowing in experimental diabetes. Brain Res 763(2):209–214

    CAS  PubMed  Google Scholar 

  • Hoybergs YM, Meert TF (2007) The effect of low-dose insulin on mechanical sensitivity and allodynia in type I diabetes neuropathy. Neurosci Lett 417(2):149–154

    CAS  PubMed  Google Scholar 

  • Makino S et al (1980) Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu 29(1):1–13

    CAS  PubMed  Google Scholar 

  • Bour-Jordan H et al (2013) Distinct genetic control of autoimmune neuropathy and diabetes in the non-obese diabetic background. J Autoimmun 45:58–67

    Google Scholar 

  • Izumi T et al (2003) Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes 52(2):409–416

    CAS  PubMed  Google Scholar 

  • Ron D (2002) Proteotoxicity in the endoplasmic reticulum: lessons from the Akita diabetic mouse. J Clin Invest 109(4):443–445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choeiri C et al (2005) Longitudinal evaluation of memory performance and peripheral neuropathy in the Ins2C96Y Akita mice. Behav Brain Res 157(1):31–38

    CAS  PubMed  Google Scholar 

  • Marliss EB et al (1982) The diabetic syndrome of the ‘BB’ Wistar rat: possible relevance to type 1 (insulin-dependent) diabetes in man. Diabetologia 22(4):225–232

    CAS  PubMed  Google Scholar 

  • Sima AA et al (2000) A comparison of diabetic polyneuropathy in type II diabetic BBZDR/Wor rats and in type I diabetic BB/Wor rats. Diabetologia 43(6):786–793

    CAS  PubMed  Google Scholar 

  • Kamiya H et al (2005) Unmyelinated fiber sensory neuropathy differs in type 1 and type 2 diabetes. Diabetes Metab Res Rev 21(5):448–458

    CAS  PubMed  Google Scholar 

  • Rees DA, Alcolado JC (2005) Animal models of diabetes mellitus. Diabet Med 22(4):359–370

    CAS  PubMed  Google Scholar 

  • Liu YQ, Jetton L, Leahy JL (2002) beta-cell adaptation to insulin resistance. Increased pyruvate carboxylase and malate-pyruvate shuttle activity in islets of nondiabetic zucker fatty rats. J Biol Chem 277(42):39163–39168

    CAS  PubMed  Google Scholar 

  • Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125(3):451–472

    CAS  PubMed  Google Scholar 

  • Kjorholt C et al (2005) Chronic hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of beta-cell differentiation and secretory function in the db/db mouse model of diabetes. Diabetes 54(9):2755–2763

    CAS  PubMed  Google Scholar 

  • Pick A et al (1998) Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47(3):358–364

    CAS  PubMed  Google Scholar 

  • Seibler J et al (2007) Reversible gene knockdown in mice using a tight, inducible shRNA expression system. Nucleic Acids Res 35(7):e54

    PubMed Central  PubMed  Google Scholar 

  • Kotnik K et al (2009) Inducible transgenic rat model for diabetes mellitus based on shRNA-mediated gene knockdown. PLoS One 4(4):e5124

    PubMed Central  PubMed  Google Scholar 

  • Davidson EP et al (2009b) Vascular and neural dysfunctions in obese zucker rats: effect of AVE7688. Exp Diabetes Res 2009:912327

    PubMed Central  PubMed  Google Scholar 

  • Davidson EP et al (2010) Diet-induced obesity in Sprague-Dawley rats causes microvascular and neural dysfunction. Diabetes Metab Res Rev 26(4):306–318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vincent AM et al (2009) Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes 58(10):2376–2385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang M et al (2008) The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res 2008:704045

    PubMed Central  PubMed  Google Scholar 

  • Srinivasan K et al (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52(4):313–320

    CAS  PubMed  Google Scholar 

  • Airey M et al (2000) Aldose reductase inhibitors for the prevention and treatment of diabetic peripheral neuropathy. Cochrane Database Syst Rev(2):CD002182

    Google Scholar 

  • Pfeifer MA, Schumer MP (1995) Clinical trials of diabetic neuropathy: past, present, and future. Diabetes 44(12):1355–1361

    CAS  PubMed  Google Scholar 

  • Carrington AL et al (2002) Can motor nerve conduction velocity predict foot problems in diabetic subjects over a 6-year outcome period? Diabetes Care 25(11):2010–2015

    PubMed  Google Scholar 

  • Redmond JM et al (1992) Sensory testing versus nerve conduction velocity in diabetic polyneuropathy. Muscle Nerve 15(12):1334–1339

    CAS  PubMed  Google Scholar 

  • Morimoto J et al (2012) Time-course changes in nerve conduction velocity (NCV) in type 2 diabetes. J Diabetes Complications 26(3):237–240

    PubMed  Google Scholar 

  • Bril V (1994) Role of electrophysiological studies in diabetic neuropathy. Can J Neurol Sci 21(4):S8–S12

    CAS  PubMed  Google Scholar 

  • Bril V et al (1998) Electrophysiological monitoring in clinical trials. Roche Neuropathy Study Group. Muscle Nerve 21(11):1368–1373

    CAS  PubMed  Google Scholar 

  • Bril V et al (2009) Ranirestat for the management of diabetic sensorimotor polyneuropathy. Diabetes Care 32(7):1256–1260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greene DA, De Jesus PV Jr, Winegrad AI (1975) Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest 55(6):1326–1336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ng TF et al (1998) Effects of sorbitol dehydrogenase deficiency on nerve conduction in experimental diabetic mice. Diabetes 47(6):961–966

    CAS  PubMed  Google Scholar 

  • Sima AA, Robertson DM (1978) The perineurial and blood-nerve barriers in experimental diabetes. Acta Neuropathol 44(3):189–195

    CAS  PubMed  Google Scholar 

  • Shimoshige Y et al (2000) The effects of zenarestat, an aldose reductase inhibitor, on peripheral neuropathy in zucker diabetic fatty rats. Metabolism 49(11):1395–1399

    CAS  PubMed  Google Scholar 

  • Britland ST et al (1985) Ultrastructural observations on myelinated fibres in the tibial nerve of streptozotocin-diabetic rats: effect of insulin treatment. Life Support Syst 3(Suppl 1):524–529

    PubMed  Google Scholar 

  • Powell H et al (1977) Alloxan diabetic neuropathy: electron microscopic studies. Neurology 27(1):60–66

    CAS  PubMed  Google Scholar 

  • Tamura E, Parry GJ (1994) Severe radicular pathology in rats with longstanding diabetes. J Neurol Sci 127(1):29–35

    CAS  PubMed  Google Scholar 

  • Gregory JA et al (2012) Hypertension-induced peripheral neuropathy and the combined effects of hypertension and diabetes on nerve structure and function in rats. Acta Neuropathol 124(4):561–573

    PubMed  Google Scholar 

  • Lauria G, Lombardi R (2012) Skin biopsy in painful and immune-mediated neuropathies. J Peripher Nerv Syst 17(Suppl 3):38–45

    CAS  PubMed  Google Scholar 

  • Lauria G et al (2010) Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst 15(3):202–207

    PubMed  Google Scholar 

  • Sumner CJ et al (2003) The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 60(1):108–111

    CAS  PubMed  Google Scholar 

  • Pittenger GL et al (2005) Small fiber neuropathy is associated with the metabolic syndrome. Metab Syndr Relat Disord 3(2):113–121

    CAS  PubMed  Google Scholar 

  • Smith AG et al (2006) Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care 29(6):1294–1299

    PubMed  Google Scholar 

  • Boucek P et al (2008) Epidermal innervation in type 1 diabetic patients: a 2.5-year prospective study after simultaneous pancreas/kidney transplantation. Diabetes Care 31(8):1611–1612

    PubMed Central  PubMed  Google Scholar 

  • Tavakoli M et al (2013) Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes 62(1):254–260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boyd AL et al (2010) Topiramate improves neurovascular function, epidermal nerve fiber morphology, and metabolism in patients with type 2 diabetes mellitus. Diabetes Metab Syndr Obes 3:431–437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kluding PM et al (2012) The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J Diabetes Complications 26(5):424–429

    PubMed Central  PubMed  Google Scholar 

  • Pittenger GL et al (2004) Intraepidermal nerve fibers are indicators of small-fiber neuropathy in both diabetic and nondiabetic patients. Diabetes Care 27(8):1974–1979

    PubMed  Google Scholar 

  • Sorensen L, Molyneaux L, Yue DK (2006) The relationship among pain, sensory loss, and small nerve fibers in diabetes. Diabetes Care 29(4):883–887

    PubMed  Google Scholar 

  • Malmberg AB et al (2004) Reduced heat sensitivity and epidermal nerve fiber immunostaining following single applications of a high-concentration capsaicin patch. Pain 111(3):360–367

    CAS  PubMed  Google Scholar 

  • Beiswenger KK, Calcutt NA, Mizisin AP (2008) Dissociation of thermal hypoalgesia and epidermal denervation in streptozotocin-diabetic mice. Neurosci Lett 442(3):267–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bianchi R et al (2004) Erythropoietin both protects from and reverses experimental diabetic neuropathy. Proc Natl Acad Sci U S A 101(3):823–828

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brussee V et al (2008) Distal degenerative sensory neuropathy in a long-term type 2 diabetes rat model. Diabetes 57(6):1664–1673

    CAS  PubMed  Google Scholar 

  • Underwood RA et al (2001) Color subtractive-computer-assisted image analysis for quantification of cutaneous nerves in a diabetic mouse model. J Histochem Cytochem 49(10):1285–1291

    CAS  PubMed  Google Scholar 

  • Roy Chowdhury SK et al (2012) Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes. Brain 135(Pt 6):1751–1766

    PubMed Central  PubMed  Google Scholar 

  • Diemel LT et al (1994) Expression of neuropeptides in experimental diabetes; effects of treatment with nerve growth factor or brain-derived neurotrophic factor. Brain Res Mol Brain Res 21(1–2):171–175

    CAS  PubMed  Google Scholar 

  • Tomlinson DR et al (1988) Deficient axonal transport of substance P in streptozocin-induced diabetic rats. effects of sorbinil and insulin. Diabetes 37(4):488–493

    CAS  PubMed  Google Scholar 

  • Calcutt NA et al (2000a) Elevated substance-P-like immunoreactivity levels in spinal dialysates during the formalin test in normal and diabetic rats. Brain Res 856(1–2):20–27

    CAS  PubMed  Google Scholar 

  • Tavakoli M et al (2011) Corneal confocal microscopy detects improvement in corneal nerve morphology with an improvement in risk factors for diabetic neuropathy. Diabet Med 28(10):1261–1267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davidson EP, Coppey LJ, Yorek MA (2012a) Early loss of innervation of cornea epithelium in streptozotocin-induced type 1 diabetic rats: improvement with ilepatril treatment. Invest Ophthalmol Vis Sci 53(13):8067–8074

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davidson EP et al (2012b) Changes in corneal innervation and sensitivity and acetylcholine-mediated vascular relaxation of the posterior ciliary artery in a type 2 diabetic rat. Invest Ophthalmol Vis Sci 53(3):1182–1187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen DK et al (2013) Repeated monitoring of corneal nerves by confocal microscopy as a index of peripheral neuropathy in type 1 diabetic rodents and the effects of topical insulin. J Peripheral Nerv Syst (in press)

    Google Scholar 

  • Vinik A (2005) Clinical review: use of antiepileptic drugs in the treatment of chronic painful diabetic neuropathy. J Clin Endocrinol Metab 90(8):4936–4945

    CAS  PubMed  Google Scholar 

  • Burchiel KJ et al (1985) Spontaneous activity of primary afferent neurons in diabetic BB/Wistar rats. a possible mechanism of chronic diabetic neuropathic pain. Diabetes 34(11):1210–1213

    CAS  PubMed  Google Scholar 

  • Khan GM, Chen SR, Pan HL (2002) Role of primary afferent nerves in allodynia caused by diabetic neuropathy in rats. Neuroscience 114(2):291–299

    CAS  PubMed  Google Scholar 

  • Ahlgren SC, White DM, Levine JD (1992) Increased responsiveness of sensory neurons in the saphenous nerve of the streptozotocin-diabetic rat. J Neurophysiol 68(6):2077–2085

    CAS  PubMed  Google Scholar 

  • Pertovaara A, Wei H (2001) Peripheral effects of morphine in neuropathic rats: role of sympathetic postganglionic nerve fibers. Eur J Pharmacol 429(1–3):139–145

    CAS  PubMed  Google Scholar 

  • Russell LC, Burchiel KJ (1993) Abnormal activity in diabetic rat saphenous nerve. Diabetes 42(6):814–819

    CAS  PubMed  Google Scholar 

  • Fischer TZ, Tan AM, Waxman SG (2009) Thalamic neuron hyperexcitability and enlarged receptive fields in the STZ model of diabetic pain. Brain Res 1268:154–161

    CAS  PubMed  Google Scholar 

  • Pertovaara A et al (2001) Pain behavior and response properties of spinal dorsal horn neurons following experimental diabetic neuropathy in the rat: modulation by nitecapone, a COMT inhibitor with antioxidant properties. Exp Neurol 167(2):425–434

    CAS  PubMed  Google Scholar 

  • Silva M et al (2013) Pronociceptive changes in the activity of rostroventromedial medulla (RVM) pain modulatory cells in the streptozotocin-diabetic rat. Brain Res Bull 96:39–44

    CAS  PubMed  Google Scholar 

  • Jourdan D, Ardid D, Eschalier A (2002) Analysis of ultrasonic vocalisation does not allow chronic pain to be evaluated in rats. Pain 95(1–2):165–173

    PubMed  Google Scholar 

  • Courteix C, Eschalier A, Lavarenne J (1993) Streptozocin-induced diabetic rats: behavioural evidence for a model of chronic pain. Pain 53(1):81–88

    CAS  PubMed  Google Scholar 

  • Wiech K, Tracey I (2009) The influence of negative emotions on pain: behavioral effects and neural mechanisms. NeuroImage 47(3):987–994

    PubMed  Google Scholar 

  • Le Bars D, Gozariu M, Cadden SW (2001) Animal models of nociception. Pharmacol Rev 53(4):597–652

    PubMed  Google Scholar 

  • Calcutt NA, Freshwater JD, Mizisin AP (2004) Prevention of sensory disorders in diabetic Sprague-Dawley rats by aldose reductase inhibition or treatment with ciliary neurotrophic factor. Diabetologia 47(4):718–724

    CAS  PubMed  Google Scholar 

  • Calcutt NA et al (1996) Tactile allodynia and formalin hyperalgesia in streptozotocin-diabetic rats: effects of insulin, aldose reductase inhibition and lidocaine. Pain 68(2–3):293–299

    CAS  PubMed  Google Scholar 

  • Akil H et al (1986) The many possible roles of opioids and related peptides in stress-induced analgesia. Ann N Y Acad Sci 467:140–153

    CAS  PubMed  Google Scholar 

  • Vidal C, Jacob JJ (1982) Stress hyperalgesia in rats: an experimental animal model of anxiogenic hyperalgesia in human. Life Sci 31(12–13):1241–1244

    CAS  PubMed  Google Scholar 

  • Haanpaa ML et al (2009) Assessment of neuropathic pain in primary care. Am J Med 122(10 Suppl):S13–S21

    PubMed  Google Scholar 

  • Walk D et al (2009) Quantitative sensory testing and mapping: a review of nonautomated quantitative methods for examination of the patient with neuropathic pain. Clin J Pain 25(7):632–640

    PubMed  Google Scholar 

  • Chaplan SR et al (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63

    CAS  PubMed  Google Scholar 

  • Mizisin AP et al (1998) Tactile hyperesthesia, altered epidermal innervation and plantar nerve injury in the hindfeet of rats housed on wire grates. Brain Res 788(1–2):13–19

    CAS  PubMed  Google Scholar 

  • Tavee J, Zhou L (2009) Small fiber neuropathy: a burning problem. Cleve Clin J Med 76(5):297–305

    PubMed  Google Scholar 

  • Romanovsky D et al (2004) Relevance of hyperglycemia to early mechanical hyperalgesia in streptozotocin-induced diabetes. J Peripher Nerv Syst 9(2):62–69

    PubMed  Google Scholar 

  • Drel VR et al (2007) A peroxynitrite decomposition catalyst counteracts sensory neuropathy in streptozotocin-diabetic mice. Eur J Pharmacol 569(1–2):48–58

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christianson JA et al (2003) Beneficial actions of neurotrophin treatment on diabetes-induced hypoalgesia in mice. J Pain 4(9):493–504

    CAS  PubMed  Google Scholar 

  • Cheng HT et al (2009) Nerve growth factor mediates mechanical allodynia in a mouse model of type 2 diabetes. J Neuropathol Exp Neurol 68(11):1229–1243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright DE et al (2007) Selective changes in nocifensive behavior despite normal cutaneous axon innervation in leptin receptor-null mutant (db/db) mice. J Peripher Nerv Syst 12(4):250–261

    PubMed  Google Scholar 

  • Calcutt NA, Freshwater JD, O’Brien JS (2000b) Protection of sensory function and antihyperalgesic properties of a prosaposin-derived peptide in diabetic rats. Anesthesiology 93(5):1271–1278

    CAS  PubMed  Google Scholar 

  • Backonja M et al (1998) Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. JAMA 280(21):1831–1836

    CAS  PubMed  Google Scholar 

  • Morello CM et al (1999) Randomized double-blind study comparing the efficacy of gabapentin with amitriptyline on diabetic peripheral neuropathy pain. Arch Intern Med 159(16):1931–1937

    CAS  PubMed  Google Scholar 

  • Ziegler D et al (2006) Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care 29(11):2365–2370

    CAS  PubMed  Google Scholar 

  • Raskin J et al (2005) A double-blind, randomized multicenter trial comparing duloxetine with placebo in the management of diabetic peripheral neuropathic pain. Pain Med 6(5):346–356

    PubMed  Google Scholar 

  • Field MJ et al (1999) Gabapentin and pregabalin, but not morphine and amitriptyline, block both static and dynamic components of mechanical allodynia induced by streptozocin in the rat. Pain 80(1–2):391–398

    CAS  PubMed  Google Scholar 

  • Cameron NE, Jack AM, Cotter MA (2001) Effect of alpha-lipoic acid on vascular responses and nociception in diabetic rats. Free Radic Biol Med 31(1):125–135

    CAS  PubMed  Google Scholar 

  • Yamamoto H et al (2009) Pharmacological characterization of standard analgesics on mechanical allodynia in streptozotocin-induced diabetic rats. Neuropharmacology 57(4):403–408

    CAS  PubMed  Google Scholar 

  • Mixcoatl-Zecuatl T, Jolivalt CG (2011) A spinal mechanism of action for duloxetine in a rat model of painful diabetic neuropathy. Br J Pharmacol 164(1):159–169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Obrosova IG (2009) Diabetic painful and insensate neuropathy: pathogenesis and potential treatments. Neurotherapeutics 6(4):638–647

    CAS  PubMed  Google Scholar 

  • Calcutt NA, Chaplan SR (1997) Spinal pharmacology of tactile allodynia in diabetic rats. Br J Pharmacol 122(7):1478–1482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tesfaye S et al (2011) Painful diabetic peripheral neuropathy: consensus recommendations on diagnosis, assessment and management. Diabetes Metab Res Rev 27:629–638

    Google Scholar 

  • Courteix C et al (1994) Study of the sensitivity of the diabetes-induced pain model in rats to a range of analgesics. Pain 57(2):153–160

    CAS  PubMed  Google Scholar 

  • Ahlgren SC, Levine JD (1993) Mechanical hyperalgesia in streptozotocin-diabetic rats. Neuroscience 52(4):1049–1055

    CAS  PubMed  Google Scholar 

  • Romanovsky D et al (2010) Comparison of metabolic and neuropathy profiles of rats with streptozotocin-induced overt and moderate insulinopenia. Neuroscience 170(1):337–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piercy V et al (1999) Thermal, but not mechanical, nociceptive behavior is altered in the Zucker diabetic fatty rat and is independent of glycemic status. J Diabetes Complications 13(3):163–169

    CAS  PubMed  Google Scholar 

  • Sugimoto K et al (2008) Time course of pain sensation in rat models of insulin resistance, type 2 diabetes, and exogenous hyperinsulinaemia. Diabetes Metab Res Rev 24(8):642–650

    CAS  PubMed  Google Scholar 

  • Shun CT et al (2004) Skin denervation in type 2 diabetes: correlations with diabetic duration and functional impairments. Brain 127(Pt 7):1593–1605

    PubMed  Google Scholar 

  • Dyck PJ et al (2000) Patterns of quantitative sensation testing of hypoesthesia and hyperalgesia are predictive of diabetic polyneuropathy: a study of three cohorts. Nerve growth factor study group. Diabetes Care 23(4):510–517

    CAS  PubMed  Google Scholar 

  • Forman LJ et al (1986) Streptozocin diabetes alters immunoreactive beta-endorphin levels and pain perception after 8 week in female rats. Diabetes 35(12):1309–1313

    CAS  PubMed  Google Scholar 

  • Yeomans DC, Proudfit HK (1994) Characterization of the foot withdrawal response to noxious radiant heat in the rat. Pain 59(1):85–94

    CAS  PubMed  Google Scholar 

  • Yeomans DC, Proudfit HK (1996) Nociceptive responses to high and low rates of noxious cutaneous heating are mediated by different nociceptors in the rat: electrophysiological evidence. Pain 68(1):141–150

    CAS  PubMed  Google Scholar 

  • Yeomans DC, Pirec V, Proudfit HK (1996) Nociceptive responses to high and low rates of noxious cutaneous heating are mediated by different nociceptors in the rat: behavioral evidence. Pain 68(1):133–140

    CAS  PubMed  Google Scholar 

  • Gabra BH et al (2005) Inhibition of type 1 diabetic hyperalgesia in streptozotocin-induced Wistar versus spontaneous gene-prone BB/Worchester rats: efficacy of a selective bradykinin B1 receptor antagonist. J Neuropathol Exp Neurol 64(9):782–789

    CAS  PubMed  Google Scholar 

  • Stevens MJ et al (2004) C-peptide corrects endoneurial blood flow but not oxidative stress in type 1 BB/Wor rats. Am J Physiol Endocrinol Metab 287(3):E497–E505

    CAS  PubMed  Google Scholar 

  • Guo G et al (2011) Local insulin and the rapid regrowth of diabetic epidermal axons. Neurobiol Dis 43(2):414–421

    CAS  PubMed  Google Scholar 

  • Calcutt NA et al (1995) Different effects of two aldose reductase inhibitors on nociception and prostaglandin E. Eur J Pharmacol 285(2):189–197

    CAS  PubMed  Google Scholar 

  • Puig S, Sorkin LS (1996) Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine suppresses phase-2 activity. Pain 64(2):345–355

    CAS  PubMed  Google Scholar 

  • Taylor BK, Peterson MA, Basbaum AI (1997) Early nociceptive events influence the temporal profile, but not the magnitude, of the tonic response to subcutaneous formalin: effects with remifentanil. J Pharmacol Exp Ther 280(2):876–883

    CAS  PubMed  Google Scholar 

  • Malmberg AB, Yaksh TL (1992) Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat. J Pharmacol Exp Ther 263(1):136–146

    CAS  PubMed  Google Scholar 

  • Svensson CI, Yaksh TL (2002) The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu Rev Pharmacol Toxicol 42:553–583

    CAS  PubMed  Google Scholar 

  • Malmberg AB, Yaksh TL, Calcutt NA (1993) Anti-nociceptive effects of the GM1 ganglioside derivative AGF 44 on the formalin test in normal and streptozotocin-diabetic rats. Neurosci Lett 161(1):45–48

    CAS  PubMed  Google Scholar 

  • Malmberg AB et al (2006) Impaired formalin-evoked changes of spinal amino acid levels in diabetic rats. Brain Res 1115(1):48–53

    CAS  PubMed  Google Scholar 

  • Freshwater JD et al (2002) Elevated spinal cyclooxygenase and prostaglandin release during hyperalgesia in diabetic rats. Diabetes 51(7):2249–2255

    CAS  PubMed  Google Scholar 

  • Ramos KM et al (2007) Pathogenesis of spinally mediated hyperalgesia in diabetes. Diabetes 56(6):1569–1576

    CAS  PubMed  Google Scholar 

  • Jolivalt CG et al (2008) Allodynia and hyperalgesia in diabetic rats are mediated by GABA and depletion of spinal potassium-chloride co-transporters. Pain 140(1):48–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee-Kubli CA, Calcutt NA (2013) Altered rate-dependent depression of the spinal H-reflex as an indicator of spinal disinhibition in models of neuropathic pain. Pain (13)00540-X:S0304–3959

    Google Scholar 

  • Stucky CL et al (2009) Roles of transient receptor potential channels in pain. Brain Res Rev 60(1):2–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eberhardt MJ et al (2012) Methylglyoxal activates nociceptors through transient receptor potential channel A1 (TRPA1): a possible mechanism of metabolic neuropathies. J Biol Chem 287(34):28291–28306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson MS, Ryals JM, Wright DE (2007) Diabetes-induced chemogenic hypoalgesia is paralleled by attenuated stimulus-induced fos expression in the spinal cord of diabetic mice. J Pain 8(8):637–649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamei J et al (2000) Modulation of the formalin-induced nociceptive response by diabetes: possible involvement of intracellular calcium. Brain Res 862(1–2):257–261

    CAS  PubMed  Google Scholar 

  • Ohsawa M, Kashiwazaki T, Kamei J (1998) Modulation of the formalin-induced nociceptive response by diabetes: possible involvement of protein kinase C. Brain Res 803(1–2):198–203

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NIH grants DK57629 (NAC) and NIA AG039736 (CGJ), a JDRF Career Development Award (CGJ) and a UC MEXUS-CONACYT Fellowship (TM-Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel A. Calcutt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee-Kubli, C.A., Mixcoatl-Zecuatl, T., Jolivalt, C.G., Calcutt, N.A. (2014). Animal Models of Diabetes-Induced Neuropathic Pain. In: Taylor, B., Finn, D. (eds) Behavioral Neurobiology of Chronic Pain. Current Topics in Behavioral Neurosciences, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_280

Download citation

Publish with us

Policies and ethics