Skip to main content

Neuroanatomical Changes Associated with Cognitive Aging

  • Chapter
  • First Online:
Behavioral Neurobiology of Aging

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 10))

Abstract

The literature on the neuroanatomical changes that occur during normal, non-demented aging is reviewed here with an emphasis on the improved accuracy of studies that use stereological techniques. Loss of neural tissue involved in cognition occurs during aging of humans as well as the other mammals that have been examined. There is considerable regional specificity within the cerebral cortex and the hippocampus in both the degree and cellular basis for loss. The anatomy of the prefrontal cortex is especially vulnerable to the effects of aging while the major subfields of the hippocampus are not. A loss of neurons, dendrites and synapses has been documented, as well as changes in neurotransmitter systems, in some regions of the cortex and hippocampus but not others. Species differences are also apparent in the cortical white matter and the corpus callosum where there are indications of loss of myelin in humans, but most evidence favors preservation in rats. The examination of whether the course of neuroanatomical aging is altered by hormone replacement in females is just beginning. When hormone replacement is started close to the time of cycle cessation, there are indications in humans and rats that replacement can preserve neural tissue but there is some variability due to the type of hormones and regimen of administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

SPECT:

Single-photon emission computed tomography

DAT:

Dopamine transporter

MAO-A:

Monoamine oxidase A

MAO-B:

Monoamine oxidase B

mRNA:

Messenger ribonucleic acid

mPFC:

Medial prefrontal cortex

NMDA R:

N-methyl-d-aspartate receptor

MPA:

Medroxyprogesterone acetate

E:

17-β estradiol

P:

Progesterone

CEE:

Conjugated equine estrogens

ChAT:

Choline acetyltransferase

AChE:

Acetylcholinesterase

References

  • Adams MM, Shah RA, Janssen WG, Morrison JH (2001) Different modes of hippocampal plasticity in response to estrogenestrogen in young and aged female rats. Proc Natl Acad Sci U S A 98:8071–8076. doi:10.1073/pnas.141215898

    Article  PubMed  CAS  Google Scholar 

  • Allard P, Marcusson JO (1989) Age-correlated loss of dopamine uptake sites labeled with [3H]GBR-12935 in human putamen. Neurobiol Aging 10:661–664

    Article  PubMed  CAS  Google Scholar 

  • Allen JS, Bruss J, Brown CK, Damasio H (2005) Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol Aging 26:1245–1260; discussion 1279–1282. doi:10.1016/j.neurobiolaging.2005.05.023

    Google Scholar 

  • Amenta F, Bograni S, Cadel S, Ferrante F, Valsecchi B, Vega JA (1994) Microanatomical changes in the frontal cortex of aged rats: effect of L-deprenyl treatment. Brain Res Bull 34:125–131

    Article  PubMed  CAS  Google Scholar 

  • Antonini A, Leenders KL, Reist H, Thomann R, Beer HF, Locher J (1993) Effect of age on D2 dopamine receptors in normal human brain measured by positron emission tomography and 11C-raclopride. Arch Neurol 50:474–480

    Article  PubMed  CAS  Google Scholar 

  • Azcoitia I, Perez-Martin M, Salazar V, Castillo C, Ariznavarreta C, Garcia-Segura LM, Tresguerres JA (2005) Growth hormone prevents neuronal loss in the aged rat hippocampus. Neurobiol Aging 26:697–703. doi:10.1016/j.neurobiolaging.2004.06.007

    Article  PubMed  CAS  Google Scholar 

  • Bäckman L, Lindenberger U, Li SC, Nyberg L (2010) Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues. Neurosci Biobehav Rev 34:670–677. doi:10.1016/j.neubiorev.2009.12.008

    Article  PubMed  CAS  Google Scholar 

  • Bannon MJ, Whitty CJ (1997) Age-related and regional differences in dopamine transporter mRNA expression in human midbrain. Neurology 48:969–977

    Article  PubMed  CAS  Google Scholar 

  • Bartzokis G, Beckson M, Lu PH, Nuechterlein KH, Edwards N, Mintz J (2001) Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch Gen Psychiatry 58:461–465.

    Article  PubMed  CAS  Google Scholar 

  • Baxter MG, Chiba AA (1999) Cognitive functions of the basal forebrain. Curr Opin Neurobiol 9:178–183

    Article  PubMed  CAS  Google Scholar 

  • Black JE, Isaacs KR, Greenough WT (1991) Usual vs successful aging: some notes on experiential factors. Neurobiol Aging 12:325–328; discussion 352–355

    Article  PubMed  CAS  Google Scholar 

  • Boccardi M, Ghidoni R, Govoni S, Testa C, Benussi L, Bonetti M, Binetti G, Frisoni GB (2006) Effects of hormone therapy on brain morphology of healthy postmenopausal women: a Voxel-based morphometry study. Menopause 13:584–591. doi:10.1097/01.gme.0000196811.88505.10

    Article  PubMed  Google Scholar 

  • Bohacek J, Bearl AM, Daniel JM (2008) Long-term ovarian hormone deprivation alters the ability of subsequent oestradiol replacement to regulate choline acetyltransferase protein levels in the hippocampus and prefrontal cortex of middle-aged rats. J Neuroendocrinol 20:1023–1027. doi:10.1111/j.1365-2826.2008.01752.x

    Article  PubMed  CAS  Google Scholar 

  • Bowley MP, Cabral H, Rosene DL, Peters A (2010) Age changes in myelinated nerve fibers of the cingulate bundle and corpus callosum in the rhesus monkey. J Comp Neurol 518:3046–3064. doi:10.1002/cne.22379

    Article  PubMed  Google Scholar 

  • Braden BB, Talboom JS, Crain ID, Simard AR, Lukas RJ, Prokai L, Scheldrup MR, Bowman BL, Bimonte-Nelson HA (2010) Medroxyprogesterone acetate impairs memory and alters the GABAergic system in aged surgically menopausal rats. Neurobiol Learn Mem 93:444–453. doi:10.1016/j.nlm.2010.01.002

    Article  PubMed  CAS  Google Scholar 

  • Brody H (1955) Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J Comp Neurol 102:511–516

    Article  PubMed  CAS  Google Scholar 

  • Calhoun ME, Kurth D, Phinney AL, Long JM, Hengemihle J, Mouton PR, Ingram DK, Jucker M (1998) Hippocampal neuron and synaptophysin-positive bouton number in aging C57BL/6 mice. Neurobiol Aging 19:599–606

    Article  PubMed  CAS  Google Scholar 

  • Castorina M, Ambrosini AM, Pacific L, Ramacci MT, Angelucci L (1994) Age-dependent loss of NMDA receptors in hippocampus, striatum, and frontal cortex of the rat: prevention by acetyl-L-carnitine. Neurochem Res 19:795–798

    Article  PubMed  CAS  Google Scholar 

  • Casu MA, Wong TP, De Koninck Y, Ribeiro-da-Silva A, Cuello AC (2002) Aging causes a preferential loss of cholinergic innervation of characterized neocortical pyramidal neurons. Cereb Cortex 12:329–337

    Article  PubMed  Google Scholar 

  • Chang YM, Rosene DL, Killiany RJ, Mangiamele LA, Luebke JI (2005) Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal cortex are significantly related to cognitive performance in aged monkeys. Cereb Cortex 15:409–418. doi:10.1093/cercor/bhh144

    Article  PubMed  Google Scholar 

  • Clemens JA, Meites J (1971) Neuroendocrine status of old constant-estrous rats. Neuroendocrinology 7:249–256

    Article  PubMed  CAS  Google Scholar 

  • Cupp CJ, Uemura E (1980) Age-related changes in prefrontal cortex of Macaca mulatta: quantitative analysis of dendritic branching patterns. Exp Neurol 69:143–163. doi:10.1016/0197-4580(91)90077

    Article  PubMed  CAS  Google Scholar 

  • Curcio CA, Coleman PD (1982) Stability of neuron number in cortical barrels of aging mice. J Comp Neurol 212:158–172. doi:10.1002/cne.902120206

    Article  PubMed  CAS  Google Scholar 

  • Dawson R Jr, Wallace DR, Meldrum MJ (1989) Endogenous glutamate release from frontal cortex of adult and aged rats. Neurobiol Aging 10:665–668

    Article  PubMed  CAS  Google Scholar 

  • de Brabander JM, Kramers RJ, Uylings HB (1998) Layer-specific dendritic regression of pyramidal cells with ageing in the human prefrontal cortex. Eur J Neurosci 10:1261–1269

    Article  PubMed  Google Scholar 

  • de Keyser J, De Backer JP, Vauquelin G, Ebinger G (1990) The effect of aging on the D1 dopamine receptors in human frontal cortex. Brain Res 528:308–310

    Article  PubMed  Google Scholar 

  • Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13:950–961

    Article  PubMed  Google Scholar 

  • Dumitriu D, Hao J, Hara Y, Kaufmann J, Janssen WG, Lou W, Rapp PR, Morrison JH (2010) Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 30:7507–7515. doi:10.1523/JNEUROSCI.6410-09.2010

    Article  PubMed  CAS  Google Scholar 

  • Eastwood SL, Weickert CS, Webster MJ, Herman MM, Kleinman JE, Harrison PJ (2006) Synaptophysin protein and mRNA expression in the human hippocampal formation from birth to old age. Hippocampus 16:645–654. doi:10.1002/hipo.20194

    Article  PubMed  CAS  Google Scholar 

  • Espeland MA, Rapp SR, Shumaker SA, Brunner R, Manson JE, Sherwin BB, Hsia J, Margolis KL, Hogan PE, Wallace R, Dailey M, Freeman R, Hays J, Women’s Health Initiative Memory Study (2004) Conjugated equine estrogens and global cognitive function in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 291:2959–2968. doi:10.1001/jama.291.24.2959

    Article  PubMed  CAS  Google Scholar 

  • Feldman ML, Dowd C (1975) Loss of dendritic spines in aging cerebral cortex. Anat Embryol (Berl) 148:279–301

    Article  CAS  Google Scholar 

  • Fernandez SM, Frick KM (2004) Chronic oral estrogen affects memory and neurochemistry in middle-aged female mice. Behav Neurosci 118:1340–1351. doi:10.1037/0735-7044.118.6.1340

    Article  PubMed  CAS  Google Scholar 

  • Fischer W, Bjorklund A, Chen K, Gage FH (1991) NGF improves spatial memory in aged rodents as a function of age. J Neurosci 11:1889–1906

    PubMed  CAS  Google Scholar 

  • Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, Brewer JB, Dale AM (2009) One-year brain atrophy evident in healthy aging. J Neurosci 29:15223–15231. doi:10.1523/JNEUROSCI.3252-09.2009

    Article  PubMed  CAS  Google Scholar 

  • Frick KM, Fernandez SM, Bulinski SC (2002) Estrogen replacement improves spatial reference memory and increases hippocampal synaptophysin in aged female mice. Neuroscience 115:547–558

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E, Flugge G, Czeh B (2006) Remodeling of neuronal networks by stress. Front Biosci 11:2746–2758

    Article  PubMed  CAS  Google Scholar 

  • Gallagher M, Rapp PR (1997) The use of animal models to study the effects of aging on cognition. Annu Rev Psychol 48:339–370. doi:10.1146/annurev.psych.48.1.339

    Article  PubMed  CAS  Google Scholar 

  • Gazzaley AH, Siegel SJ, Kordower JH, Mufson EJ, Morrison JH (1996) Circuit-specific alterations of N-methyl-D-aspartate receptor subunit 1 in the dentate gyrus of aged monkeys. Proc Natl Acad Sci USA 93:3121–3125

    Article  PubMed  CAS  Google Scholar 

  • Geinisman Y, Ganeshina O, Yoshida R, Berry RW, Disterhoft JF, Gallagher M (2004) Aging, spatial learning, and total synapse number in the rat CA1 stratum radiatum. Neurobiol Aging 25:407–416. doi:10.1016/j.neurobiolaging.2003.12.001

    Article  PubMed  CAS  Google Scholar 

  • Gibbs RB (2010) Estrogen therapy and cognition: a review of the cholinergic hypothesis. Endocr Rev 31:224–253. doi:10.1210/er.2009-0036

    Article  PubMed  CAS  Google Scholar 

  • Gibbs RB, Mauk R, Nelson D, Johnson DA (2009) Donepezil treatment restores the ability of estradiol to enhance cognitive performance in aged rats: evidence for the cholinergic basis of the critical period hypothesis. Horm Behav 56:73–83. doi:10.1016/j.yhbeh.2009.03.003

    Article  PubMed  CAS  Google Scholar 

  • Gibbs RB, Edwards D, Lazar N, Nelson D, Talameh J (2006) Effects of long-term hormone treatment and of tibolone on monoamines and monoamine metabolites in the brains of ovariectomised, Cynomologous monkeys. J Neuroendocrinol 18:643–654. doi:10.1111/j.1365-2826.2006.01463.x

    Article  PubMed  CAS  Google Scholar 

  • Gibbs RB (2003) Effects of ageing and long-term hormone replacement on cholinergic neurones in the medial septum and nucleus basalis magnocellularis of ovariectomized rats. J Neuroendocrinol 15:477–485

    Article  PubMed  CAS  Google Scholar 

  • Gibbs RB, Nelson D, Anthony MS, Clarkson TB (2002) Effects of long-term hormone replacement and of tibolone on choline acetyltransferase and acetylcholinesterase activities in the brains of ovariectomized, cynomologus monkeys. Neuroscience 113:907–914

    Article  PubMed  CAS  Google Scholar 

  • Gibbs RB (2000) Long-term treatment with estrogen and progesteroneprogesterone enhances acquisition of a spatial memory task by ovariectomized aged rats. Neurobiol Aging 21:107–116. doi:10.1016/S0197-4580(00)00103-2

    Article  PubMed  CAS  Google Scholar 

  • Gibson GE, Peterson C, Jenden DJ (1981) Brain acetylcholine synthesis declines with senescence. Science 213:674–676

    Article  PubMed  CAS  Google Scholar 

  • Gibson PH (1983) EM study of the numbers of cortical synapses in the brains of ageing people and people with Alzheimer-type dementia. Acta Neuropathol 62:127–133

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Brown RM (1981) Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience 6:177–187

    Article  PubMed  CAS  Google Scholar 

  • Gozlan H, Daval G, Verge D, Spampinato U, Fattaccini CM, Gallissot MC, el Mestikawy S, Hamon M (1990) Aging associated changes in serotoninergic and dopaminergic pre- and postsynaptic neurochemical markers in the rat brain. Neurobiol Aging 11:437–449

    Article  PubMed  CAS  Google Scholar 

  • Gratton G, Wee E, Rykhlevskaia EI, Leaver EE, Fabiani M (2009) Does white matter matter? Spatio-temporal dynamics of task switching in aging. J Cogn Neurosci 21:1380–1395. doi:10.1162/jocn.2009.21093

    Article  PubMed  Google Scholar 

  • Green EJ, Greenough WT, Schlumpf BE (1983) Effects of complex or isolated environments on cortical dendrites of middle-aged rats. Brain Res 264:233–240

    Article  PubMed  CAS  Google Scholar 

  • Greenough WT, McDonald JW, Parnisari RM, Camel JE (1986) Environmental conditions modulate degeneration and new dendrite growth in cerebellum of senescent rats. Brain Res 380:136–143

    Article  PubMed  CAS  Google Scholar 

  • Grill JD, Riddle DR (2002) Age-related and laminar-specific dendritic changes in the medial frontal cortex of the rat. Brain Res 937:8–21

    Article  PubMed  CAS  Google Scholar 

  • Gunning-Dixon FM, Brickman AM, Cheng JC, Alexopoulos GS (2009) Aging of cerebral white matter: a review of MRI findings. Int J Geriatr Psychiatry 24:109–117. doi:10.1002/gps.2087

    Article  PubMed  Google Scholar 

  • Haley GE, Kohama SG, Urbanski HF, Raber J (2010) Age-related decreases in SYN levels associated with increases in MAP-2, apoE, and GFAP levels in the rhesus macaque prefrontal cortex and hippocampus Age (Dordr) 32:283–296. doi:10.1007/s11357-010-9137-9

    Article  CAS  Google Scholar 

  • Hao J, Rapp PR, Janssen WG, Lou W, Lasley BL, Hof PR, Morrison JH (2007) Interactive effects of age and estrogen on cognition and pyramidal neurons in monkey prefrontal cortex. Proc Natl Acad Sci USA 104:11465–11470. doi:10.1073/pnas.0704757104

    Article  PubMed  CAS  Google Scholar 

  • Hao J, Rapp PR, Leffler AE, Leffler SR, Janssen WG, Lou W, McKay H, Roberts JA, Wearne SL, Hof PR, Morrison JH (2006) Estrogen alters spine number and morphology in prefrontal cortex of aged female rhesus monkeys. J Neurosci 26:2571–2578. doi:10.1523/JNEUROSCI.3440-05.2006

    Article  PubMed  CAS  Google Scholar 

  • Harada N, Nishiyama S, Satoh K, Fukumoto D, Kakiuchi T, Tsukada H (2002) Age-related changes in the striatal dopaminergic system in the living brain: a multiparametric PET study in conscious monkeys. Synapse 45:38–45. doi:10.1002/syn.10082

    Article  PubMed  CAS  Google Scholar 

  • Heumann D, Leuba G (1983) Neuronal death in the development and aging of the cerebral cortex of the mouse. Neuropathol Appl Neurobiol 9:297–311

    Article  PubMed  CAS  Google Scholar 

  • Himi T, Cao M, Mori N (1995) Reduced expression of the molecular markers of dopaminergic neuronal atrophy in the aging rat brain. J Gerontol A Biol Sci Med Sci 50:B193–200

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Duan H, Page TL, Einstein M, Wicinski B, He Y, Erwin JM, Morrison JH (2002) Age-related changes in GluR2 and NMDAR1 glutamate receptor subunit protein immunoreactivity in corticocortically projecting neurons in macaque and patas monkeys. Brain Res 928:175–186

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Nimchinsky EA, Young WG, Morrison JH (2000) Numbers of meynert and layer IVB cells in area V1: a stereologic analysis in young and aged macaque monkeys. J Comp Neurol 420:113–126

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Wellman CL (2009) Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neurosci Biobehav Rev 33:773–783. doi:10.1016/j.neubiorev.2008.11.005

    Article  PubMed  Google Scholar 

  • Huttenlocher PR (1979) Synaptic density in human frontal cortex–developmental changes and effects of aging. Brain Res 163:195–205

    Article  PubMed  CAS  Google Scholar 

  • Hyttel J (1987) Age related decrease in the density of dopamine D1 and D2 receptors in corpus striatum of rats. Pharmacol Toxicol 61:126–129

    Article  PubMed  CAS  Google Scholar 

  • Ichise M, Ballinger JR, Tanaka F, Moscovitch M, St George-Hyslop PH, Raphael D, Freedman M (1998) Age-related changes in D2 receptor binding with iodine-123-iodobenzofuran SPECT. J Nucl Med 39:1511–1518

    PubMed  CAS  Google Scholar 

  • Inoue M, Suhara T, Sudo Y, Okubo Y, Yasuno F, Kishimoto T, Yoshikawa K, Tanada S (2001) Age-related reduction of extrastriatal dopamine D2 receptor measured by PET. Life Sci 69:1079–1084

    Article  PubMed  CAS  Google Scholar 

  • Jacobs B, Driscoll L, Schall M (1997) Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J Comp Neurol 386:661–680

    Article  PubMed  CAS  Google Scholar 

  • Kaasinen V, Kemppainen N, Nagren K, Helenius H, Kurki T, Rinne JO (2002) Age-related loss of extrastriatal dopamine D(2) -like receptors in women. J Neurochem 81:1005–1010

    Article  PubMed  CAS  Google Scholar 

  • Kaasinen V, Vilkman H, Hietala J, Nagren K, Helenius H, Olsson H, Farde L, Rinne J (2000) Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiol Aging 21:683–688

    Article  PubMed  CAS  Google Scholar 

  • Kabaso D, Coskren PJ, Henry BI, Hof PR, Wearne SL (2009) The electrotonic structure of pyramidal neurons contributing to prefrontal cortical circuits in macaque monkeys is significantly altered in aging. Cereb Cortex 19:2248–2268. doi:10.1093/cercor/bhn242

    Article  PubMed  Google Scholar 

  • Keuker JI, de Biurrun G, Luiten PG, Fuchs E (2004) Preservation of hippocampal neuron numbers and hippocampal subfield volumes in behaviorally characterized aged tree shrews. J Comp Neurol 468:509–517. doi:10.1002/cne.10996

    Article  PubMed  Google Scholar 

  • Keuker JI, Luiten PG, Fuchs E (2003) Preservation of hippocampal neuron numbers in aged rhesus monkeys. Neurobiol Aging 24:157–165

    Article  PubMed  Google Scholar 

  • Klempin F, Kempermann G (2007) Adult hippocampal neurogenesis and aging. Eur Arch Psychiatry Clin Neurosci 257:271–280. doi:10.1007/s00406-007-0731-5

    Article  PubMed  Google Scholar 

  • Krettek JE, Price JL (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172:687–722. doi:10.1002/cne.901720408

    Article  PubMed  CAS  Google Scholar 

  • Lai H, Bowden DM, Horita A (1987) Age-related decreases in dopamine receptors in the caudate nucleus and putamen of the rhesus monkey (Macaca mulatta). Neurobiol Aging 8:45–49

    Article  PubMed  CAS  Google Scholar 

  • Lord C, Engert V, Lupien SJ, Pruessner JC (2010) Effect of sex and estrogen therapy on the aging brain: a voxel-based morphometry study. Menopause 17:846–851. doi:10.1097/gme.0b013e3181e06b83

    Article  PubMed  Google Scholar 

  • Lowry NC, Yates MA, Juraska JM (2008) Ovarian hormones in aged female rats benefit acquisistion of a spatial alternation task, but do not improve performance during delayed alternation. Soc Neurosci Abs Online

    Google Scholar 

  • Lowry NC, Pardon LP, Yates MA, Juraska JM (2010) Effects of long-term treatment with 17 beta-estradiol and medroxyprogesterone acetate on water maze performance in middle aged female rats. Horm Behav 58:200–207. doi:10.1016/j.yhbeh.2010.03.018

    Article  PubMed  CAS  Google Scholar 

  • Magnusson KR, Cotman CW (1993) Age-related changes in excitatory amino acid receptors in two mouse strains. Neurobiol Aging 14:197–206

    Article  PubMed  CAS  Google Scholar 

  • Markham JA, Herting MM, Luszpak AE, Juraska JM, Greenough WT (2009) Myelination of the corpus callosum in male and female rats following complex environment housing during adulthood. Brain Res 1288:9–17. doi:10.1016/j.brainres.2009.06.087

    Article  PubMed  CAS  Google Scholar 

  • Markham JA, McKian KP, Stroup TS, Juraska JM (2005) Sexually dimorphic aging of dendritic morphology in CA1 of hippocampus. Hippocampus 15:97–103. doi:10.1002/hipo.20034

    Article  PubMed  CAS  Google Scholar 

  • Markham JA, Juraska JM (2002) Aging and sex influence the anatomy of the rat anterior cingulate cortex. Neurobiol Aging 23:579–588

    Article  PubMed  Google Scholar 

  • Marner L, Nyengaard JR, Tang Y, Pakkenberg B (2003) Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 462:144–152. doi:10.1002/cne.10714

    Article  PubMed  Google Scholar 

  • McCullough LD, Hurn PD (2003) Estrogen and ischemic neuroprotection: an integrated view. Trends Endocrinol Metab 14:228–235

    Article  PubMed  CAS  Google Scholar 

  • McDermott JL (1993) Effects of estrogen upon dopamine release from the corpus striatum of young and aged female rats. Brain Res 606:118–125

    Article  PubMed  CAS  Google Scholar 

  • McEntee WJ, Crook TH (1993) Glutamate: its role in learning, memory, and the aging brain. Psychopharmacology (Berl) 111:391–401

    Article  CAS  Google Scholar 

  • Meier-Ruge W, Ulrich J, Bruhlmann M, Meier E (1992) Age-related white matter atrophy in the human brain. Ann N Y Acad Sci 673:260–269

    Article  PubMed  CAS  Google Scholar 

  • Mesco ER, Carlson SG, Joseph JA, Roth GS (1993) Decreased striatal D2 dopamine receptor mRNA synthesis during aging. Brain Res Mol Brain Res 17:160–162

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197. doi:10.1002/cne.902140206

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi R, Kito S, Doudou N, Nomoto T (1990) Age-related changes of strychnine-insensitive glycine receptors in rat brain as studied by in vitro autoradiography. Synapse 6:338–343. doi:10.1002/syn.890060405

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi K, Shoji H, Tanaka Y, Maruyama W, Tabira T (2009) Age-related spatial working memory impairment is caused by prefrontal cortical dopaminergic dysfunction in rats. Neuroscience 162:1192–1201. doi:10.1016/j.neuroscience.2009.05.023

    Article  PubMed  CAS  Google Scholar 

  • Moore H, Stuckman S, Sarter M, Bruno JP (1996) Potassium, but not atropine-stimulated cortical acetylcholine efflux, is reduced in aged rats. Neurobiol Aging 17:565–571

    Article  PubMed  CAS  Google Scholar 

  • Morris ED, Chefer SI, Lane MA, Muzic RF Jr, Wong DF, Dannals RF, Matochik JA, Bonab AA, Villemagne VL, Grant SJ, Ingram DK, Roth GS, London ED (1999) Loss of D2 receptor binding with age in rhesus monkeys: importance of correction for differences in striatal size. J Cereb Blood Flow Metab 19:218–229. doi:10.1097/00004647-199902000-00013

    Article  PubMed  CAS  Google Scholar 

  • Neafsey EJ, Terreberry RR, Hurley KM, Ruit KG, Frysztak RJ (1993) Anterior cingulate cortex in rodents: connections, visceral control functions, and implications for emotion. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus. Birkhauser, Boston, pp 206–223

    Google Scholar 

  • Nicolle MM, Gallagher M, McKinney M (1999) No loss of synaptic proteins in the hippocampus of aged, behaviorally impaired rats. Neurobiol Aging 20:343–348

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell KA, Rapp PR, Hof PR (1999) Preservation of prefrontal cortical volume in behaviorally characterized aged macaque monkeys. Exp Neurol 160:300–310. doi:10.1006/exnr.1999.7192

    Article  PubMed  Google Scholar 

  • O’Steen WK, Spencer RL, Bare DJ, McEwen BS (1995) Analysis of severe photoreceptor loss and Morris water-maze performance in aged rats. Behav Brain Res 68:151–158

    Article  PubMed  Google Scholar 

  • O’Sullivan M, Jones DK, Summers PE, Morris RG, Williams SC, Markus HS (2001) Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 57:632–638

    Article  PubMed  Google Scholar 

  • Ota M, Obata T, Akine Y, Ito H, Ikehira H, Asada T, Suhara T (2006) Age-related degeneration of corpus callosum measured with diffusion tensor imaging. Neuroimage 31:1445–1452. doi:10.1016/j.neuroimage.2006.02.008

    Article  PubMed  Google Scholar 

  • Ota M, Yasuno F, Ito H, Seki C, Nozaki S, Asada T, Suhara T (2006) Age-related decline of dopamine synthesis in the living human brain measured by positron emission tomography with L-[beta-11C]DOPA. Life Sci 79:730–736. doi:10.1016/j.lfs.2006.02.017

    Article  PubMed  CAS  Google Scholar 

  • Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320

    Article  PubMed  CAS  Google Scholar 

  • Palmer AM, Robichaud PJ, Reiter CT (1994) The release and uptake of excitatory amino acids in rat brain: effect of aging and oxidative stress. Neurobiol Aging 15:103–111

    Article  PubMed  CAS  Google Scholar 

  • Pedigo NW Jr, Polk DM (1985) Reduced muscarinic receptor plasticity in frontal cortex of aged rats after chronic administration of cholinergic drugs. Life Sci 37:1443–1449

    Article  PubMed  CAS  Google Scholar 

  • Peiffer AM, Shi L, Olson J, Brunso-Bechtold JK (2010) Differential effects of radiation and age on diffusion tensor imaging in rats. Brain Res 1351:23–31. doi:10.1016/j.brainres.2010.06.049

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Sethares C (2003) Is there remyelination during aging of the primate central nervous system? J Comp Neurol 460:238–254. doi:10.1002/cne.10639

    Article  PubMed  Google Scholar 

  • Peters A, Moss MB, Sethares C (2000) Effects of aging on myelinated nerve fibers in monkey primary visual cortex. J Comp Neurol 419:364–376

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Feldman ML, Vaughan DW (1983) The effect of aging on the neuronal population within area 17 of adult rat cerebral cortex. Neurobiol Aging 4:273–282

    Article  PubMed  CAS  Google Scholar 

  • Phillips LH, Andres P (2010) The cognitive neuroscience of aging: new findings on compensation and connectivity. Cortex 46:421–424. doi:10.1016/j.cortex.2010.01.005

    Article  PubMed  Google Scholar 

  • Rapp PR, Gallagher M (1996) Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc Natl Acad Sci USA 93:9926–9930

    Article  PubMed  CAS  Google Scholar 

  • Rapp SR, Espeland MA, Shumaker SA, Henderson VW, Brunner RL, Manson JE, Gass ML, Stefanick ML, Lane DS, Hays J, Johnson KC, Coker LH, Dailey M, Bowen D, WHIMS Investigators (2003) Effect of estrogen plus progestin on global cognitive function in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA 289:2663–2672. doi:10.1001/jama.289.20.2663

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen T, Schliemann T, Sorensen JC, Zimmer J, West MJ (1996) Memory impaired aged rats: no loss of principal hippocampal and subicular neurons. Neurobiol Aging 17:143–147

    Article  PubMed  CAS  Google Scholar 

  • Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U (2010) Trajectories of brain aging in middle-aged and older adults: regional and individual differences. Neuroimage 51:501–511. doi:10.1016/j.neuroimage.2010.03.020

    Article  PubMed  Google Scholar 

  • Raz N, Rodrigue KM (2006) Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev 30:730–748. doi:10.1016/j.neubiorev.2006.07.001

    Article  PubMed  Google Scholar 

  • Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15:1676–1689. doi:10.1093/cercor/bhi044

    Article  PubMed  Google Scholar 

  • Raz N, Rodrigue KM, Kennedy KM, Acker JD (2004) Hormone replacement therapy and age-related brain shrinkage: regional effects. Neuroreport 15:2531–2534

    Article  PubMed  CAS  Google Scholar 

  • Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, Briggs SD, Loken WJ, Thornton AE, Acker JD (1997) Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex 7:268–282

    Article  PubMed  CAS  Google Scholar 

  • Resnick SM, Espeland MA, Jaramillo SA, Hirsch C, Stefanick ML, Murray AM, Ockene J, Davatzikos C (2009) Postmenopausal hormone therapy and regional brain volumes: the WHIMS-MRI Study. Neurology 72:135–142. doi:10.1212/01.wnl.0000339037.76336.cf

    Article  PubMed  CAS  Google Scholar 

  • Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C (2003) Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 23:3295–3301

    PubMed  CAS  Google Scholar 

  • Riddle DR, Sonntag WE, Lichtenwalner RJ (2003) Microvascular plasticity in aging. Ageing Res Rev 2:149–168

    Article  PubMed  Google Scholar 

  • Rinne JO, Sahlberg N, Ruottinen H, Nagren K, Lehikoinen P (1998) Striatal uptake of the dopamine reuptake ligand [11C]beta-CFT is reduced in Alzheimer’s disease assessed by positron emission tomography. Neurology 50:152–156

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Lonnberg P, Marjamaki P (1990) Age-dependent decline in human brain dopamine D1 and D2 receptors. Brain Res 508:349–352

    Article  PubMed  CAS  Google Scholar 

  • Robertson D, Craig M, van Amelsvoort T, Daly E, Moore C, Simmons A, Whitehead M, Morris R, Murphy D (2009) Effects of estrogen therapy on age-related differences in gray matter concentration. Climacteric 12:301–309. doi:10.1080/13697130902730742

    Article  PubMed  CAS  Google Scholar 

  • Rubinow MJ, Hagerbaumer DA, Juraska JM (2009) The food-conditioned place preference task in adolescent, adult and aged rats of both sexes. Behav Brain Res 198:263–266. doi:10.1016/j.bbr.2008.11.024

    Article  PubMed  Google Scholar 

  • Rubinow MJ, Juraska JM (2009) Neuron and glia numbers in the basolateral nucleus of the amygdala from preweaning through old age in male and female rats: a stereological study. J Comp Neurol 512:717–725. doi:10.1002/cne.21924

    Article  PubMed  Google Scholar 

  • Ryberg C, Rostrup E, Stegmann MB, Barkhof F, Scheltens P, van Straaten EC, Fazekas F, Schmidt R, Ferro JM, Baezner H, Erkinjuntti T, Jokinen H, Wahlund LO, O’brien J, Basile AM, Pantoni L, Inzitari D, Waldemar G, LADIS study group (2007) Clinical significance of corpus callosum atrophy in a mixed elderly population. Neurobiol Aging 28:955–963. doi:10.1016/j.neurobiolaging.2006.04.008

    Article  PubMed  CAS  Google Scholar 

  • Salat DH, Greve DN, Pacheco JL, Quinn BT, Helmer KG, Buckner RL, Fischl B (2009) Regional white matter volume differences in nondemented aging and Alzheimer’s disease. Neuroimage 44:1247–1258. doi:10.1016/j.neuroimage.2008.10.030

    Article  PubMed  Google Scholar 

  • Salat DH, Tuch DS, Greve DN, van der Kouwe AJ, Hevelone ND, Zaleta AK, Rosen BR, Fischl B, Corkin S, Rosas HD, Dale AM (2005) Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging 26:1215–1227. doi:10.1016/j.neurobiolaging.2004.09.017

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Prieto J, Herrero I, Miras-Portugal MT, Mora F (1994) Unchanged exocytotic release of glutamic acid in cortex and neostriatum of the rat during aging. Brain Res Bull 33:357–359

    Article  PubMed  CAS  Google Scholar 

  • Saransaari P, Oja SS (1995) Age-related changes in the uptake and release of glutamate and aspartate in the mouse brain. Mech Ageing Dev 81:61–71

    Article  PubMed  CAS  Google Scholar 

  • Sargon MF, Denk CC, Celik HH, Surucu HS, Aldur MM (2007) Electron microscopic examination of the myelinated axons of corpus callosum. in perfused young and old rats. Int J Neurosci 117:999–1010. doi:10.1080/00207450600934382

    Article  PubMed  Google Scholar 

  • Saura J, Andres N, Andrade C, Ojuel J, Eriksson K, Mahy N (1997) Biphasic and region-specific MAO-B response to aging in normal human brain. Neurobiol Aging 18:497–507

    Article  PubMed  CAS  Google Scholar 

  • Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC (2003) A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 60:989–994. doi:10.1001/archneur.60.7.989

    Article  PubMed  Google Scholar 

  • Schliebs R, Arendt T (2006) The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm 113:1625–1644. doi:10.1007/s00702-006-0579-2

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Bzowej NH, Guan HC, Bergeron C, Becker LE, Reynolds GP, Bird ED, Riederer P, Jellinger K, Watanabe S (1987) Human brain dopamine receptors in children and aging adults. Synapse 1:399–404. doi:10.1002/syn.890010503

    Article  PubMed  CAS  Google Scholar 

  • Severson JA, Marcusson J, Winblad B, Finch CE (1982) Age-correlated loss of dopaminergic binding sites in human basal ganglia. J Neurochem 39:1623–1631

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Pang H, Linville MC, Bartley AN, Argenta AE, Brunso-Bechtold JK (2006) Maintenance of inhibitory interneurons and boutons in sensorimotor cortex between middle and old age in Fischer 344 X Brown Norway rats. J Chem Neuroanat 32:46–53. doi:10.1016/j.jchemneu.2006.04.001

    Article  PubMed  Google Scholar 

  • Shi L, Linville MC, Tucker EW, Sonntag WE, Brunso-Bechtold JK (2005) Differential effects of aging and insulin-like growth factor-1 on synapses in CA1 of rat hippocampus. Cereb Cortex 15:571–577. doi:10.1093/cercor/bhh158

    Article  PubMed  Google Scholar 

  • Shumaker SA, Legault C, Kuller L, Rapp SR, Thal L, Lane DS, Fillit H, Stefanick ML, Hendrix SL, Lewis CE, Masaki K, Coker LH, Women’s Health Initiative Memory Study (2004) Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 291:2947–2958. doi:10.1001/jama.291.24.2947

    Article  PubMed  CAS  Google Scholar 

  • Shumaker SA, Legault C, Rapp SR, Thal L, Wallace RB, Ockene JK, Hendrix SL, Jones BN 3rd, Assaf AR, Jackson RD, Kotchen JM, Wassertheil-Smoller S, Wactawski-Wende J, WHIMS Investigators (2003) Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA 289:2651–2662. doi:10.1001/jama.289.20.2651

    Article  PubMed  CAS  Google Scholar 

  • Simic G, Kostovic I, Winblad B, Bogdanovic N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol 379:482–494

    Article  PubMed  CAS  Google Scholar 

  • Smith DE, Rapp PR, McKay HM, Roberts JA, Tuszynski MH (2004) Memory impairment in aged primates is associated with focal death of cortical neurons and atrophy of subcortical neurons. J Neurosci 24:4373–4381. doi:10.1523/JNEUROSCI.4289-03.2004

    Article  PubMed  CAS  Google Scholar 

  • Smith TD, Adams MM, Gallagher M, Morrison JH, Rapp PR (2000) Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats. J Neurosci 20:6587–6593

    PubMed  CAS  Google Scholar 

  • Smith YR, Minoshima S, Kuhl DE, Zubieta JK (2001) Effects of long-term hormone therapy on cholinergic synaptic concentrations in healthy postmenopausal women. J Clin Endocrinol Metab 86:679–684

    Article  PubMed  CAS  Google Scholar 

  • Soghomonian JJ, Sethares C, Peters A (2010) Effects of age on axon terminals forming axosomatic and axodendritic inhibitory synapses in prefrontal cortex. Neuroscience 168:74–81. doi:10.1016/j.neuroscience.2010.03.020

    Article  PubMed  CAS  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315. doi:10.1038/nn1008

    Article  PubMed  CAS  Google Scholar 

  • Spencer RL, O’Steen WK, McEwen BS (1995) Water maze performance of aged Sprague-Dawley rats in relation to retinal morphologic measures. Behav Brain Res 68:139–150

    Article  PubMed  CAS  Google Scholar 

  • Stroessner-Johnson HM, Rapp PR, Amaral DG (1992) Cholinergic cell loss and hypertrophy in the medial septal nucleus of the behaviorally characterized aged rhesus monkey. J Neurosci 12:1936–1944

    PubMed  CAS  Google Scholar 

  • Suhara T, Fukuda H, Inoue O, Itoh T, Suzuki K, Yamasaki T, Tateno Y (1991) Age-related changes in human D1 dopamine receptors measured by positron emission tomography. Psychopharmacology (Berl) 103:41–45

    Article  CAS  Google Scholar 

  • Sullivan EV, Pfefferbaum A, Adalsteinsson E, Swan GE, Carmelli D (2002) Differential rates of regional brain change in callosal and ventricular size: a 4-year longitudinal MRI study of elderly men. Cereb Cortex 12:438–445

    Article  PubMed  CAS  Google Scholar 

  • Takei N, Nihonmatsu I, Kawamura H (1989) Age-related decline of acetylcholine release evoked by depolarizing stimulation. Neurosci Lett 101:182–186

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, DeTeresa R, Hansen LA (1987) Neocortical cell counts in normal human adult aging. Ann Neurol 21:530–539. doi:10.1002/ana.410210603

    Article  PubMed  CAS  Google Scholar 

  • Tigges J, Herndon JG, Rosene DL (1996) Preservation into old age of synaptic number and size in the supragranular layer of the dentate gyrus in rhesus monkeys. Acta Anat (Basel) 157:63–72

    Article  CAS  Google Scholar 

  • Uemura E (1985) Age-related changes in the subiculum of Macaca mulatta: dendritic branching pattern. Exp Neurol 87:412–427

    Article  PubMed  CAS  Google Scholar 

  • van Dyck CH, Seibyl JP, Malison RT, Laruelle M, Wallace E, Zoghbi SS, Zea-Ponce Y, Baldwin RM, Charney DS, Hoffer PB (1995) Age-related decline in striatal dopamine transporter binding with iodine-123-beta-CITSPECT. J Nucl Med 36:1175–1181

    PubMed  Google Scholar 

  • Vatassery GT, Lai JC, Smith WE, Quach HT (1998) Aging is associated with a decrease in synaptosomal glutamate uptake and an increase in the susceptibility of synaptosomal vitamin E to oxidative stress. Neurochem Res 23:121–125

    Article  PubMed  CAS  Google Scholar 

  • Vaughan DW (1977) Age-related deterioration of pyramidal cell basal dendrites in rat auditory cortex. J Comp Neurol 171:501–515. doi:10.1002/cne.901710406

    Article  PubMed  CAS  Google Scholar 

  • Walhovd KB, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat DH, Greve DN, Fischl B, Dale AM, Fjell AM (2009) Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2009.05.013

  • Walker LC, Kitt CA, Struble RG, Wagster MV, Price DL, Cork LC (1988) The neural basis of memory decline in aged monkeys. Neurobiol Aging 9:657–666

    Article  PubMed  CAS  Google Scholar 

  • Wallace M, Frankfurt M, Arellanos A, Inagaki T, Luine V (2007) Impaired recognition memory and decreased prefrontal cortex spine density in aged female rats. Ann N Y Acad Sci 1097:54–57. doi:10.1196/annals.1379.026

    Article  PubMed  Google Scholar 

  • Wang Y, Chan GL, Holden JE, Dobko T, Mak E, Schulzer M, Huser JM, Snow BJ, Ruth TJ, Calne DB, Stoessl AJ (1998) Age-dependent decline of dopamine D1 receptors in human brain: a PET study. Synapse 30:56–61

    Article  PubMed  CAS  Google Scholar 

  • West MJ (1993) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14:287–293

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DD, Ondo JG (1986) Endogenous GABA concentration in cortical synaptosomes from young and aged rats. Exp Gerontol 21:79–85

    Article  PubMed  CAS  Google Scholar 

  • Wise PM, Ratner A (1980) Effect of ovariectomy on plasma LH, FSH, estradiol, and progesterone and medial basal hypothalamic LHRH concentrations old and young rats. Neuroendocrinology 30:15–19

    Article  PubMed  CAS  Google Scholar 

  • Wong TP, Marchese G, Casu MA, Ribeiro-da-Silva A, Cuello AC, De Koninck Y (2006) Imbalance towards inhibition as a substrate of aging-associated cognitive impairment. Neurosci Lett 397:64–68. doi:10.1016/j.neulet.2005.11.055

    Article  PubMed  CAS  Google Scholar 

  • Wong TP, Marchese G, Casu MA, Ribeiro-da-Silva A, Cuello AC, De Koninck Y (2000) Loss of presynaptic and postsynaptic structures is accompanied by compensatory increase in action potential-dependent synaptic input to layer V neocortical pyramidal neurons in aged rats. J Neurosci 20:8596–8606

    PubMed  CAS  Google Scholar 

  • Wong TP, Campbell PM, Ribeiro-da-Silva A, Cuello AC (1998) Synaptic numbers across cortical laminae and cognitive performance of the rat during ageing. Neuroscience 84:403–412

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Li C, Lu W, Zhang W, Wang W, Tang Y (2009) The myelinated fiber changes in the white matter of aged female Long-Evans rats. J Neurosci Res 87:1582–1590. doi:10.1002/jnr.21986

    Article  PubMed  CAS  Google Scholar 

  • Yassa MA, Muftuler LT, Stark CE (2010) Ultrahigh-resolution microstructural diffusion tensor imaging reveals perforant path degradation in aged humans in vivo. Proc Natl Acad Sci USA 107:12687–12691. doi:10.1073/pnas.1002113107

    Article  PubMed  CAS  Google Scholar 

  • Yates MA, Markham JA, Anderson SE, Morris JR, Juraska JM (2008) Regional variability in age-related loss of neurons from the primary visual cortex and medial prefrontal cortex of male and female rats. Brain Res 1218:1–12. doi:10.1016/j.brainres.2008.04.055

    Article  PubMed  CAS  Google Scholar 

  • Yates MA, Juraska JM (2007) Increases in size and myelination of the rat corpus callosum during adulthood are maintained into old age. Brain Res 1142:13–18. doi:10.1016/j.brainres.2007.01.043

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our work was supported by grants from the National Institute of Aging, AG18046 and AG022499. We thank Wendy Koss and Renee Sadowski for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice M. Juraska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Juraska, J.M., Lowry, N.C. (2011). Neuroanatomical Changes Associated with Cognitive Aging. In: Pardon, MC., Bondi, M. (eds) Behavioral Neurobiology of Aging. Current Topics in Behavioral Neurosciences, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2011_137

Download citation

Publish with us

Policies and ethics