Skip to main content

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 9))

Abstract

Showing that an animal is hyperactive is not sufficient for it to be accepted as a model of ADHD. Based on behavioral, genetic, and neurobiological data, the spontaneously hypertensive rat (SHR) obtained from Charles River, Germany, (SHR/NCrl) is at present the best-validated animal model of ADHD. One Wistar Kyoto substrain (WKY/NHsd), obtained from Harlan, UK, is its most appropriate control. Another WKY substrain (WKY/NCrl) obtained from Charles River, Germany, is inattentive, has distinctly different genetics and neurobiology, and provides a promising model for the predominantly inattentive subtype of ADHD (ADHD-I) if one wants to investigate categorical ADHD subtypes. In this case, also, the WKY/NHsd substrain should be used as control. Although other rat strains may behave like WKY/NHsd rats, neurobiological results indicate significant differences when compared to the WKY/NHsd substrain, making them less suitable as controls for the SHR/NCrl. Thus, there are no obvious behavioral differences among the various SHRs, but there are behavioral and neurobiological differences among the WKY strains. The use of WKY/NCrl, outbred Wistar, Sprague Dawley, or other rat strains as controls for SHR/NCrl may produce spurious neurobiological effects and erroneous conclusions. Finally, model data yield support to independent hyperactivity and inattention dimensions in ADHD behavior.

Note. Strain nomenclature is based on the Rat Genome Database (Twigger et al. 2007; Rat Genome Database 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADHD:

Attention-deficit/hyperactivity disorder

ADHD-C:

Attention-deficit/hyperactivity disorder combined subtype

ADHD-H:

Attention-deficit/hyperactivity disorder predominantly hyperactive-impulsive subtype

ADHD-I:

Attention-deficit/hyperactivity disorder predominantly inattentive subtype

DA/OlaHsd:

Inbred rats from Harlan, UK

IMAGE:

International multi-center ADHD gene (project)

LEW/NHsd:

Lewis rats from Harlan, UK

PVG/Mol:

Inbred hooded rats from Møllegaard Breeding Centre, Denmark

RT-PCR:

Real-time polymerase chain reaction

SD/MolTac:

Outbred Sprague Dawley rats from Møllegaard Breeding Centre, Denmark

SD/NTac (NTac:SD):

Taconic Sprague Dawley rats

SHR:

Spontaneously hypertensive rat

SHR/N:

Inbred SHR from NIH

SHR/NCrl:

Inbred SHR from Charles River, Germany

SHR/NMol:

Inbred SHR from Møllegaard Breeding Centre, Denmark

SNP:

Single nucleotide polymorphism

SSLP:

Simple sequence length polymorphisms

WH/HanTac (also known as: HanTac:WH):

Outbred Wistar Hannover GALAS rats from Taconic Europe

WHHA/Edh (now WKHA/N):

Inbred rat from a cross between SHR and WKY with selection for high spontaneous activity and low systolic blood pressure at the University of Vermont College of Medicine, USA

WHHT/Edh (now WKHT/N):

Inbred rat from a cross between SHR and WKY with selection for normal spontaneous activity and high systolic blood pressure at the University of Vermont College of Medicine, USA

Wistar/Mol:

Outbred from Møllegaard Breeding Centre, Denmark

WKY/N:

Inbred WKY from NIH, USA

WKY/NHsd:

Inbred WKY from Harlan Europe, UK

WKY/NicoCrlf:

Inbred WKY from Charles River, France

WKY/NMolTac (also known as: WKY/NMol):

WKY from Møllegaard Breeding Centre, Denmark

References

  • Aase H, Sagvolden T (2005) Moment-to-moment dynamics of ADHD behaviour. Behav Brain Funct 1:12

    Article  PubMed  Google Scholar 

  • Aase H, Sagvolden T (2006) Infrequent, but not frequent, reinforcers produce more variable responding and deficient sustained attention in young children with attention-deficit/hyperactivity disorder (ADHD). J Child Psychol Psychiat 47:457–471

    Article  PubMed  Google Scholar 

  • Aase H, Meyer A, Sagvolden T (2006) Moment-to-moment dynamics of ADHD behaviour in South African children. Behav Brain Funct 2:11

    Article  PubMed  Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders: DSM-IV-TR. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Barkley RA (1997) Attention-deficit/hyperactivity disorder, self-regulation, and time: toward a more comprehensive theory. J Dev Behav Pediatr 18:271–279

    PubMed  CAS  Google Scholar 

  • Barkley RA, Fischer M, Smallish L, Fletcher K (2004) Young adult follow-up of hyperactive children: antisocial activities and drug use. J Child Psychol Psychiatry 45:195–211

    Article  PubMed  Google Scholar 

  • Berrendero F, Kieffer BL, Maldonado R (2002) Attenuation of nicotine-induced antinociception, rewarding effects, and dependence in mu-opioid receptor knock-out mice. J Neurosci 22:10935–10940

    PubMed  CAS  Google Scholar 

  • Bizot JC, Chenault N, Houze B, Herpin A, David S, Pothion S, Trovero F (2007) Methylphenidate reduces impulsive behaviour in juvenile Wistar rats, but not in adult Wistar, SHR and WKY rats. Psychopharmacology 193:215–223

    Article  PubMed  CAS  Google Scholar 

  • Castellanos FX, Sonuga-Barke EJ, Scheres A, Di Martino A, Hyde C, Walters JR (2005) Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biol Psychiatry 57:1416–1423

    Article  PubMed  Google Scholar 

  • Dalley JW, Fryer TD, Aigbirhio FI, Brichard L, Richards HK, Hong YT, Baron JC, Everitt BJ, Robbins TW (2009) Modelling human drug abuse and addiction with dedicated small animal positron emission tomography. Neuropharmacol 56(Suppl 1):9–17

    Article  CAS  Google Scholar 

  • DasBanerjee T, Middleton FA, Berger DF, Lombardo JP, Sagvolden T, Faraone SV (2008) A comparison of molecular alterations in environmental and genetic rat models of ADHD: a pilot study. Am J Medical Genet B Neuropsychiatr Genet 147B:1554–1563

    Article  CAS  Google Scholar 

  • Dorval KM, Wigg KG, Crosbie J, Tannock R, Kennedy JL, Ickowicz A, Pathare T, Malone M, Schachar R, Barr CL (2007) Association of the glutamate receptor subunit gene GRIN2B with attention-deficit/hyperactivity disorder. Genes Brain Behav 6:444–452

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi KN, Banhatti RG (2005) Attention deficit/hyperactivity disorder and ethnicity. Arch Dis Child 90(Suppl 1):i10–i12

    Article  PubMed  Google Scholar 

  • Faraone SV, Buitelaar J (2010) Comparing the efficacy of stimulants for ADHD in children and adolescents using meta-analysis. Eur Child Adolesc Psychiatry 19:353–364

    Article  PubMed  Google Scholar 

  • Faraone SV, Mick E (2010) Molecular genetics of attention deficit hyperactivity disorder. Psychiatr Clin North Am 33:159–180

    Article  PubMed  Google Scholar 

  • Faraone SV, Biederman J, Wilens TE, Adamson J (2007) A naturalistic study of the effects of pharmacotherapy on substance use disorders among ADHD adults. Psychol Med 37:1743–1752

    Article  PubMed  Google Scholar 

  • Ferguson SA, Cada AM (2003) A longitudinal study of short- and long-term activity levels in male and female spontaneously hypertensive, Wistar-Kyoto, and Sprague-Dawley rats. Behav Neurosci 117:271–282

    Article  PubMed  Google Scholar 

  • Fuemmeler BF, Ostbye T, Yang C, McClernon FJ, Kollins SH (2010) Association between attention-deficit/hyperactivity disorder symptoms and obesity and hypertension in early adulthood: a population-based study. Int J Obes. Oct 26. [Epub ahead of print]

    Google Scholar 

  • Heal DJ, Smith SL, Kulkarni RS, Rowley HL (2008) New perspectives from microdialysis studies in freely-moving, spontaneously hypertensive rats on the pharmacology of drugs for the treatment of ADHD. Pharmacol Biochem Behav 90:184–197

    Article  PubMed  CAS  Google Scholar 

  • Heijtz RD, Alexeyenko A, Castellanos FX (2007) Calcyon mRNA expression in the frontal-striatal circuitry and its relationship to vesicular processes and ADHD. Behav Brain Funct 3:33

    Article  PubMed  Google Scholar 

  • Holene E, Nafstad I, Skaare JU, Sagvolden T (1998) Behavioural hyperactivity in rats following postnatal exposure to sub- toxic doses of polychlorinated biphenyl congeners 153 and 126. Behav Brain Res 94:213–224

    Article  PubMed  CAS  Google Scholar 

  • Jensen V, Rinholm JE, Johansen TJ, Medin T, Storm-Mathisen J, Sagvolden T, Hvalby O, Bergersen LH (2009) N-methyl-d-aspartate receptor subunit dysfunction at hippocampal glutamatergic synapses in an animal model of attention-deficit/hyperactivity disorder. Neuroscience 158:353–364

    Article  PubMed  CAS  Google Scholar 

  • Johansen EB, Sagvolden T (2005) Behavioral effects of intra-cranial self-stimulation in an animal model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Res 162:32–46

    Article  PubMed  Google Scholar 

  • Johansen EB, Aase H, Meyer A, Sagvolden T (2002) Attention-deficit/hyperactivity disorder (ADHD) behaviour explained by dysfunctioning reinforcement and extinction processes. Behav Brain Res 130:37–45

    Article  PubMed  Google Scholar 

  • Johansen EB, Sagvolden T, Aase H, Russell VA (2005a) Authors' response: the dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD): present status and future perspectives. Behav Brain Sci 28:451–468

    Article  Google Scholar 

  • Johansen EB, Sagvolden T, Kvande G (2005b) Effects of delayed reinforcers on the behavior of an animal model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Res 162:47–61

    Article  PubMed  Google Scholar 

  • Johansen EB, Killeen PR, Sagvolden T (2007) Behavioral variability, elimination of responses, and delay-of-reinforcement gradients in SHR and WKY rats. Behav Brain Funct 3:60

    Article  PubMed  Google Scholar 

  • Johansen EB, Killeen PR, Russell VA, Tripp G, Wickens JR, Tannock R, Williams J, Sagvolden T (2009) Origins of altered reinforcement effects in ADHD. Behav Brain Funct 5:7

    Article  PubMed  Google Scholar 

  • Johnson KA, Wiersema JR, Kuntsi J (2009) What would Karl Popper say? Are current psychological theories of ADHD falsifiable? Behav Brain Funct 5:15

    Article  PubMed  Google Scholar 

  • Kahn JA, Kaplowitz RA, Goodman E, Emans SJ (2002) The association between impulsiveness and sexual risk behaviors in adolescent and young adult women. J Adolesc Health 30:229–232

    Article  PubMed  Google Scholar 

  • Kostrzewa RM, Kostrzewa JP, Kostrzewa RA, Nowak P, Brus R (2008) Pharmacological models of ADHD. J Neural Transm 115:287–298

    Article  PubMed  CAS  Google Scholar 

  • Kuehn BM (2010) Increased risk of ADHD associated with early exposure to pesticides, PCBs. J Am Med Ass 304:27–28

    Article  CAS  Google Scholar 

  • Kuntsi J, Neale BM, Chen W, Faraone SV, Asherson P (2006) The IMAGE project: methodological issues for the molecular genetic analysis of ADHD. Behav Brain Funct 2:27

    Article  PubMed  Google Scholar 

  • Lahey BB, Willcutt EG (2010) Predictive validity of a continuous alternative to nominal subtypes of attention-deficit/hyperactivity disorder for DSM-V. J Clin Child Adolesc Psychol 39:761–775

    Article  PubMed  Google Scholar 

  • Laurin N, Ickowicz A, Pathare T, Malone M, Tannock R, Schachar R, Kennedy JL, Barr CL (2008) Investigation of the G protein subunit Galphaolf gene (GNAL) in attention deficit/hyperactivity disorder. J Psychiatr Res 42:117–124

    Article  PubMed  Google Scholar 

  • Li Q, Lu G, Antonio GE, Mak YT, Rudd JA, Fan M, Yew DT (2007) The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain. Neurochem Int 50:848–857

    Article  PubMed  CAS  Google Scholar 

  • Martinussen R, Hayden J, Hogg-Johnson S, Tannock R (2005) A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 44:377–384

    Article  PubMed  Google Scholar 

  • Meyer A, Eilertsen DE, Sundet JM, Tshifularo JG, Sagvolden T (2004) Cross-cultural similarities in ADHD-like behaviour amongst South African primary school children. S Afr J Psychol 34:123–139

    Google Scholar 

  • Mill J, Sagvolden T, Asherson P (2005) Sequence analysis of Drd2, Drd4, and Dat1 in SHR and WKY rat strains. Behav Brain Funct 1:24

    Article  PubMed  Google Scholar 

  • Miller GA (1956) The magical number seven plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97

    Article  PubMed  CAS  Google Scholar 

  • Molina BS, Bukstein OG, Lynch KG (2002) Attention-deficit/hyperactivity disorder and conduct disorder symptomatology in adolescents with alcohol use disorder. Psychol Addict Behav 16:161–164

    Article  PubMed  Google Scholar 

  • Myers MM, Musty RE, Hendley ED (1982) Attenuation of hyperactivity in the spontaneously hypertensive rat by amphetamine. Behav Neural Biol 34:42–54

    Article  PubMed  CAS  Google Scholar 

  • Pardey MC, Homewood J, Taylor A, Cornish JL (2009) Re-evaluation of an animal model for ADHD using a free-operant choice task. J Neurosci Methods 176:166–171

    Article  PubMed  Google Scholar 

  • Perry GM, Sagvolden T, Faraone SV (2010a) Intra-individual variability in genetic and environmental models of attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 153B:1094–1101

    PubMed  CAS  Google Scholar 

  • Perry GM, Sagvolden T, Faraone SV (2010b) Intraindividual variability (IIV) in an animal model of ADHD – the Spontaneously Hypertensive Rat. Behav Brain Funct 6:56

    Article  PubMed  Google Scholar 

  • Rat Genome Database (2008) http://rgd.mcw.edu

  • Roessner V, Sagvolden T, DasBanerjee T, Middleton FA, Faraone SV, Walaas SI, Becker A, Rothenberger A, Bock N (2010) Methylphenidate normalizes elevated dopamine transporter densities in an animal model of the attention-deficit/hyperactivity disorder combined type, but not to the same extent in one of the attention-deficit/hyperactivity disorder inattentive type. Neurosci 167:1183–1191

    Article  CAS  Google Scholar 

  • Rohde LA, Szobot C, Polanczyk G, Schmitz M, Martins S, Tramontina S (2005) Attention-deficit/hyperactivity disorder in a diverse culture: do research and clinical findings support the notion of a cultural construct for the disorder? Biol Psychiatr 57:1436–1441

    Article  Google Scholar 

  • Ruocco LA, Carnevale UA, Sadile AG, Sica A, Arra C, Di MA, Topo E, D'Aniello A (2009) Elevated forebrain excitatory l-glutamate, l-aspartate and d-aspartate in the Naples high-excitability rats. Behav Brain Res 198:24–28

    Article  PubMed  CAS  Google Scholar 

  • Russell VA, Sagvolden T, Johansen EB (2005) Animal models of attention-deficit hyperactivity disorder. Behav Brain Funct 1:9

    Article  PubMed  Google Scholar 

  • Sagvolden T (2000) Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev 24:31–39

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T (2006) The alpha-2A adrenoceptor agonist guanfacine improves sustained attention and reduces overactivity and impulsiveness in an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD). Behav Brain Funct 2:41

    Article  PubMed  Google Scholar 

  • Sagvolden T, Archer T (1989) Future perspectives on ADD research – an irresistible challenge. In: Sagvolden T, Archer T (eds) Attention deficit disorder: clinical and basic research. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 369–389

    Google Scholar 

  • Sagvolden T, Xu T (2008) l-Amphetamine improves poor sustained attention while d-amphetamine reduces overactivity and impulsiveness as well as improves sustained attention in an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD). Behav Brain Funct 4:3

    Article  PubMed  Google Scholar 

  • Sagvolden T, Metzger MA, Schiørbeck HK, Rugland AL, Spinnangr I, Sagvolden G (1992) The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants. Behav Neural Biol 58:103–112

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, Aase H, Zeiner P, Berger DF (1998) Altered reinforcement mechanisms in Attention-Deficit/Hyperactivity Disorder. Behav Brain Res 94:61–71

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, Johansen EB, Aase H, Russell VA (2005a) A dynamic developmental theory of Attention-Deficit/Hyperactivity Disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci 28:397–468

    Article  PubMed  Google Scholar 

  • Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M (2005b) Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatr 57:1239–1247

    Article  Google Scholar 

  • Sagvolden T, DasBanerjee T, Zhang-James Y, Middleton F, Faraone S (2008) Behavioral and genetic evidence for a novel animal model of Attention-Deficit/Hyperactivity Disorder Predominantly Inattentive Subtype. Behav Brain Funct 4:56

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, Johansen EB, Woien G, Walaas SI, Storm-Mathisen J, Bergersen LH, Hvalby O, Jensen V, Aase H, Russell VA, Killeen PR, DasBanerjee T, Middleton FA, Faraone SV (2009) The spontaneously hypertensive rat model of ADHD–the importance of selecting the appropriate reference strain. Neuropharmacology 57:619–626

    Article  PubMed  CAS  Google Scholar 

  • Sanabria F, Killeen PR (2008) Evidence for impulsivity in the Spontaneously Hypertensive Rat drawn from complementary response-withholding tasks. Behav Brain Funct 4:7

    Article  PubMed  Google Scholar 

  • Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct 6:24

    Article  PubMed  Google Scholar 

  • Shaw P, Sharp WS, Morrison M, Eckstrand K, Greenstein DK, Clasen LS, Evans AC, Rapoport JL (2009) Psychostimulant treatment and the developing cortex in attention deficit hyperactivity disorder. Am J Psychiatr 166:58–63

    Article  PubMed  Google Scholar 

  • Sonuga-Barke EJ, Taylor E, Sembi S, Smith J (1992) Hyperactivity and delay aversion–I. The effect of delay on choice. J Child Psychol Psychiatr 33:387–398

    Article  CAS  Google Scholar 

  • Tannock R (1998) Attention deficit hyperactivity disorder: advances in cognitive, neurobiological, and genetic research. J Child Psychol Psychiatr 39:65–99

    Article  CAS  Google Scholar 

  • Turic D, Langley K, Mills S, Stephens M, Lawson D, Govan C, Williams N, Van den BM, Craddock N, Kent L, Owen M, O'Donovan M, Thapar A (2004) Follow-up of genetic linkage findings on chromosome 16p13: evidence of association of N-methyl-D aspartate glutamate receptor 2A gene polymorphism with ADHD. Mol Psychiatr 9:169–173

    Article  CAS  Google Scholar 

  • Twigger SN, Shimoyama M, Bromberg S, Kwitek AE, Jacob HJ (2007) The rat genome database, update 2007–easing the path from disease to data and back again. Nucleic Acids Res 35:D658–D662

    Article  PubMed  CAS  Google Scholar 

  • van den Bergh FS, Bloemarts E, Chan JS, Groenink L, Olivier B, Oosting RS (2006) Spontaneously hypertensive rats do not predict symptoms of attention-deficit hyperactivity disorder. Pharmacol Biochem Behav 83:380–390

    Article  PubMed  Google Scholar 

  • Vendruscolo LF, Izidio GS, Takahashi RN (2009) Drug reinforcement in a rat model of attention deficit/hyperactivity disorder–the Spontaneously Hypertensive Rat (SHR). Curr Drug Abuse Rev 2:177–183

    Article  PubMed  CAS  Google Scholar 

  • Willcutt EG, Doyle AE, Nigg JT, Faraone SV, Pennington BF (2005) Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatr 57:1336–1346

    Article  Google Scholar 

  • Wultz B, Sagvolden T, Moser EI, Moser MB (1990) The spontaneously hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on exploratory behavior. Behav Neural Biol 53:88–102

    Article  PubMed  CAS  Google Scholar 

  • Yan TC, Hunt SP, Stanford SC (2009) Behavioural and neurochemical abnormalities in mice lacking functional tachykinin-1 (NK1) receptors: a model of attention deficit hyperactivity disorder. Neuropharmacology 57:627–635

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Kendler KS, Chen X (2006) The mu-opioid receptor gene and smoking initiation and nicotine dependence. Behav Brain Funct 2:28

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Financial support for the work described herein was mainly from the Research Council of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Espen Borgå Johansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sagvolden, T., Johansen, E.B. (2011). Rat Models of ADHD. In: Stanford, C., Tannock, R. (eds) Behavioral Neuroscience of Attention Deficit Hyperactivity Disorder and Its Treatment. Current Topics in Behavioral Neurosciences, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2011_126

Download citation

Publish with us

Policies and ethics