Skip to main content

Mouse Models of Autism: Testing Hypotheses About Molecular Mechanisms

  • Chapter
  • First Online:
Molecular and Functional Models in Neuropsychiatry

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 7))

Abstract

Autism is a neurodevelopmental disorder that is currently diagnosed by the presence of three behavioral criteria (1) qualitative impairments in reciprocal social interactions, (2) deficits in communication, including delayed language and noninteractive conversation, and (3) motor stereotypies, repetitive behaviors, insistence on sameness, and restricted interests. This chapter describes analogous behavioral assays that have been developed for mice, including tests for social approach, reciprocal social interactions, olfactory communication, ultrasonic vocalizations, repetitive and perseverative behaviors, and motor stereotypies. Examples of assay applications to genetic mouse models of autism are provided. Robust endophenotypes that are highly relevant to the core symptoms of autism are enabling the search for the genetic and environmental causes of autism, and the discovery of effective treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5Htt:

Serotonin transporter mutant line of mice

Avpr1b:

Arginine vasopressin receptor 1b null mutant line of mice

B6:

C57BL/6J inbred strain of mice

BTBR:

BTBR T+tf/J inbred strain of mice

Fmr1:

Fragile X Fmr1 null mutant line of mice

Nlgn2:

Neuroligin 2 mutant line of mice

VPA:

Valproic acid [Di-n-dipropylacetic acid]

References

  • Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9:341–355

    PubMed  CAS  Google Scholar 

  • Alarcon M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, Sebat J, Wigler M, Martin CL, Ledbetter DH, Nelson SF, Cantor RM, Geschwind DH (2008) Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 82:150–159

    PubMed  CAS  Google Scholar 

  • Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31:137–145

    PubMed  CAS  Google Scholar 

  • American Psychiatric Association WDC (1994) Diagnostic and Statistical Manual of Mentral Disorders (DSM-IV). APA, Washington DC

    Google Scholar 

  • Anderson GM (2002) Genetics of childhood disorders: XLV. Autism, part 4: serotonin in autism. J Am Acad Child Adolesc Psychiatry 41:1513–1516

    PubMed  Google Scholar 

  • Arakawa H, Arakawa K, Blanchard DC, Blanchard RJ (2007) Scent marking behavior in male C57BL/6J mice: sexual and developmental determination. Behav Brain Res 182:73–79

    PubMed  Google Scholar 

  • Arakawa H, Blanchard DC, Arakawa K, Dunlap C, Blanchard RJ (2008) Scent marking behavior as an odorant communication in mice. Neurosci Biobehav Rev 32:1236–1248

    PubMed  Google Scholar 

  • Arakawa H, Arakawa K, Blanchard DC, Blanchard RJ (2009) Social features of scent-donor mice modulate scent marking of C57BL/6J recipient males. Behav Brain Res 205:138–145

    PubMed  CAS  Google Scholar 

  • Ardinger HH, Atkin JF, Blackston RD, Elsas LJ, Clarren SK, Livingstone S, Flannery DB, Pellock JM, Harrod MJ, Lammer EJ et al (1988) Verification of the fetal valproate syndrome phenotype. Am J Med Genet 29:171–185

    PubMed  CAS  Google Scholar 

  • Arking DE, Cutler DJ, Brune CW, Teslovich TM, West K, Ikeda M, Rea A, Guy M, Lin S, Cook EH, Chakravarti A (2008) A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 82:160–164

    PubMed  CAS  Google Scholar 

  • Arpino C, Brescianini S, Robert E, Castilla EE, Cocchi G, Cornel MC, de Vigan C, Lancaster PA, Merlob P, Sumiyoshi Y, Zampino G, Renzi C, Rosano A, Mastroiacovo P (2000) Teratogenic effects of antiepileptic drugs: use of an international database on malformations and drug exposure (MADRE). Epilepsia 41:1436–1443

    PubMed  CAS  Google Scholar 

  • Autism Genome Project Consortium, Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ, Vincent JB, Skaug JL, Thompson AP, Senman L, Feuk L, Qian C, Bryson SE, Jones MB, Marshall CR, Scherer SW, Vieland VJ, Bartlett C, Mangin LV, Goedken R, Segre A, Pericak-Vance MA, Cuccaro ML, Gilbert JR, Wright HH, Abramson RK, Betancur C, Bourgeron T, Gillberg C, Leboyer M, Buxbaum JD, Davis KL, Hollander E, Silverman JM, Hallmayer J, Lotspeich L, Sutcliffe JS, Haines JL, Folstein SE, Piven J, Wassink TH, Sheffield V, Geschwind DH, Bucan M, Brown WT, Cantor RM, Constantino JN, Gilliam TC, Herbert M, Lajonchere C, Ledbetter DH, Lese-Martin C, Miller J, Nelson S, Samango-Sprouse CA, Spence S, State M, Tanzi RE, Coon H, Dawson G, Devlin B, Estes A, Flodman P, Klei L, McMahon WM, Minshew N, Munson J, Korvatska E, Rodier PM, Schellenberg GD, Smith M, Spence MA, Stodgell C, Tepper PG, Wijsman EM, Yu CE, Roge B, Mantoulan C, Wittemeyer K, Poustka A, Felder B, Klauck SM, Schuster C, Poustka F, Bolte S, Feineis-Matthews S, Herbrecht E, Schmotzer G, Tsiantis J, Papanikolaou K, Maestrini E, Bacchelli E, Blasi F, Carone S, Toma C, Van Engeland H, de Jonge M, Kemner C, Koop F et al (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39:319–328

    PubMed  CAS  Google Scholar 

  • Bakker CE (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell 78:23–33

    Google Scholar 

  • Baron-Cohen S (2009) Autism: the empathizing-systemizing (E-S) theory. Ann NY Acad Sci 1156:68–80

    PubMed  Google Scholar 

  • Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60:201–214

    PubMed  CAS  Google Scholar 

  • Beckel-Mitchener A, Greenough WT (2004) Correlates across the structural, functional, and molecular phenotypes of fragile X syndrome. Ment Retard Dev Disabil Res Rev 10:53–59

    PubMed  Google Scholar 

  • Bielsky IF, Young LJ (2004) Oxytocin, vasopressin, and social recognition in mammals. Peptides 25:1565–1574

    PubMed  CAS  Google Scholar 

  • Bielsky IF, Hu SB, Szegda KL, Westphal H, Young LJ (2004) Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology 29:483–493

    PubMed  CAS  Google Scholar 

  • Bielsky IF, Hu SB, Ren X, Terwilliger EF, Young LJ (2005) The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron 47:503–513

    PubMed  CAS  Google Scholar 

  • Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, Ethell IM (2009) Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet 46:94–102

    PubMed  CAS  Google Scholar 

  • Blundell J, Tabuchi K, Bolliger MF, Blaiss CA, Brose N, Liu X, Sudhof TC, Powell CM (2009) Increased anxiety-like behavior in mice lacking the inhibitory synapse cell adhesion molecule neuroligin 2. Genes Brain Behav 8:114–126

    PubMed  CAS  Google Scholar 

  • Bodfish JW, Symons FJ, Parker DE, Lewis MH (2000) Varieties of repetitive behavior in autism: comparisons to mental retardation. J Autism Dev Disord 30:237–243

    PubMed  CAS  Google Scholar 

  • Bolivar VJ, Walters SR, Phoenix JL (2007) Assessing autism-like behavior in mice: variations in social interactions among inbred strains. Behav Brain Res 176:21–26

    PubMed  Google Scholar 

  • Bowers JM, Alexander BK (1967) Mice: individual recognition by olfactory cues. Science 158:1208–1210

    PubMed  CAS  Google Scholar 

  • Branchi I, Santucci D, Alleva E (2001) Ultrasonic vocalisation emitted by infant rodents: a tool for assessment of neurobehavioural development. Behav Brain Res 125:49–56

    PubMed  CAS  Google Scholar 

  • Brennan PA, Keverne EB (2004) Something in the air? New insights into mammalian pheromones. Curr Biol 14:R81–R89

    PubMed  CAS  Google Scholar 

  • Brigman JL, Padukiewicz KE, Sutherland ML, Rothblat LA (2006) Executive functions in the heterozygous reeler mouse model of schizophrenia. Behav Neurosci 120:984–988

    PubMed  Google Scholar 

  • Brodkin ES (2007) BALB/c mice: low sociability and other phenotypes that may be relevant to autism. Behav Brain Res 176:53–65

    PubMed  CAS  Google Scholar 

  • Carter CS, Williams JR, Witt DM, Insel TR (1992) Oxytocin and social bonding. Ann N Y Acad Sci Jun 12;652:204–211

    PubMed  CAS  Google Scholar 

  • Chadman KK, Gong S, Scattoni ML, Boltuck SE, Gandhy SU, Heintz N, Crawley JN (2008) Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice. Autism Res 1:147–158

    PubMed  Google Scholar 

  • Cheetham SA, Thom MD, Jury F, Ollier WE, Beynon RJ, Hurst JL (2007) The genetic basis of individual-recognition signals in the mouse. Curr Biol 17:1771–1777

    PubMed  CAS  Google Scholar 

  • Cheh MA, Millonig JH, Roselli LM, Ming X, Jacobsen E, Kamdar S, Wagner GC (2006) En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res 1116:166–176

    PubMed  CAS  Google Scholar 

  • Chen G, Chen KS, Kobayashi D, Barbour R, Motter R, Games D, Martin SJ, Morris RG (2007) Active beta-amyloid immunization restores spatial learning in PDAPP mice displaying very low levels of beta-amyloid. J Neurosci 27:2654–2662

    PubMed  CAS  Google Scholar 

  • Christianson AL, Chesler N, Kromberg JG (1994) Fetal valproate syndrome: clinical and neuro-developmental features in two sibling pairs. Dev Med Child Neurol 36:361–369

    PubMed  CAS  Google Scholar 

  • Cook EH Jr, Scherer SW (2008) Copy-number variations associated with neuropsychiatric conditions. Nature 455:919–923

    PubMed  CAS  Google Scholar 

  • Cook EH Jr, Lindgren V, Leventhal BL, Courchesne R, Lincoln A, Shulman C, Lord C, Courchesne E (1997) Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 60:928–934

    PubMed  CAS  Google Scholar 

  • Crawley JN (2004) Designing mouse behavioral tasks relevant to autistic-like behaviors. Ment Retard Dev Disabil Res Rev 10:248–258

    PubMed  Google Scholar 

  • Crawley JN (2007a) Medicine. Testing hypotheses about autism. Science 318:56–57

    PubMed  CAS  Google Scholar 

  • Crawley JN (2007b) Mouse behavioral assays relevant to the symptoms of autism. Brain Pathol 17:448–459

    PubMed  Google Scholar 

  • Crawley JN, Chen T, Puri A, Washburn R, Sullivan TL, Hill JM, Young NB, Nadler JJ, Moy SS, Young LJ, Caldwell HK, Young WS (2007) Social approach behaviors in oxytocin knockout mice: comparison of two independent lines tested in different laboratory environments. Neuropeptides 41:145–163

    PubMed  CAS  Google Scholar 

  • Creese I, Iversen SD (1975) The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res 83:419–436

    PubMed  CAS  Google Scholar 

  • Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790

    PubMed  CAS  Google Scholar 

  • Cuccaro ML, Shao Y, Grubber J, Slifer M, Wolpert CM, Donnelly SL, Abramson RK, Ravan SA, Wright HH, DeLong GR, Pericak-Vance MA (2003) Factor analysis of restricted and repetitive behaviors in autism using the autism diagnostic interview-R. Child Psychiatry Hum Dev 34:3–17

    PubMed  Google Scholar 

  • Dawson G, Webb S, Schellenberg GD, Dager S, Friedman S, Aylward E, Richards T (2002) Defining the broader phenotype of autism: genetic, brain, and behavioral perspectives. Dev Psychopathol 14:581–611

    PubMed  Google Scholar 

  • D’Amato FR, Moles A (2001) Ultrasonic vocalizations as an index of social memory in female mice. Behav Neurosci 115:834–840

    PubMed  Google Scholar 

  • D’Hooge R, Nagels G, Franck F, Bakker CE, Reyniers E, Storm K, Kooy RF, Oostra BA, Willems PJ, De Deyn PP (1997) Mildly impaired water maze performance in male Fmr1 knockout mice. Neuroscience 76:367–376

    PubMed  Google Scholar 

  • DeLorey TM, Handforth A, Anagnostaras SG, Homanics GE, Minassian BA, Asatourian A, Fanselow MS, Delgado-Escueta A, Ellison GD, Olsen RW (1998) Mice lacking the beta3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. J Neurosci 18:8505–8514

    PubMed  CAS  Google Scholar 

  • DeLorey TM, Sahbaie P, Hashemi E, Homanics GE, Clark JD (2008) Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behav Brain Res 187:207–220

    PubMed  CAS  Google Scholar 

  • Diaz-Meco MT, Abu-Baker S (2009) The Par-4/PTEN connection in tumor suppression. Cell Cycle 8:2518–2522

    PubMed  CAS  Google Scholar 

  • DiLiberti JH, Farndon PA, Dennis NR, Curry CJ (1984) The fetal valproate syndrome. Am J Med Genet 19:473–481

    PubMed  CAS  Google Scholar 

  • Dolen G, Bear MF (2008) Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of fragile X syndrome. J Physiol 586:1503–1508

    PubMed  CAS  Google Scholar 

  • Dolen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S, Bear MF (2007) Correction of fragile X syndrome in mice. Neuron 56:955–962

    PubMed  CAS  Google Scholar 

  • Doty RL (1986) Odor-guided behavior in mammals. Experientia 42:257–271

    PubMed  CAS  Google Scholar 

  • Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsater H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Roge B, Heron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39:25–27

    PubMed  CAS  Google Scholar 

  • Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, Ramesh V, Silva AJ (2008a) Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 14:843–848

    PubMed  CAS  Google Scholar 

  • Ehninger D, Li W, Fox K, Stryker MP, Silva AJ (2008b) Reversing neurodevelopmental disorders in adults. Neuron 60(6):950–960

    PubMed  CAS  Google Scholar 

  • Enard W, Gehre S, Hammerschmidt K, Holter SM, Blass T, Somel M, Bruckner MK, Schreiweis C, Winter C, Sohr R, Becker L, Wiebe V, Nickel B, Giger T, Muller U, Groszer M, Adler T, Aguilar A, Bolle I, Calzada-Wack J, Dalke C, Ehrhardt N, Favor J, Fuchs H, Gailus-Durner V, Hans W, Holzlwimmer G, Javaheri A, Kalaydjiev S, Kallnik M, Kling E, Kunder S, Mossbrugger I, Naton B, Racz I, Rathkolb B, Rozman J, Schrewe A, Busch DH, Graw J, Ivandic B, Klingenspor M, Klopstock T, Ollert M, Quintanilla-Martinez L, Schulz H, Wolf E, Wurst W, Zimmer A, Fisher SE, Morgenstern R, Arendt T, de Angelis MH, Fischer J, Schwarz J, Paabo S (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137:961–971

    PubMed  CAS  Google Scholar 

  • Errijgers V, Fransen E, D'Hooge R, De Deyn PP, Kooy RF (2008) Effect of genetic background on acoustic startle response in fragile X knockout mice. Genet Res 90:341–345

    CAS  Google Scholar 

  • Fombonne E (2009) Epidemiology of pervasive developmental disorders. Pediatr Res 65:591–598

    PubMed  Google Scholar 

  • Frith U (2003) Autism: explaining the Enigma. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  • Fujita E, Tanabe Y, Shiota A, Ueda M, Suwa K, Momoi MY, Momoi T (2008) Ultrasonic vocalization impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnormality of Purkinje cells. Proc Natl Acad Sci USA 105:3117–3122

    PubMed  CAS  Google Scholar 

  • Garber K (2007) Neuroscience. Autism’s cause may reside in abnormalities at the synapse. Science 317:190–191

    PubMed  CAS  Google Scholar 

  • Gondo Y, Murata T, Makino S, Fukumura R, Ishitsuka Y (2011) Mouse mutagenesis and disease models for neuropsychiatric disorders. Curr Topics Behav Neurosci. doi: 10.1007/7854_2010_106

  • Gourbal BE, Barthelemy M, Petit G, Gabrion C (2004) Spectrographic analysis of the ultrasonic vocalisations of adult male and female BALB/c mice. Naturwissenschaften 91:381–385

    PubMed  CAS  Google Scholar 

  • Grant EC, MacIntosh JH (1963) A comparison of the social postures of some common laboratory rodents. Behaviour 21:246–259

    Google Scholar 

  • Greer JM, Capecchi MR (2002) Hoxb8 is required for normal grooming behavior in mice. Neuron 33:23–34

    PubMed  CAS  Google Scholar 

  • Halladay AK, Amaral D, Aschner M, Bolivar VJ, Bowman A, DiCicco-Bloom E, Hyman SL, Keller F, Lein P, Pessah I, Restifo L, Threadgill DW (2009) Animal models of autism spectrum disorders: information for neurotoxicologists. Neurotoxicology 30:811–821

    PubMed  CAS  Google Scholar 

  • Happe F, Ronald A (2008) The ‘fractionable autism triad’: a review of evidence from behavioural, genetic, cognitive and neural research. Neuropsychol Rev 18:287–304

    PubMed  Google Scholar 

  • Herbert MR, Ziegler DA, Deutsch CK, O’Brien LM, Lange N, Bakardjiev A, Hodgson J, Adrien KT, Steele S, Makris N, Kennedy D, Harris GJ, Caviness VS Jr (2003) Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 126:1182–1192

    PubMed  CAS  Google Scholar 

  • Hertz-Picciotto I, Delwiche L (2009) The rise in autism and the role of age at diagnosis. Epidemiology 20:84–90

    PubMed  Google Scholar 

  • Hofer MA, Shair HN, Masmela JR, Brunelli SA (2001) Developmental effects of selective breeding for an infantile trait: the rat pup ultrasonic isolation call. Dev Psychobiol 39:231–246

    PubMed  CAS  Google Scholar 

  • Holmes A, Murphy DL, Crawley JN (2003) Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol Psychiatry 54:953–959

    PubMed  CAS  Google Scholar 

  • Humphries RE, Robertson DH, Beynon RJ, Hurst JL (1999) Unravelling the chemical basis of competitive scent marking in house mice. Anim Behav 58:1177–1190

    PubMed  Google Scholar 

  • Hurst JL, Beynon RJ (2004) Scent wars: the chemobiology of competitive signalling in mice. Bioessays 26:1288–1298

    PubMed  CAS  Google Scholar 

  • Hurst JL, Payne CE, Nevison CM, Marie AD, Humphries RE, Robertson DH, Cavaggioni A, Beynon RJ (2001) Individual recognition in mice mediated by major urinary proteins. Nature 414:631–634

    PubMed  CAS  Google Scholar 

  • Hurst JL, Thom MD, Nevison CM, Humphries RE, Beynon RJ (2005) MHC odours are not required or sufficient for recognition of individual scent owners. Proc Biol Sci 272:715–724

    PubMed  Google Scholar 

  • Ingram JL, Peckham SM, Tisdale B, Rodier PM (2000) Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol Teratol 22:319–324

    PubMed  CAS  Google Scholar 

  • Isles AR, Baum MJ, Ma D, Keverne EB, Allen ND (2001) Urinary odour preferences in mice. Nature 409:783–784

    PubMed  CAS  Google Scholar 

  • Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27–29

    PubMed  CAS  Google Scholar 

  • Jamain S, Radyushkin K, Hammerschmidt K, Granon S, Boretius S, Varoqueaux F, Ramanantsoa N, Gallego J, Ronnenberg A, Winter D, Frahm J, Fischer J, Bourgeron T, Ehrenreich H, Brose N (2008) Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc Natl Acad Sci USA 105:1710–1715

    PubMed  CAS  Google Scholar 

  • Jeffries AR, Curran S, Elmslie F, Sharma A, Wenger S, Hummel M, Powell J (2005) Molecular and phenotypic characterization of ring chromosome 22. Am J Med Genet A 137:139–147

    PubMed  Google Scholar 

  • Kanner L (1943) Autistic disturbances of affective contact. Nerv Child 2:217–250

    Google Scholar 

  • Kavaliers M, Choleris E, Pfaff DW (2005) Recognition and avoidance of the odors of parasitized conspecifics and predators: differential genomic correlates. Neurosci Biobehav Rev 29:1347–1359

    PubMed  Google Scholar 

  • Keller M, Douhard Q, Baum MJ, Bakker J (2006) Sexual experience does not compensate for the disruptive effects of zinc sulfate–lesioning of the main olfactory epithelium on sexual behavior in male mice. Chem Senses 31:753–762

    PubMed  CAS  Google Scholar 

  • Keverne EB (2004) Importance of olfactory and vomeronasal systems for male sexual function. Physiol Behav 83:177–187

    PubMed  CAS  Google Scholar 

  • Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y, Lally E, Weiss LA, Najm J, Kutsche K, Descartes M, Holt L, Braddock S, Troxell R, Kaplan L, Volkmar F, Klin A, Tsatsanis K, Harris DJ, Noens I, Pauls DL, Daly MJ, MacDonald ME, Morton CC, Quade BJ, Gusella JF (2008) Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 82:199–207

    PubMed  CAS  Google Scholar 

  • King M, Bearman P (2009) Diagnostic change and the increased prevalence of autism. Int J Epidemiol 38:1224–1234

    PubMed  Google Scholar 

  • Kolozsi E, Mackenzie RN, Roullet FI, deCatanzaro D, Foster JA (2009) Prenatal exposure to valproic acid leads to reduced expression of synaptic adhesion molecule neuroligin 3 in mice. Neuroscience 163:1201–1210

    PubMed  CAS  Google Scholar 

  • Korff S, Harvey BH (2006) Animal models of obsessive-compulsive disorder: rationale to understanding psychobiology and pharmacology. Psychiatr Clin North Am 29:371–390

    PubMed  Google Scholar 

  • Kwasnicka-Crawford DA, Roberts W, Scherer SW (2007) Characterization of an autism-associated segmental maternal heterodisomy of the chromosome 15q11-13 region. J Autism Dev Disord 37:694–702

    PubMed  Google Scholar 

  • Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, Li Y, Baker SJ, Parada LF (2006) Pten regulates neuronal arborization and social interaction in mice. Neuron 50:377–388

    PubMed  CAS  Google Scholar 

  • Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, Raynaud M, Ronce N, Lemonnier E, Calvas P, Laudier B, Chelly J, Fryns JP, Ropers HH, Hamel BC, Andres C, Barthelemy C, Moraine C, Briault S (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74:552–557

    PubMed  CAS  Google Scholar 

  • Lauterborn JC, Rex CS, Kramar E, Chen LY, Pandyarajan V, Lynch G, Gall CM (2007) Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome. J Neurosci 27:10685–10694

    PubMed  CAS  Google Scholar 

  • Lawson-Yuen A, Saldivar JS, Sommer S, Picker J (2008) Familial deletion within NLGN4 associated with autism and Tourette syndrome. Eur J Hum Genet 16:614–618

    PubMed  CAS  Google Scholar 

  • Lee JW, Ryoo ZY, Lee EJ, Hong SH, Chung WH, Lee HT, Chung KS, Kim TY, Oh YS, Suh JG (2002) Circling mouse, a spontaneous mutant in the inner ear. Exp Anim 51:167–171

    PubMed  CAS  Google Scholar 

  • Levitt P, Campbell DB (2009) The genetic and neurobiologic compass points toward common signaling dysfunctions in autism spectrum disorders. J Clin Invest 119:747–754

    PubMed  CAS  Google Scholar 

  • Lewis MH, Tanimura Y, Lee LW, Bodfish JW (2007) Animal models of restricted repetitive behavior in autism. Behav Brain Res 176:66–74

    PubMed  Google Scholar 

  • Lintas C, Persico AM (2009) Autistic phenotypes and genetic testing: state-of-the-art for the clinical geneticist. J Med Genet 46:1–8

    PubMed  CAS  Google Scholar 

  • Lise MF, El-Husseini A (2006) The neuroligin and neurexin families: from structure to function at the synapse. Cell Mol Life Sci 63:1833–1849

    PubMed  CAS  Google Scholar 

  • London E (2007) The role of the neurobiologist in redefining the diagnosis of autism. Brain Pathol 17:408–411

    PubMed  Google Scholar 

  • Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M (2000) The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30:205–223

    PubMed  CAS  Google Scholar 

  • Maggio JC, Whitney G (1985) Ultrasonic vocalizing by adult female mice (Mus musculus). J Comp Psychol 99:420–436

    PubMed  CAS  Google Scholar 

  • McAlonan GM, Suckling J, Wong N, Cheung V, Lienenkaemper N, Cheung C, Chua SE (2008) Distinct patterns of grey matter abnormality in high-functioning autism and Asperger’s syndrome. J Child Psychol Psychiatry 49:1287–1295

    PubMed  Google Scholar 

  • McDougle CJ, Erickson CA, Stigler KA, Posey DJ (2005) Neurochemistry in the pathophysiology of autism. J Clin Psychiatry 66(Suppl 10):9–18

    PubMed  CAS  Google Scholar 

  • McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN (2008) Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav 7:152–163

    PubMed  CAS  Google Scholar 

  • Miczek KA, Maxson SC, Fish EW, Faccidomo S (2001) Aggressive behavioral phenotypes in mice. Behav Brain Res 125:167–181

    PubMed  CAS  Google Scholar 

  • Mineur YS, Huynh LX, Crusio WE (2006) Social behavior deficits in the Fmr1 mutant mouse. Behav Brain Res 168:172–175

    PubMed  CAS  Google Scholar 

  • Minshew NJ, Williams DL (2007) The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch Neurol 64:945–950

    PubMed  Google Scholar 

  • Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P, Scherer SW (2007) Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 81:1289–1297

    PubMed  CAS  Google Scholar 

  • Moon J, Beaudin AE, Verosky S, Driscoll LL, Weiskopf M, Levitsky DA, Crnic LS, Strupp BJ (2006) Attentional dysfunction, impulsivity, and resistance to change in a mouse model of fragile X syndrome. Behav Neurosci 120:1367–1379

    PubMed  CAS  Google Scholar 

  • Moore SJ, Turnpenny P, Quinn A, Glover S, Lloyd DJ, Montgomery T, Dean JC (2000) A clinical study of 57 children with fetal anticonvulsant syndromes. J Med Genet 37:489–497

    PubMed  CAS  Google Scholar 

  • Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR, Piven J, Crawley JN (2004) Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 3:287–302

    PubMed  CAS  Google Scholar 

  • Moy SS, Nadler JJ, Young NB, Perez A, Holloway LP, Barbaro RP, Barbaro JR, Wilson LM, Threadgill DW, Lauder JM, Magnuson TR, Crawley JN (2007) Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res 176:4–20

    PubMed  Google Scholar 

  • Moy SS, Nadler JJ, Poe MD, Nonneman RJ, Young NB, Koller BH, Crawley JN, Duncan GE, Bodfish JW (2008a) Development of a mouse test for repetitive, restricted behaviors: relevance to autism. Behav Brain Res 188:178–194

    PubMed  CAS  Google Scholar 

  • Moy SS, Nadler JJ, Young NB, Nonneman RJ, Segall SK, Andrade GM, Crawley JN, Magnuson TR (2008b) Social approach and repetitive behavior in eleven inbred mouse strains. Behav Brain Res 191:118–129

    PubMed  Google Scholar 

  • Moy SS, Nadler JJ, Young NB, Nonneman RJ, Grossman AW, Murphy DL, D’Ercole AJ, Crawley JN, Magnuson TR, Lauder JM (2009) Social approach in genetically engineered mouse lines relevant to autism. Genes Brain Behav 8:129–142

    PubMed  CAS  Google Scholar 

  • Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, Young NB, Barbaro RP, Piven J, Magnuson TR, Crawley JN (2004) Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav 3:303–314

    PubMed  CAS  Google Scholar 

  • Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K, Tomonaga S, Watanabe Y, Chung YJ, Banerjee R, Iwamoto K, Kato T, Okazawa M, Yamauchi K, Tanda K, Takao K, Miyakawa T, Bradley A, Takumi T (2009) Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 137:1235–1246

    PubMed  Google Scholar 

  • Narita N, Kato M, Tazoe M, Miyazaki K, Narita M, Okado N (2002) Increased monoamine concentration in the brain and blood of fetal thalidomide- and valproic acid-exposed rat: putative animal models for autism. Pediatr Res 52(4):576–579

    PubMed  CAS  Google Scholar 

  • Ornoy A (2009) Valproic acid in pregnancy: how much are we endangering the embryo and fetus? Reprod Toxicol 28:1–10

    PubMed  CAS  Google Scholar 

  • Page DT, Kuti OJ, Prestia C, Sur M (2009) Haploinsufficiency for Pten and serotonin transporter cooperatively influences brain size and social behavior. Proc Natl Acad Sci USA 106:1989–1994

    PubMed  CAS  Google Scholar 

  • Panksepp JB, Jochman KA, Kim JU, Koy JJ, Wilson ED, Chen Q, Wilson CR, Lahvis GP (2007) Affiliative behavior, ultrasonic communication and social reward are influenced by genetic variation in adolescent mice. PLoS One 2:e351

    PubMed  Google Scholar 

  • Paylor R, Yuva-Paylor LA, Nelson DL, Spencer CM (2008) Reversal of sensorimotor gating abnormalities in Fmr1 knockout mice carrying a human Fmr1 transgene. Behav Neurosci 122:1371–1377

    PubMed  Google Scholar 

  • Peier AM, McIlwain KL, Kenneson A, Warren ST, Paylor R, Nelson DL (2000) (Over)correction of FMR1 deficiency with YAC transgenics: behavioral and physical features. Hum Mol Genet 9:1145–1159

    PubMed  CAS  Google Scholar 

  • Pelphrey KA, Sasson NJ, Reznick JS, Paul G, Goldman BD, Piven J (2002) Visual scanning of faces in autism. J Autism Dev Disord 32:249–261

    PubMed  Google Scholar 

  • Piven J, Palmer P, Jacobi D, Childress D, Arndt S (1997) Broader autism phenotype: evidence from a family history study of multiple-incidence autism families. Am J Psychiatry 154:185–190

    PubMed  CAS  Google Scholar 

  • Pogorelov VM, Rodriguiz RM, Insco ML, Caron MG, Wetsel WC (2005) Novelty seeking and stereotypic activation of behavior in mice with disruption of the Dat1 gene. Neuropsychopharmacology 30:1818–1831

    PubMed  CAS  Google Scholar 

  • Radyushkin K, Hammerschmidt K, Boretius S, Varoqueaux F, El-Kordi A, Ronnenberg A, Winter D, Frahm J, Fischer J, Brose N, Ehrenreich H (2009) Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav 8:416–425

    PubMed  CAS  Google Scholar 

  • Ralph RJ, Paulus MP, Fumagalli F, Caron MG, Geyer MA (2001) Prepulse inhibition deficits and perseverative motor patterns in dopamine transporter knock-out mice: differential effects of D1 and D2 receptor antagonists. J Neurosci 21:305–313

    PubMed  CAS  Google Scholar 

  • Rasalam AD, Hailey H, Williams JH, Moore SJ, Turnpenny PD, Lloyd DJ, Dean JC (2005) Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev Med Child Neurol 47:551–555

    PubMed  CAS  Google Scholar 

  • Restrepo D, Doucette W, Whitesell JD, McTavish TS, Salcedo E (2009) From the top down: flexible reading of a fragmented odor map. Trends Neurosci 32:525–531

    PubMed  CAS  Google Scholar 

  • Richter K, Wolf G, Engelmann M (2005) Social recognition memory requires two stages of protein synthesis in mice. Learn Mem 12(4):407–413

    PubMed  Google Scholar 

  • Rinaldi T, Kulangara K, Antoniello K, Markram H (2007) Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc Natl Acad Sci USA 104:13501–13506

    PubMed  CAS  Google Scholar 

  • Rinaldi T, Silberberg G, Markram H (2008) Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid. Cereb Cortex 18:763–770

    PubMed  Google Scholar 

  • Rodier PM, Ingram JL, Tisdale B, Nelson S, Romano J (1996) Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol 370:247–261

    PubMed  CAS  Google Scholar 

  • Roullet FI, Wöhr M, Crawley JN (2011) Female urine-induced male mice ultrasonic vocalizations, but not scent-marking, is modulated by social experience. Behav Brain Res 216(1):19–28

    Google Scholar 

  • Ryan BC, Young NB, Moy SS, Crawley JN (2008) Olfactory cues are sufficient to elicit social approach behaviors but not social transmission of food preference in C57BL/6J mice. Behav Brain Res 193:235–242

    PubMed  Google Scholar 

  • Sanchez-Andrade G, James BM, Kendrick KM (2005) Neural encoding of olfactory recognition memory. J Reprod Dev 51:547–558

    PubMed  Google Scholar 

  • Scattoni ML, Gandhy SU, Ricceri L, Crawley JN (2008a) Unusual repertoire of vocalizations in the BTBR T+tf/J mouse model of autism. PLoS One 3:e3067

    PubMed  Google Scholar 

  • Scattoni ML, McFarlane HG, Zhodzishsky V, Caldwell HK, Young WS, Ricceri L, Crawley JN (2008b) Reduced ultrasonic vocalizations in vasopressin 1b knockout mice. Behav Brain Res 187:371–378

    PubMed  CAS  Google Scholar 

  • Scattoni ML, Crawley J, Ricceri L (2009) Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders. Neurosci Biobehav Rev 33:508–515

    PubMed  Google Scholar 

  • Schellinck HM, Smyth C, Brown R, Wilkinson M (1993) Odor-induced sexual maturation and expression of c-fos in the olfactory system of juvenile female mice. Brain Res Dev Brain Res 74:138–141

    PubMed  CAS  Google Scholar 

  • Schneider T, Przewlocki R (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30:80–89

    PubMed  CAS  Google Scholar 

  • Schneider T, Turczak J, Przewlocki R (2006) Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: issues for a therapeutic approach in autism. Neuropsychopharmacology 31:36–46

    PubMed  CAS  Google Scholar 

  • Schneider T, Roman A, Basta-Kaim A, Kubera M, Budziszewska B, Schneider K, Przewlocki R (2008) Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology 33:728–740

    PubMed  CAS  Google Scholar 

  • Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimaki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M (2007) Strong association of de novo copy number mutations with autism. Science 316:445–449

    PubMed  CAS  Google Scholar 

  • Sheinkopf SJ, Mundy P, Oller DK, Steffens M (2000) Vocal atypicalities of preverbal autistic children. J Autism Dev Disord 30:345–354

    PubMed  CAS  Google Scholar 

  • Shu W, Cho JY, Jiang Y, Zhang M, Weisz D, Elder GA, Schmeidler J, De Gasperi R, Sosa MA, Rabidou D, Santucci AC, Perl D, Morrisey E, Buxbaum JD (2005) Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proc Natl Acad Sci USA 102:9643–9648

    PubMed  CAS  Google Scholar 

  • Silverman JL, Tolu SS, Barkan CL, CrawleyJN (2010) Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology 35(4):976–989

    Google Scholar 

  • Snow WM, Hartle K, Ivanco TL (2008) Altered morphology of motor cortex neurons in the VPA rat model of autism. Dev Psychobiol 50:633–639

    PubMed  Google Scholar 

  • South M, Ozonoff S, McMahon WM (2005) Repetitive behavior profiles in Asperger syndrome and high-functioning autism. J Autism Dev Disord 35:145–158

    PubMed  Google Scholar 

  • Spencer CM, Alekseyenko O, Serysheva E, Yuva-Paylor LA, Paylor R (2005) Altered anxiety-related and social behaviors in the Fmr1 knockout mouse model of fragile X syndrome. Genes Brain Behav 4:420–430

    PubMed  CAS  Google Scholar 

  • Spencer CM, Graham DF, Yuva-Paylor LA, Nelson DL, Paylor R (2008) Social behavior in Fmr1 knockout mice carrying a human FMR1 transgene. Behav Neurosci 122:710–715

    PubMed  CAS  Google Scholar 

  • Spezio ML, Adolphs R, Hurley RS, Piven J (2007) Abnormal use of facial information in high-functioning autism. J Autism Dev Disord 37:929–939

    PubMed  Google Scholar 

  • Stack CM, Lim MA, Cuasay K, Stone MM, Seibert KM, Spivak-Pohis I, Crawley JN, Waschek JA, Hill JM (2008) Deficits in social behavior and reversal learning are more prevalent in male offspring of VIP deficient female mice. Exp Neurol 211:67–84

    PubMed  CAS  Google Scholar 

  • Stanton ME, Peloso E, Brown KL, Rodier P (2007) Discrimination learning and reversal of the conditioned eyeblink reflex in a rodent model of autism. Behav Brain Res 176:133–140

    PubMed  Google Scholar 

  • Sudhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:903–911

    PubMed  Google Scholar 

  • Tager-Flusberg H, Caronna E (2007) Language disorders: autism and other pervasive developmental disorders. Pediatr Clin North Am 54:469–481, vi

    PubMed  Google Scholar 

  • Terranova ML, Laviola G (2005) Scoring of social interactions and play in mice during adolescence. Curr Protocols Toxicol 13:10.1–10.10

    Google Scholar 

  • Tsujino N, Nakatani Y, Seki Y, Nakasato A, Nakamura M, Sugawara M, Arita H (2007) Abnormality of circadian rhythm accompanied by an increase in frontal cortex serotonin in animal model of autism. Neurosci Res 57:289–295

    PubMed  CAS  Google Scholar 

  • Turner CA, Presti MF, Newman HA, Bugenhagen P, Crnic L, Lewis MH (2001) Spontaneous stereotypy in an animal model of Down syndrome: Ts65Dn mice. Behav Genet 31:393–400

    PubMed  CAS  Google Scholar 

  • Varga EA, Pastore M, Prior T, Herman GE, McBride KL (2009) The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly. Genet Med 11:111–117

    PubMed  Google Scholar 

  • Volkmar FR, Pauls D (2003) Autism. Lancet 362:1133–1141

    PubMed  Google Scholar 

  • Wagner GC, Reuhl KR, Cheh M, McRae P, Halladay AK (2006) A new neurobehavioral model of autism in mice: pre- and postnatal exposure to sodium valproate. J Autism Dev Disord 36(6):779–793

    PubMed  Google Scholar 

  • Wanisch K, Wotjak CT, Engelmann M (2008) Long-lasting second stage of recognition memory consolidation in mice. Behav Brain Res 186(2):191–196

    PubMed  Google Scholar 

  • Wang H, Liang S, Burgdorf J, Wess J, Yeomans J (2008) Ultrasonic vocalizations induced by sex and amphetamine in M2, M4, M5 muscarinic and D2 dopamine receptor knockout mice. PLoS One 3:e1893

    PubMed  Google Scholar 

  • Welch JM, Lu J, Rodriguiz RM, Trotta NC, Peca J, Ding JD, Feliciano C, Chen M, Adams JP, Luo J, Dudek SM, Weinberg RJ, Calakos N, Wetsel WC, Feng G (2007) Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448:894–900

    PubMed  CAS  Google Scholar 

  • Wersinger SR, Ginns EI, O’Carroll AM, Lolait SJ, Young WS 3rd (2002) Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry 7:975–984

    PubMed  CAS  Google Scholar 

  • Wersinger SR, Caldwell HK, Martinez L, Gold P, Hu SB, Young WS 3rd (2007) Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression. Genes Brain Behav 6:540–551

    PubMed  CAS  Google Scholar 

  • White NR, Prasad M, Barfield RJ, Nyby JG (1998) 40- and 70-kHz vocalizations of mice (Mus musculus) during copulation. Physiol Behav 63:467–473

    PubMed  CAS  Google Scholar 

  • Wide K, Winbladh B, Kallen B (2004) Major malformations in infants exposed to antiepileptic drugs in utero, with emphasis on carbamazepine and valproic acid: a nation-wide, population-based register study. Acta Paediatr 93:174–176

    PubMed  CAS  Google Scholar 

  • Williams PG, Hersh JH (1997) A male with fetal valproate syndrome and autism. Dev Med Child Neurol 39:632–634

    PubMed  CAS  Google Scholar 

  • Williams DL, Minshew NJ (2007) Understanding autism and related disorders: what has imaging taught us? Neuroimaging Clin N Am 17:495–509, ix

    PubMed  Google Scholar 

  • Williams G, King J, Cunningham M, Stephan M, Kerr B, Hersh JH (2001) Fetal valproate syndrome and autism: additional evidence of an association. Dev Med Child Neurol 43:202–206

    PubMed  CAS  Google Scholar 

  • Wills S, Cabanlit M, Bennett J, Ashwood P, Amaral DG, van de Water J (2009) Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behav Immun 23:64–74

    Google Scholar 

  • Winslow JT (2003) Mouse social recognition and preference. Curr Protoc Neurosci Chapter 8, Unit 8.16

    Google Scholar 

  • Winslow JT, Insel TR (2002) The social deficits of the oxytocin knockout mouse. Neuropeptides 36:221–229

    PubMed  CAS  Google Scholar 

  • Wöhr M, Roullet FI, Crawley JN (2010) Reduced scent marking and ultrasonic vocalizations in the BTBR T+tf/J mouse model of autism. Genes Brain Behav. doi: 10.1111/j.1601-183X.2010.00582.x

    Google Scholar 

  • Yang M, Crawley JN (2009) Simple behavioral assessment of mouse olfaction. Curr Protoc Neurosci Chapter 8, Unit 8.24

    Google Scholar 

  • Yang M, Scattoni ML, Zhodzishsky V, Chen T, Caldwell HK, Young WS, McFarlane HG, Crawley JN (2007a) Similar social approach behaviors in BTBR T+tf/J, C57BL/6J, and vasopressine receptor 1B knockout mice tested on conventional versus reverse light cycles, and in replications across cohorts. Front Behav Neurosci 1:9

    Google Scholar 

  • Yang M, Zhodzishsky V, Crawley JN (2007b) Social deficits in BTBR T+tf/J mice are unchanged by cross-fostering with C57BL/6J mothers. Int J Dev Neurosci 25:515–521

    PubMed  Google Scholar 

  • Yang M, Clarke AM, Crawley JN (2009) Postnatal lesion evidence against a primary role for the corpus callosum in mouse sociability. Eur J Neurosci 29:1663–1677

    PubMed  Google Scholar 

  • Young LJ, Pitkow LJ, Ferguson JN (2002) Neuropeptides and social behavior: animal models relevant to autism. Mol Psychiatry 7(suppl 2):S38–S39

    PubMed  Google Scholar 

  • Zecavati N, Spence SJ (2009) Neurometabolic disorders and dysfunction in autism spectrum disorders. Curr Neurol Neurosci Rep 9:129–136

    PubMed  CAS  Google Scholar 

  • Zhou J, Blundell J, Ogawa S, Kwon CH, Zhang W, Sinton C, Powell CM, Parada LF (2009) Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J Neurosci 29:1773–1783

    PubMed  CAS  Google Scholar 

  • Zippelius HM, Schleidt WM (1956) Ultraschall-aute bei jungen Mausen. Naturwissenschaften 43:502–503

    Google Scholar 

  • Zwaigenbaum L, Bryson S, Rogers T, Roberts W, Brian J, Szatmari P (2005) Behavioral manifestations of autism in the first year of life. Int J Dev Neurosci 23:143–152

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Florence I. Roullet or Jacqueline N. Crawley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roullet, F.I., Crawley, J.N. (2011). Mouse Models of Autism: Testing Hypotheses About Molecular Mechanisms. In: Hagan, J. (eds) Molecular and Functional Models in Neuropsychiatry. Current Topics in Behavioral Neurosciences, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2010_113

Download citation

Publish with us

Policies and ethics