Skip to main content

Bacterial Transition Metal Homeostasis

  • Chapter
  • First Online:
Molecular Microbiology of Heavy Metals

Part of the book series: Microbiology Monographs ((MICROMONO,volume 6))

Abstract

Since details on metal cation transport proteins and on the allocation mechanisms for transition metals are provided elsewhere in this book, I will present aspects of transition metal homeostasis in a hopefully novel overview. We will start with a microbial look at the transition metal Periodic Table, cation speciation, and availability in the environment. This information provides rules that might govern microbial metal cation homeostasis from the outside of the cell. The fate of metal cations inside the cell is influenced by redox potentials and affinities to ligands in complex compounds. Understanding this topic requires study of interactions between metal cations and the consequences thereof. External availability and internal binding equilibria are connected by transport reactions. These lead to metal cation concentrations in cellular compartments, which are in flow equilibrium of import and export reactions. Thus, cellular cation homeostasis may be described as an interplay of transport flow backbone and competitive binding reactions. Both together provide an energy landscape for each metal cation and cellular compartment. As a recent part of the transport flow backbone in Gram-negative bacteria, efflux across the outer membrane from the periplasm to the outside has been identified. Active outer membrane efflux might indeed be taking place in Gram-negative bacteria. Thus, the periplasm is important in bacterial metal cation homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson J, Riistama S, Larsson G, Jasaitis A, Svensson-Ek M, Laakkonen L, Puustinen A, Iwata S, Wikstrom M (2000) The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat Struct Biol 7:910–917

    Article  PubMed  CAS  Google Scholar 

  2. Akama H, Kanemaki M, Yoshimura M, Tsukihara T, Kashiwagi T, Yoneyama H, Narita S-I, Nakagawa A, Nakae T (2004a) Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa. Dual modes of membrane anchoring and occluded cavity end. J Biol Chem 279:52816–52819

    Article  PubMed  CAS  Google Scholar 

  3. Akama H, Matsuura T, Kashiwagi S, Yoneyama H, Narita SI, Tsukihara T, Nakagawa A, Nakae T (2004b) Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J Biol Chem 279:25939–25942

    Article  PubMed  CAS  Google Scholar 

  4. Alcaraz A, Nestorovich EM, Aguilella-Arzo M, Aguilella VM, Bezrukov SM (2004) Salting out the ionic selectivity of a wide channel: the asymmetry of OmpF. Biophys J 87:943–957

    Article  PubMed  CAS  Google Scholar 

  5. Altendorf K, Epstein W (1996) The Kdp-ATPase of Escherichia coli. In: Dalbey RE (ed) Advances in cell and molecular biology of membranes and organelles. JAI, Greenwich, UK, pp 401–418

    Google Scholar 

  6. Amoroso MJ, Schubert D, Mitscherlich P, Schumann P, Kothe E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. J Basic Microbiol 40:295–301

    Article  PubMed  CAS  Google Scholar 

  7. Andersen C, Hughes C, Koronakis V (2001) Protein export and drug efflux through bacterial channel-tunnels. Curr Opin Cell Biol 13:412–416

    Article  PubMed  CAS  Google Scholar 

  8. Aslund A, Beckwith J (1999) Bridge over troubled waters: sensing stress by disulfide formation. Cell 96:751–753

    Article  PubMed  CAS  Google Scholar 

  9. Bhattacharjee H, Rosen BP (2007) Arsenic Metabolism in Prokaryotic and Eukaryotic Microbes (in this volume). Springer, Heidelberg

    Google Scholar 

  10. Braun V, Hantke K (2007) Acquisition of Iron by Bacteria (in this volume). Springer, Heidelberg

    Google Scholar 

  11. Cervantes C, Campos-Garcia J (2007) Reduction and Efflux od Chromate by Bacteria (in this volume). Springer, Heidelberg

    Google Scholar 

  12. Changela A, Chen K, Xue Y, Holschen J, Outten CE, O'Halloran TV, Mondragon A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387

    Article  PubMed  CAS  Google Scholar 

  13. Chao Y, Fu D (2004) Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB. J Biol Chem 279:12043–12050

    Article  PubMed  CAS  Google Scholar 

  14. Danelon C, Suenaga A, Winterhalter M, Yamato I (2003) Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation. Biophys Chem 104:591–603

    Article  PubMed  CAS  Google Scholar 

  15. Egler M, Große C, Grass G, Nies DH (2005) Role of ECF sigma factor RpoE in heavy metal resistance of Escherichia coli. J Bacteriol 187:2297–2307

    Article  PubMed  CAS  Google Scholar 

  16. Eitinger T, Suhr J, Moore L, Smith JAC (2005) Secondary transporters for nickel and cobalt ions: theme and variations. Biometals 18:399–405

    Article  PubMed  CAS  Google Scholar 

  17. Fagan MJ, Saier MH Jr (1994) P-type ATPases of eukaryotes and bacteria: sequence comparisons and construction of phylogenetic trees. J Mol Evol 38:57–99

    Article  PubMed  CAS  Google Scholar 

  18. Franke S, Grass G, Nies DH (2001) The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology 147:965–972

    PubMed  CAS  Google Scholar 

  19. Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper-transporting CusCFBA efflux system from Escherichia coli. J Bacteriol 185:3804–3812

    Article  PubMed  CAS  Google Scholar 

  20. Goldberg M, Pribyl T, Juhnke S, Nies DH (1999) Energetics and topology of CzcA, a cation/proton antiporter of the RND protein family. J Biol Chem 274:26065–26070

    Article  PubMed  CAS  Google Scholar 

  21. Grass G, Rensing C (2001a) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun 286:902–908

    Article  PubMed  CAS  Google Scholar 

  22. Grass G, Rensing C (2001b) Genes involved in copper homeostasis in Escherichia coli. J Bacteriol 183:2145–2147

    Article  PubMed  CAS  Google Scholar 

  23. Grass G, Fan B, Rosen BP, Lemke K, Schlegel HG, Rensing C (2001) NreB from Achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistance. J Bacteriol 183:2803–2807

    Article  PubMed  CAS  Google Scholar 

  24. Grass G, Thakali K, Klebba PE, Thieme D, Müller A, Wildner GF, Rensing C (2004) Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli. J Bacteriol 186:5826–5833

    Article  PubMed  CAS  Google Scholar 

  25. Grass G, Franke S, Taudte N, Nies DH, Kucharski LM, Maguire ME, Rensing C (2005a) The metal permease ZupT from Escherichia coli is a transporter with a broad substrate spectrum. J Bacteriol 187:1604–1611

    Article  PubMed  CAS  Google Scholar 

  26. Grass G, Fricke B, Nies DH (2005b) Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations. Biometals 18:437–448

    Article  PubMed  CAS  Google Scholar 

  27. Grass G, Otto M, Fricke B, Haney CJ, Rensing C, Nies DH, Munkelt D (2005c) FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch Microbiol 183:9–18

    Article  PubMed  CAS  Google Scholar 

  28. Hausinger RP, Zamble D (2007) Micobial Physiology of Nickel and Cobalt (in this volume). Springer, Heidelberg

    Google Scholar 

  29. Heldal M, Norland S, Tumyr O (1985) X-ray microanalytic method for measurement of dry matter and elemental content of individual bacteria. Appl Environ Microbiol 50:1251–1257

    PubMed  CAS  Google Scholar 

  30. Higgins MK, Bokma E, Koronakis E, Hughes C, Koronakis V (2004) Structure of the periplasmic component of a bacterial drug efflux pump. Proc Natl Acad Sci USA 101:9994–9999

    Article  PubMed  CAS  Google Scholar 

  31. Hobman J, Yamamoto K, Oshima T (2007) Transciptomic Responses of Bacterial Cells to sublethal Metal Ion Stress (in this volume). Springer, Heidelberg

    Google Scholar 

  32. Housecroft CE, Constable EC (2006) Chemistry, 3rd edn. Pearson Education, Essex, UK

    Google Scholar 

  33. Kirlin WG, Cai J, Thompson SA, Diaz D, Kavanagh TJ, Jones DP (1999) Glutathione redox potential in response to differentiation and enzyme inducers. Free Radic Biol Med 27:1208–1218

    Article  PubMed  CAS  Google Scholar 

  34. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919

    Article  PubMed  CAS  Google Scholar 

  35. Kosman DJ (2003) Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47:1185–1197

    Article  PubMed  CAS  Google Scholar 

  36. Kosower NS, Kosower EM (1978) The glutathione status of cells. Int Rev Cytol 54:109–160

    Article  PubMed  CAS  Google Scholar 

  37. Wesenberg D, Bleuel C, Krauss GJ (2007) A Glossary of Microanalytical Approaches to Assess the Metallome (in this volume). Springer, Heidelberg

    Google Scholar 

  38. Lawrence JG, Roth JR (1995) The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli. J Bacteriol 177:6371–6380

    PubMed  CAS  Google Scholar 

  39. Legatzki A, Anton A, Grass G, Rensing C, Nies DH (2003a) Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol 185:4354–4361

    Article  PubMed  CAS  Google Scholar 

  40. Legatzki A, Franke S, Lucke S, Hoffmann T, Anton A, Neumann D, Nies DH (2003b) First step towards a quantitative model describing Czc-mediated heavy metal resistance in Ralstonia metallidurans. Biodegradation 14:153–168

    Article  PubMed  CAS  Google Scholar 

  41. Liesegang H, Lemke K, Siddiqui RA, Schlegel H-G (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J Bacteriol 175:767–778

    PubMed  CAS  Google Scholar 

  42. Loftin IR, Franke S, Roberts SA, Weichsel A, Heroux A, Montfort WR, Rensing C, McEvoy MM (2005) A novel copper-binding fold for the periplasmic copper resistance protein CusF. Biochemistry 44:10533–10540

    Article  PubMed  CAS  Google Scholar 

  43. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    PubMed  CAS  Google Scholar 

  44. Missiakas D, Raina S (1998) The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28:1059–1066

    Article  PubMed  CAS  Google Scholar 

  45. Mitra B, Rensing C (2007) Zinc, Cadmium and Lead Resistance and Homeostasis (in this volume). Springer, Heidelberg

    Google Scholar 

  46. Munkelt D, Grass G, Nies DH (2004) The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. J Bacteriol 186:8036–8043

    Article  PubMed  CAS  Google Scholar 

  47. Murakami S, Nakashima R, Yamashita R, Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–593

    Article  PubMed  CAS  Google Scholar 

  48. Murakami S, Tamura N, Saito A, Hirata T, Yamaguchi A (2004) Extramembrane central pore of multidrug exporter AcrB in Escherichia coli plays an important role in drug transport. J Biol Chem 279:3743–3748

    Article  PubMed  CAS  Google Scholar 

  49. Nies DH (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol 177:2707–2712

    PubMed  CAS  Google Scholar 

  50. Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  51. Nies DH (2000) Heavy metal resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia spec. CH34. Extremophiles 4:77–82

    Article  PubMed  CAS  Google Scholar 

  52. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  PubMed  CAS  Google Scholar 

  53. Nies DH (2004a) Essential and toxic effects of elements on microorganisms. In: Anke K, Ihnat M, Stoeppler M (eds) Metals and their compounds in the environment. Wiley-VCH, Weinheim (part II.1)

    Google Scholar 

  54. Nies DH (2004b) Incidence and function of sigma factors in Ralstonia metallidurans and other bacteria. Arch Microbiol 181:255–268

    Article  PubMed  CAS  Google Scholar 

  55. Nies DH, Brown N (1998) Two-component systems in the regulation of heavy metal resistance. In: Silver S, Walden W (eds) Metal ions in gene regulation. Chapman Hall, London/New York, pp 77–103

    Google Scholar 

  56. Nies DH, Silver S (1989) Metal ion uptake by a plasmid-free metal-sensitive Alcaligenes eutrophus strain. J Bacteriol 171:4073–4075

    PubMed  CAS  Google Scholar 

  57. Nies DH, Mergeay M, Friedrich B, Schlegel HG (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 169:4865–4868

    PubMed  CAS  Google Scholar 

  58. Nies DH, Nies A, Chu L, Silver S (1989) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86:7351–7355

    Article  PubMed  CAS  Google Scholar 

  59. Nies DH, Koch S, Wachi S, Peitzsch N, Saier MHJ (1998) CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate transporters. J Bacteriol 180:5799–5802

    PubMed  CAS  Google Scholar 

  60. Nies DH, Rehbein G, Hoffmann T, Baumann C, Grosse C (2006) Paralog of genes encoding metal resistance proteins in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 147:82–93

    Article  CAS  Google Scholar 

  61. Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32

    PubMed  CAS  Google Scholar 

  62. Olesky M, Zaho S, Rosenberg RL, Nicholas RA (2006) Porin-mediated antibiotic resistance in Neisseria gonorrhoeae: ion, solute, and antibiotic permeation through PIB proteins with penB mutations: interaction OMP and RND transporter. J Bacteriol 188:2300–2308

    Article  PubMed  CAS  Google Scholar 

  63. Outten CE, O'Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    Article  PubMed  CAS  Google Scholar 

  64. Outten FW, Huffman DL, Hale JA, O'Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677

    Article  PubMed  CAS  Google Scholar 

  65. Padan E, Venturi M, Gerchman Y, Dover N (2001) Na+/H+ antiporters. Biochim Biophys Acta 1505:144–157

    Article  PubMed  CAS  Google Scholar 

  66. Palmer M (2003) Efflux of cytoplasmically acting antibiotics from Gram-negative bacteria: periplasmic substrate capture by multicomponent efflux pumps inferred from their cooperative action with single-component transporters. J Bacteriol 185:5287–5289

    Article  PubMed  CAS  Google Scholar 

  67. Papp KM, Moomaw AS, Maguire M (2007) Manganese: Uptake, Biological Function and Role in Virulence (in this volume). Springer, Heidelberg

    Google Scholar 

  68. Paulsen IT, Park JH, Choi PS, Saier MH JR (1997) A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiol Lett 156:1–8.

    Article  PubMed  CAS  Google Scholar 

  69. Rensing C, Ghosh M, Rosen BP (1999) Families of soft-metal-ion-transporting ATPases. J Bacteriol 181:5891–5897

    PubMed  CAS  Google Scholar 

  70. Richter OM, Ludwig B (2003) Cytochrome c oxidase—structure, function, and physiology of a redox-driven molecular machine. Rev Physiol Biochem Pharmacol 147:47–74

    Article  PubMed  CAS  Google Scholar 

  71. Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (2002) Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Natl Acad Sci USA 99:2766–2771

    Article  PubMed  CAS  Google Scholar 

  72. Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T (2006) Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 188:317–327

    Article  PubMed  CAS  Google Scholar 

  73. Rodrigue A, Effantin G, Mandrand-Berthelot MA (2005) Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 187:2912–2916

    Article  PubMed  CAS  Google Scholar 

  74. Rost J, Rapoport S (1964) Reduction potential of glutathione. Nature 201:185–187

    Article  PubMed  CAS  Google Scholar 

  75. Saier MH Jr, Tam R, Reizer A, Reizer J (1994) Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 11:841–847

    Article  PubMed  CAS  Google Scholar 

  76. Schaifers K, Traving G (1984) Meyers Handbuch Weltall. Bibliographisches Institut, Mannheim

    Google Scholar 

  77. Schwarz G, Hagedoorn P-L, Fischer K (2007) Molybdate and Tungstate: Uptake, Homeostasis, Cofactor Synthesis and Enzymes (in this volume). Springer, Heidelberg

    Google Scholar 

  78. Sensfuss C, Reh M, Schlegel HG (1986) No correlation exists between the conjugative transfer of the autotrophic character and that of plasmids in Nocardia opaca strains. J Gen Microbiol 132:997–1007

    PubMed  CAS  Google Scholar 

  79. Sharma R, Rensing C, Rosen BP, Mitra B (2000) The ATP hydrolytic activity of purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli. J Biol Chem 275:3873–3878

    Article  PubMed  CAS  Google Scholar 

  80. Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353

    Article  PubMed  CAS  Google Scholar 

  81. Snavely MD, Miller CG, Maguire ME (1991) The mgtB Mg2+transport locus of Salmonella typhimurium encodes a P-type ATPase. J Biol Chem 266:815–823

    PubMed  CAS  Google Scholar 

  82. Stenberg F, Chovanec P, Maslen SL, Robinson CV, Ilag LL, von Heijne G, Daley DO (2005) Protein complexes of the Escherichia coli cell envelope. J Biol Chem 280:34409–34419

    Article  PubMed  CAS  Google Scholar 

  83. Teplyakov A, Obmolova G, Toedt J, Galperin MY, Gilliland GL (2005) Crystal structure of the bacterial YhcH protein indicates a role in sialic acid catabolism. J Bacteriol 187:5520–5527

    Article  PubMed  CAS  Google Scholar 

  84. Tseng T-T, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MHJ (1999) The RND superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125

    PubMed  CAS  Google Scholar 

  85. Walderhaug M, Polarek J, Voelkner P, Daniel J, Hesse J, Altendorf K, Epstein W (1992) KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor–effector class of regulators. J Bacteriol 174:2152–2159

    PubMed  CAS  Google Scholar 

  86. Weast RC (1984) CRC handbook of chemistry and physics, 64th edn. CRC, Boca Raton, Florida

    Google Scholar 

  87. Webb M (1970) Interrelationship between utilization of magnesium and the uptake of other bivalent cations by bacteria. Biochim Biophys Acta 222:428–439

    PubMed  CAS  Google Scholar 

  88. Wood BJ, Walter MJ, Wade J (2006) Accretion of the Earth and segregation of its core. Nature 441:825–833

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich H. Nies .

Editor information

Dietrich H. Nies Simon Silver

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nies, D.H. (2007). Bacterial Transition Metal Homeostasis. In: Nies, D.H., Silver, S. (eds) Molecular Microbiology of Heavy Metals. Microbiology Monographs, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_075

Download citation

Publish with us

Policies and ethics