Skip to main content

Macrofouling Control in Power Plants

  • Chapter
  • First Online:
Springer Series on Biofilms

Abstract

Macrofouling organisms readily colonize artificial man-made structures, cooling water intake tunnels, culverts, pump chambers and heat exchangers. Cooling water systems if not properly treated invariably become susceptible to biofouling. The problem is particularly severe in the tropics and is site-, season-, and substratum-specific. Further, cooling systems serve as a source of macrofouling organisms and breeding grounds wherein invertebrate larvae are produced and colonize equipment downstream like pipelines, valves and heat exchangers. Once-through seawater or freshwater systems encounter severe macrofouling-associated problems like flow reduction, increased pressure drop across heat exchangers and equipment breakdown. Biocidal dose and regime for cooling water systems and heat-exchangers have to be tailor-made for a power plant and should be effective in controlling microbial biofouling as well as hard foulants (barnacles, mussels, tubeworms and oysters). With regard to macrofouling control in condenser-cooling systems of power plants, chlorination has been the method of choice for fouling control over the years due to its low cost, easy availability and handling, and known degradation pathways. Increasing awareness on the toxic effects of chlorination by-products and better understanding of the biocidal action, environmental issues and higher dosages required for sanitization of surfaces has resulted in replacement of chlorine by stronger oxidizing biocides like chlorine dioxide. Experimental studies using coastal seawater in plate heat exchangers, has revealed a chlorine residual of 1.0 ppm to prevent settlement of invertebrate larvae. However, an intermittent chlorination dose of 1.2 ppm residuals at a frequency of 0.5–2 h was sufficient in controlling slime formation. Side-stream monitoring of these heat exchangers in a nuclear power plant cooling circuit revealed barnacle fouling in spite of continuous chlorination of 0.2–0.3 ppm residuals and shock doses of 0.4–0.6 ppm twice a week for 8 h. In an operational plant, continuous monitoring of the fouling situation using side-stream monitoring devices is to be practised and the biocidal dose and regime altered to overcome any spikes in settlement. This is essentially because biocidal doses required to kill established fouling communities are far higher than those for inhibiting settlement. Even if killing is achieved, accumulation of dead shell biomass (barnacles and tubeworms) often results in loading on equipment surfaces and increases surface roughness, facilitating settlement of other fouling organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ambrogi R (1997) Environmental impact of biocidal antifouling alternative treatments on seawater once-through cooling systems. In: Chlorine dioxide and disinfection.Proceedings of first European symposium on chlorine dioxide and disinfectionCollana Ambiente Rome119–132 17 7–8 Nov 1996

    Google Scholar 

  • Aprosi G (1988) Bryozoans in cooling water circuits of a power plant. Verh Int Verein Limnol 23:1542–1547

    Google Scholar 

  • Barton LK (1990) Control of zebra mussels at CEI facilities. Annual meeting of the American power conference, 23–25 April 1990, Chicago, pp. 1001–1005

    Google Scholar 

  • Bass ML , Heath AG (1977) Cardiovascular and respiratory changes in rainbow trout, Salmo gairdneri. exposed intermittently to chlorine Water Res 11:497–502

    Article  CAS  Google Scholar 

  • Belanger SE, Cherry DS, Farris JL, Sappington KG, Cairns J (1991) Sensitivity of the Asiatic clam to various biocidal control agents. J Am Water Works Assoc 83:79–87

    CAS  Google Scholar 

  • Bell KJ (1977) The effect of fouling on heat exchanger design, construction and operation. In: Proceedings of the Ocean Thermal Energy Conversion (OTEC) biofouling and corrosion symposium, pp. 19–29

    Google Scholar 

  • Belluati M, Bartole L, Bressan G (1997) Chlorine dioxide and disinfection In: Proceedings of first European symposium on chlorine dioxide and disinfection Collana Ambiente Rome17 7–8 Nov 1996

    Google Scholar 

  • Bott TR (1993) Aspects of biofilm formation and destruction. Corrosion Rev 11:(1–2)1–24

    CAS  Google Scholar 

  • Bott TR (1995) Fouling of heat exchangers. Elsevier, Amsterdam, p. 576

    Google Scholar 

  • Bott TR, Tianqing L (2004) Ultrasound enhancement of biocide efficiency. Ultrason Sonochem 11:323–326

    Article  PubMed  CAS  Google Scholar 

  • Brankevich GJ, De Mele MLF, Videla HA (1990) Biofouling and corrosion in coastal power plant cooling water systems. MTS J 24:18–28

    Google Scholar 

  • Butterfield PW, Camper AK, Ellis BD, Jones WL (2002a) Chlorination of model drinking water biofilm: implications for growth and organic carbon removal. Water Res 36:4391–4405

    Article  CAS  Google Scholar 

  • Butterfield PW, Camper AK, Biederman A, Bargmeyer AM (2002b) Minimizing biofilm in the present of iron oxides and humic substances. Water Res 36:3898–3910

    Article  CAS  Google Scholar 

  • Chow W (1987) Targeted chlorination schedules and corrosion evaluations. American Power Conference Chicago

    Google Scholar 

  • Claudi R, Mackie GL (1994) Practical manual for Zebra Mussel monitoring and control. Lewis, , p. Boca Raton227

    Google Scholar 

  • Collins TM (1964) A method for designing seawater culverts using fluid shear for the prevention of marine fouling. Central Electricity Research Laboratories Leatherhead,pp. 1–5 CERL report no RD/1/N93/64

    Google Scholar 

  • Corfield J, Spooner D, Ray D, Clearwater S, Macaskill B, Roper D (2004) Biofouling issues for the Marsden B power station cooling water systemNational Institute of Water and Atmospheric Research, Wellington, NZ. NIWA client report HAM 2005–106 NIWA Project MRP05251.

    Google Scholar 

  • Corpe WA (1977) Marine microfouling and OTEC heat exchangers. Proceedings of the Ocean Thermal Energy Conversion (OTEC) biofouling and corrosion symposium, pp. 31–44

    Google Scholar 

  • Coughlan J, Whitehouse J (1977) Aspects of chlorine utilization in the UK. Chesapeake Sci 18:(1)102–111

    Article  CAS  Google Scholar 

  • Cristiani P (2005) Solutions to fouling in power station condensers. Appl Therm Eng 25:2630–2640

    Article  CAS  Google Scholar 

  • Dohorty FG, Farris JL, Cherry DS, Cairns Jr. J (1986) Control of freshwater fouling bivalve Corbicula fluminea. by halogenation Arch Environ Contam Toxicol 15:535–542

    Article  Google Scholar 

  • RM Donlan (2000) Biofilm control in industrial water systems: approaching an old problem in new ways. In: Evans LV (ed.) Biofilms: recent advances in their study and control. Harwood Academic, pp. 333-361

    Google Scholar 

  • Donlan RM, Elliott DL, Gibbon DL (1997) Use of surfactants to control silt and biofilm deposition onto PVC fill in cooling water systems. International water conference, paper no IWC-97–73

    Google Scholar 

  • Drake RC (1977) Increasing heat exchanger efficiency through continuous mechanical tube maintainance. In: Jensen LD (ed.) Biofouling control procedures technology and ecological effects. Marcel Dekker, New York pp. 43–53

    Google Scholar 

  • Duvivier L, Leynen M, Ollivier F, Van Damme A (1996) Fighting zebra mussel fouling with ozone. In: Proceedings of the EPRI PSE Service water systems reliability improvement seminar Daytona Beach FLp. 1425–27 June 1996

    Google Scholar 

  • Electric Power Research Institute (EPRI) (1980) Review of open literature on effects of chlorine on aquatic organisms. Report to the EPRI by Oak Ridge National Laboratory. EPRI, Palo Alto, CA

    Google Scholar 

  • Engineering Sciences Data Unit (ESDU) (2000) Heat exchanger fouling in the pre-heat train of a crude oil distillation unit. ESDU item 00016, ESDU, London

    Google Scholar 

  • Epstein N (1983) Thinking about heat transfer fouling: a 5 × 5 matrix. Heat Transfer Eng. 14:(1)25–36

    Google Scholar 

  • European IPPC Bureau (2000) Document on the application of best available techniques to industrial cooling systems, November 2000. BREF (11.00) Cooling systems. European IPPC Bureau, Sevilla. http://eippcb.jrc.es. Last accessed 14 July 2008

  • Fisher DJ, Burton DT, Yonkos LT, Turley SD, Ziegler GP (1999) The relative acute toxicity of continuous and intermittent exposures of chlorine and bromine to aquatic organisms in the presence and absence of ammonia. Water Res 33:(3)760–768

    Article  CAS  Google Scholar 

  • Flemming HC (2002) Biofouling in water systems-cases, causes and countermeasures. Appl Microbiol Biotechnol 59:629–640

    Article  PubMed  CAS  Google Scholar 

  • Flemming HC, Griebe T (2000) Control of biofilms in industrial waters and processes. In: Walker J, Surman S, Jass (eds.) Industrial biofouling. Wiley, , Londonpp. 125–137

    Google Scholar 

  • Fletcher M, Lessmann JM, Loeb GI (1991) Bacterial surface adhesives and biofilm matrix polymers of marine and freshwater bacteria. Biofouling 4:129–140

    Article  CAS  Google Scholar 

  • Folino-Rorem NC, Indelicato J (2005) Controlling biofouling caused by the colonial hydroid Cordylophora caspia. Water Res 39:2731–2737

    Article  PubMed  CAS  Google Scholar 

  • Forster M, Aufustin W, Bohnet M (1999) Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation. Chem Eng Process 39:449–461

    Article  Google Scholar 

  • Fritsch A, Adamson W, Castelli V (1977) An evaluation of mechanical cleaning methods for removal of soft fouling from heat exchanger tubes in OTEC power plants. Proceedings of the Ocean Thermal Energy Conversion (OTEC) biofouling and corrosion symposium. pp. 159–166

    Google Scholar 

  • Geraci S, Ambrogi R, Festa V, Piraino S (1993) Field and laboratory efficacy of chlorine dioxide as antifouling in cooling systems of power plants. Oebalia 19:383–393

    Google Scholar 

  • Goodman PD (1987) Effect of chlorination on materials for seawater cooling system: a review of chemical reactions. Br Corros J 22:(1)56–62

    CAS  Google Scholar 

  • Gunasingh M, Jesudoss KS, Nandakumar K, Satpathy KK, Azariah J, Nair KVK (2002) Lethal and sub-lethal effects of chlorination on green mussel Perna viridis in the context of biofouling control in a power plant cooling water system. Mar Env Res 53:65–76

    Article  Google Scholar 

  • Hesselgreaves JE (2002) An approach to fouling allowances in the design of compact heat exchangers. App Therm Eng 22:755–762

    Article  Google Scholar 

  • Ingols RS, Wyckoff HA, Kethley TW, Hodgden HW, Fincher EL, Hildebrand JC, Mandel JE (1953) Bactericidal studies of chlorine. Ind Eng Chem 45:996–1000

    Article  CAS  Google Scholar 

  • Itoh M, Nishihara H, Aramaki K (1995) Preparation and evaluation of two dimensional polymer films by chemical modification of an alkanethiol self assembled monolayer for protection of copper against corrosion. J Electrochem Soc 142:3696–3704

    Article  CAS  Google Scholar 

  • James WG (1985) Mussel fouling and use of exomotive chlorination. Chem Ind 994-996.

    Google Scholar 

  • Jenner HA (1980) The biology of the mussel Mytilus edulis. in relation to fouling problems in industrial cooling water systems Janvier 434:13–19

    Google Scholar 

  • Jenner HA (1982) Physical methods in the control of mussel fouling in seawater cooling systems. Trib Cebedeau 35:287–291

    Google Scholar 

  • Jenner HA (1983) Control of mussel fouling in The Netherlands: experimental and existing methods. In: Tous IAD, Miller MJ, Mussalli YG (eds.) Condenser macrofouling control technologies: the state of the art.Electric Power Research Institute Hyannis. MApp. 12–24

    Google Scholar 

  • Jenner HA, Davis MH (1998) A new design in monitoring fouling: KEMA Biofouling Monitor Fawley Biobox. In: Abstracts from the eighth international zebra mussel and other nuisance species conference, Sacramento, CA16–19 March 1998

    Google Scholar 

  • Jenner HA, Janssen-Mommen JPM (1993) Monitoring and control of Dreissena polymorpha In: and other macrofouling bivalves in the Netherlands.Nalepa TF, Schloesser DW (eds.) Zebra mussels biology, impacts and control. Lewis, Boca Raton pp. 537–554

    Google Scholar 

  • Jenner , HA Whitehouse JW, Taylor CJL, Khalanski M (1998) Cooling water management in European power stations: biology and control of fouling. Hydroecologie Appliquee 10:(1–2)225

    Google Scholar 

  • Johnson KI, Henager CH, Page TL, Hayes PF (1986) Engineering factors influencing Corbicula. In: fouling in Nuclear Service Water SystemsProceedings of the EPRI symposium on condenser macrofouling control technologies: the state of the art. Electric Power Research Institute, Palo Alto, CA

    Google Scholar 

  • Kawabe A, Treplin FW (1986) Control of macrofouling in Japan, existing and experimental methods. Res Rep 23:1–42

    Google Scholar 

  • Khalanski M (1993) Testing of five methods for the control of zebra mussels in cooling circuits of power plants located on the Moselle River. Proceedings: third international Zebra mussel conferenceToronto Canada

    Google Scholar 

  • Khalanski M, Bordet F (1980) Effects of chlorination on marine mussels. In: Jolly RL, Brungs WA, Cumming RB (eds.) Water chlorination chemistry environmental impacts and health effects, vol 3. Ann Arbor Science, Ann Arbor, Michigan, pp. 557–567

    Google Scholar 

  • Kilgour BW, Mackie GL (1993) Colonization of different construction materials by the Zebra Mussel Dreissena polymorpha, In: (Bivalvia: Dreissenidae)Nalepa TF, Schloesser DW (eds) Zebra mussels biology, impacts and control. Lewis, , Boca Ratonpp. 167–173

    Google Scholar 

  • Kovalak WP, Longton GD, Smithee RD (1993) Infestation of power plant water systems by the zebra mussel (Dreissena polymorpha. In: Pallas)Nalepa TF, Schloesser DW (eds) Zebra mussels: biology, impacts and control. Lewis, Boca Raton, pp. 359–380

    Google Scholar 

  • Kukulka DJ, Devgun M (2007) Fluid temperature and velocity effect on fouling. Appl Thermal Eng 27:2732–2744

    Article  Google Scholar 

  • Leitch EG (1993) Evaluation of coatings for “Zebra Mussels”. Agenda and abstracts of third international Zebra mussel conferenceToronto Canada1993

    Google Scholar 

  • Lewis BG (1983) Development of a preliminary model to predict time in days for 100% kill of mussels subject to continuous chlorination. CERL note no TPRD/L/2469/N83, Central Electricity Research Laboratories, Leatherhead

    Google Scholar 

  • Lewis D, Van Benschoten JE, Jensen (1993) A study to determine effective ozone dose at various temperatures for inactivation of adult Zebra mussels. Unpublished report for Ontario Hydro

    Google Scholar 

  • Leglize L, Ollivier F (1981) Mise au point bi-bliographique sur la biologie et l’ecologie de Dreissena polymorpha PALAS (1771) repartition geographique en France et dans les pays limitrophes. EDF/DER Report HE/31–81.37

    Google Scholar 

  • Ludensky M (2003) Control and monitoring of biofilms in industrial applications. Int Biodeter Biodegr 51:255–263

    Article  Google Scholar 

  • Lutey RW, King VM, Gleghorn M (1989) Mechanisms of action of dimethylamides as a penetrant/dispersant in cooling water systems. International water conference, paper no IWC-89–33

    Google Scholar 

  • Martinez SS, Gallegos AA, Martinez E (2004) Electrolytically generated silver and copper ions to treat cooling water: an environmentally friendly novel alternative. Int J Hydrogen Energy 29:921–932

    Article  CAS  Google Scholar 

  • McLean RI (1973) Chlorine and temperature stress on selected estuarine invertebrates. Am Zool J Water Pollut Cont Fed 45:837–841

    CAS  Google Scholar 

  • McMahon RF, Ussery TA, Miller AC (1993) Thermal tolerance in Zebra mussels (Dreissena polymorpha–) relative to rate of temperature increase and acclimation temperature. In: Agenda and abstracts of the third international Zebra mussel conferenceToronto Canadapp 97–118 1993

    Google Scholar 

  • Meade RJ, Robertson LR, Taylor NR, LaZomby JG (1997) Method for preventing microbial deposits in the papermaking process with ethylene oxide/propylene oxide copolymers. US Patent No 5: 624, 575

    Google Scholar 

  • Meesters KPH, Groenestijn JWV, Gerritse J (2003) Biofouling reduction in recirculating cooling systems through biofiltration of process water. Water Res 37:525–532

    Article  PubMed  CAS  Google Scholar 

  • Melo LF, Bott TR (1997) Biofouling in water systems. Exp Therm Fluid Sci 14:375–381

    Article  CAS  Google Scholar 

  • Meyer B (2003) Approaches to prevention, removal and killing of biofilms. Int Biodeter Biodegr 51:249–253

    Article  CAS  Google Scholar 

  • Montanat M, Merle G, Migeon B (1980) Essai d’utilisation du dioxide de chlore dans la boucle TERA installee a Montereau. Resultats des tests de toxicite. EDF DER Report HE/3180.044

    Google Scholar 

  • Mott IEC, Bott TR (1991) The adhesion of biofilms to selected materials of construction for heat exchangers. Proceedings 9th international heat transfer conference, Jerusalem. 5:21–26

    Google Scholar 

  • Mott IEC, Santos R, Bott TR (1994) The effect of surface on the development of biofilms. Proceedings 3rd meeting European adhesion of micro-organisms to surfaces, Chatenay-Malabry– C21:1–2

    Google Scholar 

  • Muller-Steinhagen H (1993) Fouling: the ultimate challenge for heat exchanger design. In: Lee JS, Chung SH, Kim KY (eds.) Transport phenomenon in thermal engineering, vol 2. Begell House, pp 811–823

    Google Scholar 

  • Murthy PS, Venkatesan R, Nair KVK, Inbakandan D, Syed Jehan S, Magesh Peter D, Ravindran M (2005) Evaluation of sodium hypochlorite for fouling control in plate heat exchanger for seawater application. Int Biodeter Biodegr 55:161–170

    Article  CAS  Google Scholar 

  • Murthy PS , Venkatesan R, Nair KVK, Subramoniam T (2008) Larval settlement and surfaces: implications in development of antifouling strategies. Springer Ser Biofilms. doi: 10.1007/7142_2008_17

    Google Scholar 

  • Neitzel DA, Johnson KI, Page TL, Young JS, Dalling PM (1984) Correlation of bivalve biological characterestics and service water system design.Bivalve fouling of nuclear power plant service water systems,US Nuclear Regulatory Commission Washington DCvol 1. NUREG/CR-4070, PNL-5300, vol 1.

    Google Scholar 

  • Nuzzo RG, Fusco FA, Allara DL (1987) Spontaneously organized molecular assemblies 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces. J Am Chem Soc 109:2358–2368.

    Article  CAS  Google Scholar 

  • Oldman J, Clearwater S, Hickey C, Macaskill B, Grange K, Handley S, Ray D (2004) Marsden B coal fired power station: effects of cooling water abstraction and discharge. NIWA Client Report HAM2004–108

    Google Scholar 

  • Ormerod K, Lund Y (1995) The influence of disinfection processes on biofilm formation in water distribution systems. Water Res 29:1013–1021

    Article  Google Scholar 

  • Petrucci G, Rosellini M (2005) Chlorine dioxide in seawater for fouling control and cost of disinfection in potable waterworks. Desalination 182:283–291

    Article  CAS  Google Scholar 

  • Poleman HJG, Jenner HJ (2002) Pulse chlorination the best available technique in macrofouling mitigation using chlorine. Power Plant Chem 4:93–97

    Google Scholar 

  • Prince EL, Muir AVG, Thomas WM, Stollard RJ, Sampson M, Lewis JA (2002) An evaluation of the efficacy of aqualox for microbiological control of industrial cooling tower systems. J Hosp Infect 52:243–249

    Article  PubMed  CAS  Google Scholar 

  • Rabas TJ, Panchal CB, Sasscer DS, Schaefer R (1993) Comparison of river water fouling rates for spirally indented and plain tubes. Heat Trans Eng 14:(4)58–73

    Article  CAS  ADS  Google Scholar 

  • Rajagopal S (1997) The ecology of tropical marine mussels and their control in industrial cooling water systems.University of Nijmegen Nijmegen, The NetherlandsPh.D. thesis

    Google Scholar 

  • Rajagopal S, Van Der Velde G, Jenner HA (1994) Biology and control of brackish water mussel, Mytilopsis leucophaeta in the Velsen and Hemweg power stations, The Netherlands. Part II: control measures. Report no 163871-KES/WBR 94–3128, KEMA Environmental Research, pp. 45

    Google Scholar 

  • Rajagopal S, Venugopalan VP, Azariah J, Nair KVK (1995) Response of the green mussel Perna viridis (L) to heat treatment in relation to power plant biofouling control. Biofouling 8:313–330

    Article  Google Scholar 

  • Rajagopal S, Nair KVK, Azariah J, Van der Velde G, Jenner HA (1996) Chlorination and mussel control in the cooling conduits of a tropical power station. Mar Environ Res 41:(2)201–221

    Article  CAS  Google Scholar 

  • Rajagopal S, Nair KVK, Van der Velde G, Jenner HA (1997) Response of mussel Brachidontes striatulus. to chlorination: an experimental study Aquat Toxicol 39:135–149

    Article  CAS  Google Scholar 

  • Rajagopal S, Van der Velde G, Van der Gaag M, Jenner HA (2003) How effective is intermittent chlorination to control adult mussel fouling in cooling water systems. Water Res 37:329–338

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal S, Venugopalan VP, van der Velde G, Jenner HA (2006) Mussel colonization of a high flow artificial benthic habitat: byssogenesis holds the key. Mar Environ Res 62:98–115

    Article  PubMed  CAS  Google Scholar 

  • Ramsey TGG, Tackett JH, Morris DW (1988) Effect of low-level continuous chlorination on Corbicula fluminea. Environ Toxicol Chem 7:855–856

    Article  Google Scholar 

  • Reid DC, Bott TR, Miller R (1992) Biofouling in stirred tank reactors effect of surface finish. In: Melo LF, Bott TR, Fletcher M, Capdeville B (eds.) Biofilms science and technology. Kluwer, Dordrecht, pp. 521–526

    Google Scholar 

  • Rosmaninho R, Rizzo G, Muller-Steinhagen H, Melo LF (2005) Antifouling stainless steel based surfaces for milk heating processes. In: Muller-Steinhagen H, Malayeri MR, Watkinson AP (eds.) Proceedings of 6th international conference on heat exchanger fouling and cleaning challenges and opportunities, :Kloster Irsee , Germany97–1025–10 June 2005. ECI Symp Ser RP2

    Google Scholar 

  • Roy D, Wong PK, Engelbrecht RS, Chian ES (1981) Mechanism of enteroviral inactivation by ozone. Appl Environ Microbiol 41:718–723

    PubMed  CAS  Google Scholar 

  • Sarunac N, Guida V, Weisman R, Zhang Z (1994) Integration of macrobiofouling control methods into an effective macrobiofouling control strategy. Proceedings condenser technology conference EPRI Report TR-1034753.39–3.68

    Google Scholar 

  • Sasikumar N, Nair KVK, Azariah J (1992) Response of barnacles to chlorine and heat treatment: an experimental study for power plant biofouling control. Biofouling 6:69–79

    Article  CAS  Google Scholar 

  • Shin HJ, Wang YH, Sukenik CN (1999) Pyrolysis of self-assembled organic monolayers on oxide substrates. J Mater Res 14:2116–2123

    Article  ADS  CAS  Google Scholar 

  • Sheikholeslami R (2000) Composite fouling of heat transfer equipment in aqueous media a review. Heat Transfer Eng 21:34–42

    Article  CAS  ADS  Google Scholar 

  • Smeltzer MS (2008) Biofilms and aseptic loosening. Springer Ser Biofilms. doi: 10.1007/7142_2008_1

    Google Scholar 

  • Sohn J, Amy G, Cho J, Lee Y, Yoon Y (2004) Disinfectant decay and disinfection by-products formation model development: chlorination and ozonation by-products. Water Res 38:2461–2478

    Article  PubMed  CAS  Google Scholar 

  • Strauss SD (1989) New methods, chemical improve control of biological fouling. Power 51-52

    Google Scholar 

  • Strauss SD,Puckorius PR (1984) Cooling water treatment for the control of scaling, fouling and corrosion . PowerS1-S24

    Google Scholar 

  • Syrett BC,Coit RL (1983) Causes and prevention of power plant condenser tube failures. Mater Perform 44–50

    Google Scholar 

  • Thompson IS, Richardson CA, Seed R, Walker G (2000) Quantification of Mussel (Mytilus edulis. ) growth from power station cooling waters in response to chlorination procedures Biofouling 16:(1)1–15

    Article  CAS  Google Scholar 

  • Travade F, Khalanski M (1986) Controle de la salissure biologique des circuits de centrals thermiques cotieres parles moules (Mytilus edulis. ) Etude d’optimisation de la chlorination a Gravelines Haliotis 15:265–273

    Google Scholar 

  • Turner HJ, Reynolds DM, Redfiled AC (1948) Chlorine and sodium pentachlorphenate as fouling preventatives in sea water conduits. Ind Eng Chem 40:450–453

    Article  CAS  Google Scholar 

  • Tuthill AH (1985) Sedimentation in condensers and heat exchangers. Causes Effects Power Eng 89:46–49

    Google Scholar 

  • US Environmental Protection Agency (USEPA) (1994) National primary drinking water regulations: disinfectants and disinfection. USEPA, Washington, DC

    Google Scholar 

  • US Environmental Protection Agency (USEPA) (2002) National recommended water quality criteria 2002: EPA-822-R-02–047. USEPA, Office of Water, Washington DC

    Google Scholar 

  • Van Benschoten UJE, Jensen JN, Lewis D, Brady TJ (1993) Chemical oxidants for controlling Zebra mussels (Dreissena polymorpha In: ): a synthesis of recent laboratory and filed studies.Nalepa TF, Schloesser DW (eds.) Zebra mussels biology, impacts and control. Lewis, London, pp. 599–619

    Google Scholar 

  • Venugopalan VP, Nair KVK (1990) Effects of a biofouling community on cooling water characterestics of a coastal power plant. Can J Mar Sci 8:233–245

    Google Scholar 

  • Vieira MJ, Oliveira R, Melo LF, Pinheiro MM, Van der Mei HC (1992) Biocolloids and biosurfaces. J Dispersion Sci Tech 13:(4)437–445

    Article  CAS  Google Scholar 

  • Vreenegoor SM,Block RM,Rhoderick JC,Gullans SR(1977) The effects of chlorination on the osmoregulatory ability of the blue crab Callinectes sapidus. AssocSoutheastern Biol Bull 24-93

    Google Scholar 

  • Walsh SE, Maillard JY, Russell AD, Catrenich CE, Charbonneau DL, Bartolo RG (2003) Development of bacterial resistance to several biocides and effects on antibiotic susceptibility. J Hosp Infect 55:98–107

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse JW (1985) Marine fouling and power stations. A collaborative research report by CEGB, EDF, ENEL and KEMA,pp. 1–48

    Google Scholar 

  • Whittaker C, Ridgeway HR, Olson BH (1984) Evaluation of cleaning strategies for removal of biofilms from reverse osmosis membranes. Appl Environ Microbiol 48:395–403

    PubMed  CAS  Google Scholar 

  • Wiancko PM, Claudi R (1994) The Ontario Hydro final strategy for Zebra mussel control. Fourth international Zebra mussel conference, Madison, Wisonsin, USA, pp. 225

    Google Scholar 

  • Wright JB,Michalopoulos DL (1996) Method and composition for enhancing biocidal activity.

    Google Scholar 

  • Yang CF, Xu DQ, Shen ZQ (1994) A theoretical analysis and experimental study of the induction period of calcium carbonate scaling. J Chem Ind Eng (China) 45:199–205 European Patent No EP0741109A2

    CAS  Google Scholar 

  • Yang QF, Ding J, Shen ZQ (2000a) Investigation on fouling behaviors of low energy surface and fouling fractal characterestics. Chem Eng Sci 55:797–805

    Article  CAS  Google Scholar 

  • Yang QF, Ding J, Shen ZQ (2000b) Investigation of calcium carbonate scaling on ELP surface. J Chem Eng Jpn 33:591–596

    Article  CAS  Google Scholar 

  • Young IC, Rong L, William JM, Lewis F (2000) Study of scale removal methods in a double pipe heat exchanger. Heat Transfer Eng 21:50–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this chapter

Cite this chapter

Venkatesan , R., Sriyutha Murthy, P. (2008). Macrofouling Control in Power Plants. In: Springer Series on Biofilms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7142_2008_14

Download citation

  • DOI: https://doi.org/10.1007/7142_2008_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics