Skip to main content

Nitric Oxide – A Product of Plant Nitrogen Metabolism

  • Chapter
  • First Online:
Nitric Oxide in Plant Growth, Development and Stress Physiology

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 5))

Abstract

Nitric oxide is an intermediate product of inorganic nitrogen assimilation. In plants, it can be formed either by reducing inorganic nitrogen by the nitrite-dependent pathway or by oxidation of organic nitrogen by the arginine-dependent pathway. Both pathways require adequate nitrogen supply to the plant and may not operate under nitrogen deficiency. However, the pathways are differently regulated in relation to oxygen availability and, therefore, have a different importance for underground organs like roots, than for above-ground organs like the shoot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM, Lupianez JA, del Río LA (1999). Localization of nitric-oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733

    PubMed  CAS  Google Scholar 

  • Beckman JS (1996) The physiological and pathological chemistry of nitric oxide. In: Lancaster JR (ed) Nitric oxide: principles and actions. Academic, pp 1–82

    Google Scholar 

  • Bellissimoa DB, Privalle LS (1995) Expression of spinach nitrite reductase in Escherichia coli: Site-directed mutagenesis of predicted active site amino acids. Arch Biochem Biophys 323:155–163

    Google Scholar 

  • Bérczi A, Horvath G (2003) Lipid rafts in the plant plasma membrane? Acta Biol Szegediensis 47:7–10

    Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    PubMed  CAS  Google Scholar 

  • Botrel A, Kaiser WM (1997) Nitrate reductase activation state in roots in relation to the energy and carbohydrate status. Planta 201:496–501

    PubMed  CAS  Google Scholar 

  • Botrel A, Magné C, Kaiser WM (1996) Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia. Plant Physiol Biochem 34:645–652

    CAS  Google Scholar 

  • Brunellei L, Crow JP, Beckman JS (1995) The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. Arch Biochem Biophys 316:327–334

    Google Scholar 

  • Brunswick P, Cresswell CF (1988a) Nitrite uptake into intact pea chloroplasts. I. Kinetics and relationship with nitrite assimilation. Plant Physiol 86:378–383

    PubMed  CAS  Google Scholar 

  • Brunswick P, Cresswell CF (1988b) Nitrite uptake into intact pea chloroplasts. II. Influence of electron transport regulators, uncouplers, ATPase and anion uptake inhibitors and protein binding reagents. Plant Physiol 86:384–389

    PubMed  CAS  Google Scholar 

  • Burillo S, Luque I, Fuentes I, Contreras A (2004) Interactions between the nitrogen signal transduction protein PII and N-acetyl glutamate kinase in organisms that perform oxygenic photosynthesis. J Bacteriol 186:3346–3354

    PubMed  CAS  Google Scholar 

  • Burns LC, Stevens RJ, Laughlin RJ (1996) Production of nitrite in soil by simultaneous nitrification and denitrification. Soil Biol Biochem 27:47–59

    Google Scholar 

  • Catoni E, Desimone M, Hilpert M, Wipf D, Kunze R, Schneider A, Flügge UI, Schumacher K, Frommer WB (2003) Expression pattern of a nuclear encoded mitochondrial arginine-ornithine translocator gene from Arabidopsis. BMC Plant Biol 3:1

    PubMed  Google Scholar 

  • Chen YM, Ferrar TS, Lohmeir-Vogel E, Morrice N, Mizuno Y, Berenger B, Ng KK, Muench DG, Moorhead GB (2006) The PII signal transduction protein of Arabidopsis thaliana forms an arginine-regulated complex with plastid N-acetyl glutamate kinase. J Biol Chem 281:5726–5733

    PubMed  CAS  Google Scholar 

  • Cookson SJ, Williams LE, Miller AJ (2004) Light-dark changes in cytosolic nitrate pools depend on nitrate reductase activity in Arabidopsis leaf cells. Plant Physiol 138:1097–1105

    Google Scholar 

  • Corpas FJ, Barroso JB, del Río LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    PubMed  CAS  Google Scholar 

  • Coruzzi GM (2003) Primary N-assimilation into amino acids in Arabidopsis. In: Somerville C, Meyerowitz E (eds) The Arabidopsis book, vol 31. American Society of Plant Biologists, Rockville, pp 1–17

    Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868

    PubMed  CAS  Google Scholar 

  • Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57:471–478

    PubMed  CAS  Google Scholar 

  • Crawford NM, Guo FQ (2005) New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci 10:195–200

    PubMed  CAS  Google Scholar 

  • Crawford RMM (1978) Metabolic adaptations to anoxia. In: Hook DD, Crawford RMM (eds) Plant life in anaerobic environments. Ann Arbor Science, Ann Arbor MI, pp 119–136

    Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    PubMed  Google Scholar 

  • deRuiter H, Kollöffel C (1983) Arginine catabolism in the cotyledons of developing and germinating pea seeds. Plant Physiol 73:525–528

    CAS  Google Scholar 

  • Dordas C, Rivoal J, Hill RD (2003) Plant haemoglobins, nitric oxide and hypoxic stress. Ann Bot 91:173–178

    PubMed  CAS  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia. Ann Rev Plant Physiol Plant Mol Biol 48:223–250

    CAS  Google Scholar 

  • Drew MC, He I, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5:123–127

    PubMed  CAS  Google Scholar 

  • Emes MJ, Neuhaus HE (1997) Metabolism and transport in non-photosynthetic plastids. J Exp Bot 48:1995–2005

    CAS  Google Scholar 

  • Felle HH (2005) pH regulation in anoxic plants. Ann Bot 96:519–532

    PubMed  CAS  Google Scholar 

  • Foissner I, Wendehenne D, Langebartels C, Durner J (2000). In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    PubMed  CAS  Google Scholar 

  • Foyer CH, Parry M, Noctor G (2003) Markers and signals associated with nitrogen assimilation in higher plants. J Exp Bot 54:585–593

    PubMed  CAS  Google Scholar 

  • Geigenberger P (2003) Response of plant metabolism to too little oxygen. Curr Opin Plant Biol 6:247–256

    PubMed  CAS  Google Scholar 

  • Gloser V (2002) Seasonal changes of nitrogen storage compounds in a rhizomatous grass Calamagrostis epigeios. Biol Plant 45:563–568

    CAS  Google Scholar 

  • Goldraij A, Polacco JC (2000) Arginine degradation by arginase in mitochondria of soybean seedling cotyledons. Planta 210:652–658

    PubMed  CAS  Google Scholar 

  • Goshima N, Mukai T, Suemori M, Takahashi M, Caboche M, Morikawa H (1999) Emission of nitrous oxide (N2O) from transgenic tobacco expressing antisense NiR mRNA. Plant J 19:75–80

    PubMed  CAS  Google Scholar 

  • Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: A generalized stress response? Plant Cell Environ 26:1851–1862

    CAS  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    PubMed  CAS  Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609

    PubMed  CAS  Google Scholar 

  • Hill RD (1998) What are hemoglobins doing in plants? Canad J Bot 76:707–712

    CAS  Google Scholar 

  • Hinze H, Holzer H (1985) Accumulation of nitrite and sulfite in yeast cells and synergistic depletion of the intracellular ATP content. Z Lebensm Unters Forsch 180:117–120

    PubMed  CAS  Google Scholar 

  • Hiramoto K, Ohkawa T, Oikawa N, Kikugawa K (2003) Is nitric oxide (NO) an antioxidant or a prooxidant for lipid peroxidation? Chem Pharm Bull 51:1046–1050

    PubMed  CAS  Google Scholar 

  • Hoyos ME, Palmieri L, Wertin T, Arrigoni R, Polacco JC, Palmieri F (2003) Identification of mitochondrial transporter for basic amino acids in Arabidopsis thaliana by functional reconstitution into liposomes and complementation in yeast. Plant J 33:1027–1035

    PubMed  CAS  Google Scholar 

  • Hsieh MH, Lam HM, van de Loo FJ, Coruzzi G (1998) A PII-like protein in Arabidopsis: putative role in nitrogen sensing. Proc Natl Acad Sci USA 95:13965–13970

    PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Baron K, Manac'h-Little N, Stoimenova M, Hill RD (2005) The haemoglobin/nitric oxide cycle: Involvement in flooding stress and effects on hormone signaling. Ann Bot 96:557–564

    PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Hill RD (2004) Nitrate NO and haemoglobin in plant adaption to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55:2473–2482

    PubMed  CAS  Google Scholar 

  • Kaiser WM, Huber SC (2001) Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J Exp Bot 52:1981–1989

    PubMed  CAS  Google Scholar 

  • Kaiser WM, Weiner H, Huber SC (1999) Nitrate reductase in higher plants: a case study for transduction of environmental stimuli into control of catalytic activity. Physiol Plant 105:385–390

    CAS  Google Scholar 

  • Kaiser WM, Weiner H, Kandlbinder A, Tsai CB, Rockel P, Sonoda M, Planchet E (2002) Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction. J Exp Bot 53:1–8

    Google Scholar 

  • Kim PK, Zamora R, Petrosko P, Billiar TR (2001) The regulatory role of nitric oxide in apoptosis. Intern Immunopharmacol 1:1421–1441

    CAS  Google Scholar 

  • Kozlov AV, Staniek K, Nohl H (1999) Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett 454:127–130

    PubMed  CAS  Google Scholar 

  • Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: The versatility of an extensive signal molecule. Ann Rev Plant Biol 54:109–136

    CAS  Google Scholar 

  • Lamotte O, Coutois C, Barnavon L, Pugin A, Wendehenne D (2005) Nitric oxide in plants: the biosynthesis and cell signaling properties of a fascinating molecule. Planta 221:1–4

    PubMed  CAS  Google Scholar 

  • Lancaster JRJ (2000) The physical properties of nitric oxide: determinants of the dynamics of NO in tissue. In: Ignarro LJ (ed) Nitric oxide: biology and pathobiology. Academic, San Diego, pp 209–224

    Google Scholar 

  • Lea PJ, Miflin BJ (1980) Transport and metabolism of asparagine and other nitrogen compounds within the plant. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 5. Academic, New York, pp 569–607

    Google Scholar 

  • Lewis RS, Deen WM (1994) Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions. Chem Res Toxicol 7:568–574

    PubMed  CAS  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    PubMed  CAS  Google Scholar 

  • Maheswaran M, Urbanke C, Forchhammer K (2004) Complex formation and catalytic activation by the PII signaling protein of N-acetyl-l-glutamate kinase from Synechococcus elongatus strain PCC 7942. J Biol Chem 279:55202–55210

    PubMed  CAS  Google Scholar 

  • Matsumura T, Sakakibara H, Nakano R, Kimata Y, Sugiyama T, Hase T (1997) A nitrate-inducible ferredoxin in maize roots – genomic organization and differential expression of two nonphotosynthetic ferredoxin isoproteins. Plant Physiol 114:653–660

    PubMed  CAS  Google Scholar 

  • McAinsh MR, Hetherington AM (1998) Encoding specificity in Ca2+signaling systems. Trends Plant Sci 3:32–36

    Google Scholar 

  • McNeil M, Darvill AG, Fry SC, Albersheim P (1984) Structure and function of the primary cell walls of plants. Annu Rev Biochem 53:625–663

    PubMed  CAS  Google Scholar 

  • Meder D, Simons K (2006) Lipid rafts, caveolae, and membrane traffic. In: Fielding CJ (ed) Lipid rafts and caveolae. Wiley, Weinheim, pp 1–17

    Google Scholar 

  • Meyer C, Lea US, Provan F, Kaiser WM, Lillo C (2005) Is nitrate reductase a major player in the plant NO (nitric oxide) game? Photosyn Res 83:181–189

    PubMed  CAS  Google Scholar 

  • Meyer C, Stöhr C (2002) Soluble and plasma membrane-bound enzymes involved in nitrate and nitrite metabolism. In: Foyer C, Noctor G (eds) Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Advances in photosynthesis and respiration, vol 12. Kluwer, Dordrecht, The Netherlands, pp 49–62

    Google Scholar 

  • Fryer MJ, Baker NR, Coope CE, Vartapetian BB, Andreeva I, Nuritdinov N (1978) Plant cells under oxygen stress. In: Hook DD, Crawford RMM (eds) Plant life in anaerobic environments. Ann Arbor Science, Ann Arbor MI, pp 13–88

    Google Scholar 

  • Millar AH, Day DA, Mathieu C (2002) Nitric oxide synthesis by plants and its potential impact on nitrogen and respiratory metabolism. In: Foyer CH, Noctor G (eds) Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Advances in photosynthesis and respiration, vol 12. Kluwer, Dordrecht, The Netherlands, pp 193–204

    Google Scholar 

  • Miller AJ, Smith SJ (1996) Nitrate transport and compartmentation in cereal root cells. J Exp Bot 47:843–854

    CAS  Google Scholar 

  • Nedeianu S, Pali T, Marsh D (2004) Membrane penetration of nitric oxide and its donor S-nitroso-N-acetylpenicillamine: a spin-label electron paramagnetic resonance spectroscopic study. Biochim Biophys Acta Biomem 1661:135–143

    CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signaling in plants. New Phytol 159:11–35

    CAS  Google Scholar 

  • Noctor G (2006) Metabolic signaling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    PubMed  CAS  Google Scholar 

  • O'Donnell VB, Chumley PH, Hogg N, Bloodsworth A, Darley-Usmar VM, Freeman BA (1997) Nitric oxide inhibition of lipid peroxidation: Kinetics of reaction with lipid peroxyl radicals and comparison with alpha-tocopherol. Biochem 36:15216–15223

    Google Scholar 

  • O'Donnell VB, Eiserich JP, Bloodsworth A, Chumley PH, Kirk M, Barnes S, Darley-Usmar VM, Freeman BA (1999) Nitration of unsaturated fatty acids by nitric oxide-derived reactive species. Methods Enzymol 301:454–470

    PubMed  Google Scholar 

  • Peoples MB, Gifford RM (1993) Long-distance transport of carbon and nitrogen from sources to sinks in higher plants. In: Dennis DT, Turpin DH (eds) Plant physiology, biochemistry and molecular biology. Wiley, New York, pp 434–447

    Google Scholar 

  • Perazzolli M, Romero-Puertas MC, Delledonne M (2006) Modulation of nitric oxide bioactivity by plant haemoglobins. J Exp Bot 57:479–488

    PubMed  CAS  Google Scholar 

  • Pedroso MC, Magalhaes JR, Durzanc D (2000) Nitric oxide induces cell death in Taxus cells. Plant Sci 157:173–180

    PubMed  CAS  Google Scholar 

  • Phillips DA, Fox TC, Six J (2006) Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2. Global Change Biol 12:561–567

    Google Scholar 

  • Planchet E, Kapuganti JG, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743

    PubMed  CAS  Google Scholar 

  • Plieth C (2005) Calcium: just another regulator in the machinery of life? Ann Bot 96:1–8

    PubMed  CAS  Google Scholar 

  • Prado AM, Porterfield DM, Feijo JA (2004) Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Develop 131:2707–2714

    CAS  Google Scholar 

  • Rexach J, Fernández E, Galván A (2000) The Chlamydomonas reinhardtii Nar1 gene encodes a chloroplast membrane protein involved in nitrite transport. Plant Cell 12:1441–1453

    PubMed  CAS  Google Scholar 

  • Rexach J, Montero B, Fernández E, Galván A (1999) Differential regulation of the high affinity nitrite transport systems III and IV in Chlamydomonas reinhardtii. J Biol Chem 274:27801–27806

    PubMed  CAS  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    PubMed  CAS  Google Scholar 

  • Saglio PH, Rancillac M, Bruzan F, Pradet A (1984) Critical oxygen pressure for growth and respiration of excised and intact roots. Plant Physiol 76:151–154

    PubMed  CAS  Google Scholar 

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    CAS  Google Scholar 

  • Saxe H (1986) Effects of NO, NO2and CO2on net photosynthesis, dark respiration and transpiration of pot plants. New Phytol 103:185–197

    CAS  Google Scholar 

  • Schlüter U, Crawford MM (2001) Long-term anoxia tolerance in leaves of Acorus calamus L. and Iris pseudacorus L. J Exp Bot 52:2213–2225

    PubMed  Google Scholar 

  • Seregélyes C, Igamberdiev AU, Maassen A, Hennig J, Dudits D, Hill RD (2004) NO-degradation by alfalfa class-1 haemoglobin (Mhb1): a possible link to PR-1a gene expression in Mhb1-overproducing tobacco plants. FEBS Lett 571:61–66

    PubMed  Google Scholar 

  • Shapiro AD (2005) Nitric oxide signaling in plants. Vitam Horm 72:339–398

    Article  PubMed  CAS  Google Scholar 

  • Shingles R, Roh MH, McCarty RE (1996) Nitrite transport in chloroplast inner envelope vesicles. I. Direct measurement of proton-linked transport. Plant Physiol 112:1375–1381

    PubMed  CAS  Google Scholar 

  • Shinkle JR, Swoap SJ, Simon P, Jones RL (1992) Cell wall free space of Cucumis hypocotyls contains NAD and a blue light-regulated peroxidase activity. Plant Physiol 98:1336–1341

    Article  PubMed  CAS  Google Scholar 

  • Siddiqi MY, King BJ, Glass ADM (1992) Effects of nitrate, chlorate and chlorite on nitrate uptake and nitrate reductase activity. Plant Physiol 100:644–650

    PubMed  CAS  Google Scholar 

  • Simons M, Permentier HP, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1997) Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant-Microbe Interact 10:102–106

    CAS  Google Scholar 

  • Sinclair J (1987) Changes in spinach thylakoid activity due to nitrite ions. Photosyn Res 12:255–263

    CAS  Google Scholar 

  • Slocum RD (2005) Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol Biochem 43:729–745

    PubMed  CAS  Google Scholar 

  • Stewart V (1988) Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol Rev 52:190–232

    PubMed  CAS  Google Scholar 

  • Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–186

    PubMed  CAS  Google Scholar 

  • Stitt M, Muller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53:959–970

    PubMed  CAS  Google Scholar 

  • Stöhr C (1999) Relationship of nitrate supply with growth rate plasma membrane-bound and cytosolic nitrate reductase, and tissue nitrate content in tobacco plants. Plant Cell Environ 22:169–177

    Google Scholar 

  • Stöhr C, Mäck G (2001) Diurnal changes in nitrogen metabolism of tobacco roots. J Exp Bot 52:1283–1289

    PubMed  Google Scholar 

  • Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470

    PubMed  Google Scholar 

  • Stöhr C, Ullrich WR (1997) A succinate-oxidising nitrate reductase is located at the plasma membrane of plant roots. Planta 203:129–132

    Google Scholar 

  • Stöhr C, Ullrich WR (2002) Generation and possible role of NO in plant roots and their apoplastic space. J Exp Bot 53:2203–2303

    Google Scholar 

  • Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma-membrane-bound enzyme of tobacco roots catalyzes the formation of nitric oxide from nitrite. Planta 212:835–841

    PubMed  Google Scholar 

  • Stoimenova M, Libourel IGL, Ratcliffe RG, Kaiser WM (2003) The role of nitrate reduction in the anoxic metabolism of roots. II. Anoxic metabolism of tobacco roots with or without nitrate reductase activity. Plant Soil 253:155–167

    CAS  Google Scholar 

  • Subczynski WK, Lomnicka M, Hyde JS (1996) Permeability of nitric oxide through lipid bilayer membranes. Free Radic Res 24:343–349

    PubMed  CAS  Google Scholar 

  • Taylor AA, Stewart GR (1981) Tissue and subcellular localization of enzymes of arginine metabolism in Pisum sativum. Biochem Biophys Res Commun 101:1281–1289

    PubMed  CAS  Google Scholar 

  • Tischner R, Planchet E, Kaiser WM (2004) Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Lett 576:151–155

    PubMed  CAS  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EIS, Scherer GFE (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    PubMed  CAS  Google Scholar 

  • van der Vliet A, Hoen PA, Wong PS, Bast A, Cross CE (1998) Formation of S-nitrosothiols via direct nucleophilic nitrosation of thiols by peroxynitrite with elimination of hydrogen peroxide. J Biol Chem 273:30255–30262

    PubMed  Google Scholar 

  • Van Etten CH, Wolff IA, Jones Q (1963). Amino acid composition of seeds from 200 angiospermous plant species. J Agr Food Chem 11:399–410

    Google Scholar 

  • Vanin AF, Svistunenko DA, Mikoyan VD, Serezhenkov VA (2004) Endogenous superoxide production and the nitrite/nitrate ratio control the concentration of bioavailable free nitric oxide in leaves. J Biol Chem 279:24100–24107

    PubMed  CAS  Google Scholar 

  • Vaucheret H, Kronenberger J, Lépingle A, Vilaine F, Boutin JP, Caboche M (1992) Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J 2:559–569

    PubMed  CAS  Google Scholar 

  • Wang R, Guegler K, LaBrie ST, Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12:1491–1510

    PubMed  CAS  Google Scholar 

  • Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567

    PubMed  CAS  Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004). Nitric oxide: A new player in plant signaling and defense responses. Curr Opin Plant Biol 7:449–455

    PubMed  CAS  Google Scholar 

  • Williams DLH (2004) Nitrosation reactions and the chemistry of nitric oxide. Elsevier, Amsterdam

    Google Scholar 

  • Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25:434–456

    PubMed  CAS  Google Scholar 

  • Wodala B, Deák Z, Vass I, Erdei L, Horváth F (2005) Nitric oxide modifies photosynthetic electron transport in pea leaves. Acta Biol Szegediensis 49:7–8

    Google Scholar 

  • Yamasaki H (2000) Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Phil Trans R Soc Lond B 355:1477–1488

    CAS  Google Scholar 

  • Yamasaki H (2005) The NO world for plants: achieving balance in an open system. Plant Cell Environ 28:78–84

    CAS  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production: new features of an old enzyme. Trends Plant Sci 4:128–129

    PubMed  Google Scholar 

  • Zeidler D, Zähringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816

    PubMed  CAS  Google Scholar 

  • Zhang C, Czymmek KJ, Shapiro AD (2003) Nitric oxide does not trigger early programed cell death events but may contribute to cell-to-cell signaling governing progression of the Arabidopsis hypersensitive response. Mol Plant-Microbe Interact 16:962–972

    PubMed  CAS  Google Scholar 

  • Zhu J, Chen S, Alvarez S, Asirvatham VS, Schachtman DP, Wu Y, Sharp RE (2006) Cell wall proteome in the maize primary root elongation zone. I. Extraction and identification of water-soluble and lightly ionically bound proteins. Plant Physiol 140:311–325

    PubMed  CAS  Google Scholar 

  • Zottini M, Formentin E, Scattolin M, Carimi F, Lo Schiavo F, Terzi M (2002) Nitric oxide affects plant mitochondrial functionality in vivo. FEBS Lett 515:75–78

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Stöhr .

Editor information

Lorenzo Lamattina Joseph C. Polacco

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stöhr, C. (2006). Nitric Oxide – A Product of Plant Nitrogen Metabolism. In: Lamattina, L., Polacco, J.C. (eds) Nitric Oxide in Plant Growth, Development and Stress Physiology. Plant Cell Monographs, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2006_082

Download citation

Publish with us

Policies and ethics