Skip to main content

Endoplasmic Reticulum-associated Protein Degradation in Plant Cells

  • Chapter
  • First Online:
The Plant Endoplasmic Reticulum

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 4))

Abstract

The endoplasmic reticulum (ER) is equipped with a quality control function that retains misfoldedand unassembled proteins and allows only structurally mature polypeptides to be transported to their finaldestination. The retained proteins are eventually retro-translocated to the cytosol and destroyed by a processcalled endoplasmic reticulum-associated degradation (ERAD). Besides being involved in the degradation ofaberrant polypeptides, the ERAD pathway is also used to regulate cellular functions and is exploited bysome plant and bacterial toxins to reach the cytosol after internalization by target cells. After summarizingthe general characteristics of the ERAD pathway, we describe the features of known plant ERAD substratesand of the plant degradative machinery, highlighting the role of protein disposal in the response to ERstress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahner A, Brodsky JL (2004) Checkpoints in ER-associated degradation: excuse me, which way to the proteasome? Trends Cell Biol 14:474–478

    Article  PubMed  CAS  Google Scholar 

  2. Antoniou AN, Ford S, Alphey M, Osborne A, Elliott T, Powis SJ (2002) The oxidoreductase ERp57 efficiently reduces partially folded in preference to fully folded MHC class I molecules. EMBO J 21:2655–63

    Article  PubMed  CAS  Google Scholar 

  3. Argent RH, Parrott AM, Day PJ, Roberts LM, Stockley PG, Lord JM, Radford SE (2000) Ribosome-mediated folding of partially unfolded ricin A-chain. J Biol Chem 275:9263–9269

    Article  PubMed  CAS  Google Scholar 

  4. Bays NW, Gardner RG, Seelig LP, Joazeiro CA, Hampton RY (2001) Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat Cell Biol 3:24–29

    Article  PubMed  CAS  Google Scholar 

  5. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332

    Article  PubMed  CAS  Google Scholar 

  6. Biederer T, Volkwein C, Sommer T (1996) Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway. EMBO J 15:2069–2076

    PubMed  CAS  Google Scholar 

  7. Biederer T, Volkwein C, Sommer T (1997) Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278:1806–1809

    Article  PubMed  CAS  Google Scholar 

  8. Blom D, Hirsch C, Stern P, Tortorella D, Ploegh HL (2004) A glycosylated type I membrane protein becomes cytosolic when peptide:N-glycanase is compromised. EMBO J 23:650–658

    Article  PubMed  CAS  Google Scholar 

  9. Bordallo J, Plemper RK, Finger A, Wolf DH (1998) Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol Biol Cell 9:209–222

    PubMed  CAS  Google Scholar 

  10. Brandizzi F, Hanton S, daSilva LL, Boevink P, Evans D, Oparka K, Denecke J, Hawes C (2003) ER quality control can lead to retrograde transport from the ER lumen to the cytosol and the nucleoplasm in plants. Plant J 34:269–281

    Article  PubMed  CAS  Google Scholar 

  11. Brodsky JL, Werner ED, Dubas ME, Goeckeler JL, Kruse KB, McCracken AA (1999) The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 274:3453–3460

    Article  PubMed  CAS  Google Scholar 

  12. Buschhorn BA, Kostova Z, Medicherla B, Wolf DH (2004) A genome-wide screen identifies Yos9p as essential for ER-associated degradation of glycoproteins. FEBS Lett 577:422–426

    Article  PubMed  CAS  Google Scholar 

  13. Cabral CM, Choudhury P, Liu Y, Sifers RN (2000) Processing by endoplasmic reticulum mannosidases partitions a secretion-impaired glycoprotein into distinct disposal pathways. J Biol Chem 275:25015–25022

    Article  PubMed  CAS  Google Scholar 

  14. Cabral CM, Liu Y, Moremen KW, Sifers RN (2002) Organizational diversity among distinct glycoprotein endoplasmic reticulum-associated degradation programs. Mol Biol Cell 13:2639–2650

    Article  PubMed  CAS  Google Scholar 

  15. Ceriotti A, Pedrazzini E, Fabbrini MS, Zoppé M, Bollini R, Vitale A (1991) Expression of the wild-type and mutated vacuolar storage protein phaseolin in Xenopus oocytes reveals relationships between assembly and intracellular transport. Eur J Biochem 202:959–968

    Article  PubMed  CAS  Google Scholar 

  16. Chillarón J, Haas IG (2000) Dissociation from BiP and retrotranslocation of unassembled immunoglobulin light chains are tightly coupled to proteasome activity. Mol Biol Cell 11:217–226

    PubMed  Google Scholar 

  17. Chung DH, Ohashi K, Watanabe M, Miyasaka N, Hirosawa S (2000) Mannose trimming targets mutant α2-plasmin inhibitor for degradation by the proteasome. J Biol Chem 275:4981–4987

    Article  PubMed  CAS  Google Scholar 

  18. Coleman CE, Clore AM, Ranch JP, Higgins R, Lopes MA, Larkins BA (1997) Expression of a mutant α-zein creates the floury2 phenotype in transgenic maize. Proc Natl Acad Sci USA 94:7094–7097

    Article  PubMed  CAS  Google Scholar 

  19. D'Amico L, Valsasina B, Daminati MG, Fabbrini MS, Nitti G, Bollini R, Ceriotti A, Vitale A (1992) Bean homologs of the mammalian glucose-regulated proteins: induction by tunicamycin and interaction with newly synthesized seed storage proteins in the endoplasmic reticulum. Plant J 2:443–455

    PubMed  Google Scholar 

  20. Day PJ, Pinheiro TJ, Roberts LM, Lord JM (2002) Binding of ricin A-chain to negatively charged phospholipid vesicles leads to protein structural changes and destabilizes the lipid bilayer. Biochemistry 41:2836–2843

    Article  PubMed  CAS  Google Scholar 

  21. Deeks ED, Cook JP, Day PJ, Smith DC, Roberts LM, Lord JM (2002) The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry 41:3405–3413

    Article  PubMed  CAS  Google Scholar 

  22. Denecke J, Goldman MH, Demolder J, Seurinck J, Botterman J (1991) The tobacco luminal binding protein is encoded by a multigene family. Plant Cell 3:1025–1235

    PubMed  CAS  Google Scholar 

  23. Denecke J, Carlsson LE, Vidal S, Hoglund AS, Ek B, van Zeijl MJ, Sinjorgo KM, Palva ET (1995) The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell 7:391–406

    PubMed  CAS  Google Scholar 

  24. de Virgilio M, Weninger H, Ivessa NE (1998) Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J Biol Chem 273:9734–9743

    Article  PubMed  Google Scholar 

  25. de Virgilio M, Kitzmüller C, Schwaiger E, Klein M, Kreibich G, Ivessa NE (1999) Degradation of a short-lived glycoprotein from the lumen of the endoplasmic reticulum: the role of N-linked glycans and the unfolded protein response. Mol Biol Cell 10:4059–4073

    PubMed  Google Scholar 

  26. Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, von Heijne G, Schulze-Lefert P (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J Biol Chem 274:34993–35004

    Article  PubMed  CAS  Google Scholar 

  27. Di Cola A, Frigerio L, Lord JM, Ceriotti A, Roberts LM (2001) Ricin A chain without its partner B chain is degraded after retrotranslocation from the endoplasmic reticulum to the cytosol in plant cells. Proc Natl Acad Sci USA 98:14726–14731

    Article  PubMed  Google Scholar 

  28. Di Cola A, Frigerio L, Lord JM, Roberts LM, Ceriotti A (2005) Endoplasmic reticulum-associated degradation of ricin A chain has unique and plant-specific features. Plant Physiol 137:287–296

    Article  PubMed  CAS  Google Scholar 

  29. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:1811–91

    Article  CAS  Google Scholar 

  30. Ermonval M, Kitzmuller C, Mir AM, Cacan R, Ivessa NE (2001) N-glycan structure of a short-lived variant of ribophorin I expressed in the MadIA214 glycosylation-defective cell line reveals the role of a mannosidase that is not ER mannosidase I in the process of glycoprotein degradation. Glycobiology 11:565–576

    Article  PubMed  CAS  Google Scholar 

  31. Fagioli C, Sitia R (2001) Glycoprotein quality control in the endoplasmic reticulum. Mannose trimming by endoplasmic reticulum mannosidase I times the proteasomal degradation of unassembled immunoglobulin subunits. J Biol Chem 276:12885–12892

    Article  PubMed  CAS  Google Scholar 

  32. Fagioli C, Mezghrani A, Sitia R (2001) Reduction of interchain disulfide bonds precedes the dislocation of Ig-μ chains from the endoplasmic reticulum to the cytosol for proteasomal degradation. J Biol Chem 276:40962–40967

    Article  PubMed  CAS  Google Scholar 

  33. Fang S, Ferrone M, Yang C, Jensen JP, Tiwari S, Weissman AM (2001) The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc Natl Acad Sci USA 98:14422–14427

    Article  PubMed  CAS  Google Scholar 

  34. Fayadat L, Siffroi-Fernandez S, Lanet J, Franc JL (2000) Degradation of human thyroperoxidase in the endoplasmic reticulum involves two different pathways depending on the folding state of the protein. J Biol Chem 275:15948–15954

    Article  PubMed  CAS  Google Scholar 

  35. Fiebiger E, Story C, Ploegh HL, Tortorella D (2002) Visualization of the ER-to-cytosol dislocation reaction of a type I membrane protein. EMBO J 21:1041–1053

    Article  PubMed  CAS  Google Scholar 

  36. Foresti O, Frigerio L, Holkeri H, de Virgilio M, Vavassori S, Vitale A (2003) A phaseolin domain involved directly in trimer assembly is a determinant for binding by the chaperone BiP. Plant Cell 15:2464–2475

    Article  PubMed  CAS  Google Scholar 

  37. Frenkel Z, Gregory W, Kornfeld S, Lederkremer GZ (2003) Endoplasmic reticulum-associated degradation of mammalian glycoproteins involves sugar chain trimming to Man6-5GlcNAc2. J Biol Chem 278:34119–34124

    Article  PubMed  CAS  Google Scholar 

  38. Frigerio L, Vitale A, Lord JM, Ceriotti A, Roberts LM (1998) Free ricin A chain, proricin, and native toxin have different cellular fates when expressed in tobacco protoplasts. J Biol Chem 273:14194–14199

    Article  PubMed  CAS  Google Scholar 

  39. Frigerio L, Jolliffe NA, Di Cola A, Felipe DH, Paris N, Neuhaus JM, Lord JM, Ceriotti A, Roberts LM (2001) The internal propeptide of the ricin precursor carries a sequence-specific determinant for vacuolar sorting. Plant Physiol 126:167–175

    Article  PubMed  CAS  Google Scholar 

  40. Gillece P, Luz JM, Lennarz WJ, de La Cruz FJ, Romisch K (1999) Export of a cysteine-free misfolded secretory protein from the endoplasmic reticulum for degradation requires interaction with protein disulfide isomerase. J Cell Biol 47:1443–1456

    Article  Google Scholar 

  41. Gnann A, Riordan JR, Wolf DH (2004) Cystic fibrosis transmembrane conductance regulator degradation depends on the lectins Htm1p/EDEM and the Cdc48 protein complex in yeast. Mol Biol Cell 15:4125–4135

    Article  PubMed  CAS  Google Scholar 

  42. Hampton RY (2002) ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 14:476–482

    Article  PubMed  CAS  Google Scholar 

  43. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274

    Article  PubMed  CAS  Google Scholar 

  44. Hartley MR, Lord JM (2004) Cytotoxic ribosome-inactivating lectins from plants. Biochim Biophys Acta 1701:1–14

    Article  PubMed  CAS  Google Scholar 

  45. Herscovics A (2001) Structure and function of Class I α1,2-mannosidases involved in glycoprotein synthesis and endoplasmic reticulum quality control. Biochimie 83:757–762

    Article  PubMed  CAS  Google Scholar 

  46. Herscovics A, Romero PA, Tremblay LO (2002) The specificity of the yeast and human class I ER α1,2-mannosidases involved in ER quality control is not as strict as previously reported. Glycobiology 12:14G-15G

    Google Scholar 

  47. Hill K, Cooper AA (2000) Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system. EMBO J 19:550–561

    Article  PubMed  CAS  Google Scholar 

  48. Hirsch C, Blom D, Ploegh HL (2003) A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J 22:1036–1046

    Article  PubMed  CAS  Google Scholar 

  49. Hirsch C, Misaghi S, Blom D, Pacold ME, Ploegh HL (2004) Yeast N-glycanase distinguishes between native and non-native glycoproteins. EMBO Rep 5:201–206

    Article  PubMed  CAS  Google Scholar 

  50. Hong E, Davidson AR, Kaiser CA (1996) A pathway for targeting soluble misfolded proteins to the yeast vacuole. J Cell Biol 135:623–633

    Article  PubMed  CAS  Google Scholar 

  51. Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay LO, Herscovics A, Nagata K (2001) A novel ER α-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2:415–422

    PubMed  CAS  Google Scholar 

  52. Hosokawa N, Tremblay LO, You Z, Herscovics A, Wada I, Nagata K (2003) Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong α1-antitrypsin by human ER mannosidase I. J Biol Chem 278:26287–26294

    Article  PubMed  CAS  Google Scholar 

  53. Iwata Y, Koizumi N (2005) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci USA 102:5280–5285

    Article  PubMed  CAS  Google Scholar 

  54. Jakob CA, Burda P, Roth J, Aebi M (1998) Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol 142:1223–1233

    Article  PubMed  CAS  Google Scholar 

  55. Jakob CA, Bodmer D, Spirig U, Battig P, Marcil A, Dignard D, Bergeron JJ, Thomas DY, Aebi M (2001) Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep 2:423–430

    PubMed  CAS  Google Scholar 

  56. Jarosch E, Taxis C, Volkwein C, Bordallo J, Finley D, Wolf DH, Sommer T (2002) Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 4:134–139

    Article  PubMed  CAS  Google Scholar 

  57. Jolliffe NA, Ceriotti A, Frigerio L, Roberts LM (2003) The position of the proricin vacuolar targeting signal is functionally important. Plant Mol Biol 51:631–641

    Article  PubMed  CAS  Google Scholar 

  58. Kabani M, Kelley SS, Morrow MW, Montgomery DL, Sivendran R, Rose MD, Gierasch LM, Brodsky JL (2003) Dependence of endoplasmic reticulum-associated degradation on the peptide binding domain and concentration of BiP. Mol Biol Cell 14:3437–3448

    Article  PubMed  CAS  Google Scholar 

  59. Kikkert M, Hassink G, Barel M, Hirsch C, van der Wal FJ, Wierz E (2001) Ubiquitination is essential for human cytomegalovirus US11-mediated dislocation of MHC class I molecules from the endoplasmic reticulum to the cytosol. Biochem J 358:369–377

    Article  PubMed  CAS  Google Scholar 

  60. Kim CS, Hunter BG, Kraft J, Boston RS, Yans S, Jung R, Larkins BA (2004) A defective signal peptide in a 19-kD α-zein protein causes the unfolded protein response and an opaque endosperm phenotype in the maize De-B30 mutant. Plant Physiol 134:380–387

    Article  PubMed  CAS  Google Scholar 

  61. Kitzmüller C, Caprini A, Moore SE, Frenoy JP, Schwaiger E, Kellermann O, Ivessa NE, Ermonval M (2003) Processing of N-linked glycans during endoplasmic-reticulum-associated degradation of a short-lived variant of ribophorin I. Biochem J 376:687–696

    Article  PubMed  CAS  Google Scholar 

  62. Knittler MR, Dirks S, Haas IG (1995) Molecular chaperones involved in protein degradation in the endoplasmic reticulum: quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chains that are degraded in the endoplasmic reticulum. Proc Natl Acad Sci USA 92:1764–1768

    Article  PubMed  CAS  Google Scholar 

  63. Knop M, Finger A, Braun T, Hellmuth K, Wolf DH (1996a) Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J 15:753–763

    PubMed  CAS  Google Scholar 

  64. Knop M, Hauser N, Wolf DH (1996b) N-Glycosylation affects endoplasmic reticulum degradation of a mutated derivative of carboxypeptidase yscY in yeast. Yeast 12:1229–1238

    Article  PubMed  CAS  Google Scholar 

  65. Koizumi N (1996) Isolation and responses to stress of a gene that encodes a luminal binding protein in Arabidopsis thaliana. Plant Cell Physiol 37:862–865

    Article  PubMed  CAS  Google Scholar 

  66. Koizumi N, Martinez IM, Kimata Y, Kohno K, Sano H, Chrispeels MJ (2001) Molecular characterization of two Arabidopsis Ire1 homologs, endoplasmic reticulum-located transmembrane protein kinases. Plant Physiol 127:949–962

    Article  PubMed  CAS  Google Scholar 

  67. Leborgne-Castel N, Jelitto-Van Dooren EP, Crofts AJ, Denecke J (1999) Overexpression of BiP in tobacco alleviates endoplasmic reticulum stress. Plant Cell 11:459–70

    PubMed  CAS  Google Scholar 

  68. Liu Y, Choudhury P, Cabral CM, Sifers RN (1997) Intracellular disposal of incompletely folded human α1-antitrypsin involves release from calnexin and post-translational trimming of asparagine-linked oligosaccharides. J Biol Chem 272:7946–7951

    Article  PubMed  CAS  Google Scholar 

  69. Liu Y, Choudhury P, Cabral CM, Sifers RN (1999) Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J Biol Chem 274:5861–5867

    Article  PubMed  CAS  Google Scholar 

  70. Lord JM, Ceriotti A, Roberts LM (2002) ER dislocation: Cdc48p/p97 gets into the AAAct. Curr Biol 12:R182–184

    Article  PubMed  CAS  Google Scholar 

  71. Lord JM, Deeks E, Marsden CJ, Moore K, Pateman C, Smith DC, Spooner RA, Watson P, Roberts LM (2003) Retrograde transport of toxins across the endoplasmic reticulum membrane. Biochem Soc Trans 31:1260–1262

    Article  PubMed  CAS  Google Scholar 

  72. Lilley BN, Ploegh HL (2004) A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429:834–840

    Article  PubMed  CAS  Google Scholar 

  73. Lupattelli F, Pedrazzini E, Bollini R, Vitale A, Ceriotti A (1997) The rate of phaseolin assembly is controlled by the glucosylation state of its N-linked oligosaccharide chains. Plant Cell 9:597–609

    PubMed  CAS  Google Scholar 

  74. Mancini R, Fagioli C, Fra AM, Maggioni C, Sitia R (2000) Degradation of unassembled soluble Ig subunits by cytosolic proteasomes: evidence that retrotranslocation and degradation are coupled events. FASEB J 14:769–778

    PubMed  CAS  Google Scholar 

  75. Mancini R, Aebi M, Helenius A (2003) Multiple endoplasmic reticulum-associated pathways degrade mutant yeast carboxypeptidase Y in mammalian cells. J Biol Chem 278:46895–46905

    Article  PubMed  CAS  Google Scholar 

  76. Marocco A, Santucci A, Cerioli S, Motto M, Di Fonzo N, Thompson R, Salamini F (1991) Three high-lysine mutations control the level of ATP-binding HSP70-like proteins in the maize endosperm. Plant Cell 3:507–515

    PubMed  CAS  Google Scholar 

  77. Martinez IM, Chrispeels MJ (2003) Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell 15:561–576

    Article  PubMed  CAS  Google Scholar 

  78. Matsuoka K, Seta K, Yamakawa Y, Okuyama T, Shinoda T, Isobe T (1994) Covalent structure of bovine brain calreticulin. Biochem J 298:435–442

    PubMed  CAS  Google Scholar 

  79. Medicherla B, Kostova Z, Schaefer A, Wolf DH (2004) A genomic screen identifies Dsk2p and Rad23p as essential components of ER-associated degradation. EMBO Rep 5:692–697

    Article  PubMed  CAS  Google Scholar 

  80. Molinari M, Galli C, Piccaluga V, Pieren M, Paganetti P (2002) Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J Cell Biol 158:247–257

    Article  PubMed  CAS  Google Scholar 

  81. Molinari M, Calanca V, Galli C, Lucca P, Paganetti P (2003) Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299:1397–1400

    Article  PubMed  CAS  Google Scholar 

  82. Müller J, Piffanelli P, Devoto A, Miklis M, Elliott C, Ortmann B, Schulze-Lefert P, Panstruga R (2005) Conserved ERAD-like quality control of a plant polytopic membrane protein. Plant Cell 17:149–163

    Article  PubMed  CAS  Google Scholar 

  83. Nakatsukasa K, Nishikawa S, Hosokawa N, Nagata K, Endo T (2001) Mnl1p, an α-mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J Biol Chem 276:8635–8638

    Article  PubMed  CAS  Google Scholar 

  84. Navazio L, Miuzzo M, Royle L, Baldan B, Varotto S, Merry AH, Harvey DJ, Dwek RA, Rudd PM, Mariani P (2002) Monitoring endoplasmic reticulum-to-Golgi traffic of a plant calreticulin by protein glycosylation analysis. Biochemistry 41:14141–14149

    Article  PubMed  CAS  Google Scholar 

  85. Nebenführ A, Ritzenthaler C, Robinson DG (2002) Brefeldin A: deciphering an enigmatic inhibitor of secretion. Plant Physiol 130:1102–1108

    Article  PubMed  CAS  Google Scholar 

  86. Nishikawa SI, Fewell SW, Kato Y, Brodsky JL, Endo T (2001) Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 153:1061–1070

    Article  PubMed  CAS  Google Scholar 

  87. Noh SJ, Kwon CS, Oh DH, Moon JS, Chung WI (2003) Expression of an evolutionarily distinct novel BiP gene during the unfolded protein response in Arabidopsis thaliana. Gene 311:81–91

    Article  PubMed  CAS  Google Scholar 

  88. Oda Y, Hosokawa N, Wada I, Nagata K (2003) EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299:1394–1397

    Article  PubMed  CAS  Google Scholar 

  89. Okada T, Yoshida H, Akazawa R, Negishi M, Mori K (2002) Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 366:585–594

    Article  PubMed  CAS  Google Scholar 

  90. Okamura K, Kimata Y, Higashio H, Tsuru A, Kohno K (2000) Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochem Biophys Res Commun 279:445–450

    Article  PubMed  CAS  Google Scholar 

  91. Olivari S, Galli C, Alanen H, Ruddock L, Molinari M (2005) A novel stress-induced EDEM variant regulating endoplasmic reticulum-associated glycoprotein degradation. J Biol Chem 280:2424–2428

    Article  PubMed  CAS  Google Scholar 

  92. Park H, Suzuki T, Lennarz WJ (2001) Identification of proteins that interact with mammalian peptide:N-glycanase and implicate this hydrolase in the proteasome-dependent pathway for protein degradation. Proc Natl Acad Sci USA 98:11163–11168

    Article  PubMed  CAS  Google Scholar 

  93. Pedrazzini E, Giovinazzo G, Bollini R, Ceriotti A, Vitale A (1994) Binding of BiP to an assembly-defective protein in plant cells. Plant J 5:103–110

    Article  CAS  Google Scholar 

  94. Pedrazzini E, Giovinazzo G, Bielli A, de Virgilio M, Frigerio L, Pesca M, Faoro F, Bollini R, Ceriotti A, Vitale A (1997) Protein quality control along the route to the plant vacuole. Plant Cell 9:1869–1880

    PubMed  CAS  Google Scholar 

  95. Pilon M, Schekman R, Romisch K (1997) Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J 16:4540–4548

    Article  PubMed  CAS  Google Scholar 

  96. Plemper RK, Bohmler S, Bordallo J, Sommer T, Wolf DH (1997) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388:891–895

    Article  PubMed  CAS  Google Scholar 

  97. Rabinovich E, Kerem A, Frohlich KU, Diamant N, Bar-Nun S (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22:626–634

    Article  PubMed  CAS  Google Scholar 

  98. Richly H, Rape M, Braun S, Rumpf S, Hoege C, Jentsch S (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120:73–84

    Article  PubMed  CAS  Google Scholar 

  99. Sato M, Sato K, Nakano A (2004) Endoplasmic reticulum quality control of unassembled iron transporter depends on Rer1p-mediated retrieval from the Golgi. Mol Biol Cell 15:1417–1424

    Article  PubMed  CAS  Google Scholar 

  100. Schmitz A, Schneider A, Kummer MP, Herzog V (2004) Endoplasmic reticulum-localized amyloid β-peptide is degraded in the cytosol by two distinct degradation pathways. Traffic 5:89–101

    Article  PubMed  CAS  Google Scholar 

  101. Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774

    Article  PubMed  CAS  Google Scholar 

  102. Shearer AG, Hampton RY (2005) Lipid-mediated, reversible misfolding of a sterol-sensing domain protein. EMBO J 24:149–159

    Article  PubMed  CAS  Google Scholar 

  103. Simpson JC, Roberts LM, Romisch K, Davey J, Wolf DH, Lord JM (1999) Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS Lett 459:80–84

    Article  PubMed  CAS  Google Scholar 

  104. Skowronek MH, Hendershot LM, Haas IG (1998) The variable domain of nonassembled Ig light chains determines both their half-life and binding to the chaperone BiP. Proc Natl Acad Sci USA 95:1574–1578

    Article  PubMed  CAS  Google Scholar 

  105. Sparvoli F, Faoro F, Daminati MG, Ceriotti A, Bollini R (2000) Misfolding and aggregation of vacuolar glycoproteins in plant cells. Plant J 24:825–836

    Article  PubMed  CAS  Google Scholar 

  106. Spooner RA, Watson PD, Marsden CJ, Smith DC, Moore KA, Cook JP, Lord JM, Roberts LM (2004) Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 383:285–293

    Article  PubMed  CAS  Google Scholar 

  107. Su K, Stoller T, Rocco J, Zemsky J, Green R (1993) Pre-Golgi degradation of yeast prepro-α-factor expressed in a mammalian cell. Influence of cell type-specific oligosaccharide processing on intracellular fate. J Biol Chem 268:14301–14309

    PubMed  CAS  Google Scholar 

  108. Suzuki T, Lennarz WJ (2003) Hypothesis: a glycoprotein-degradation complex formed by protein-protein interaction involves cytoplasmic peptide:N-glycanase. Biochem Biophys Res Commun 302:1–5

    Article  PubMed  CAS  Google Scholar 

  109. Suzuki T, Park H, Hollingsworth NM, Sternglanz R, Lennarz WJ (2000) PNG1, a yeast gene encoding a highly conserved peptide:N-glycanase. J Cell Biol 149:1039–1052

    Article  PubMed  CAS  Google Scholar 

  110. Suzuki T, Park H, Till EA, Lennarz WJ (2001) The PUB domain: a putative protein-protein interaction domain implicated in the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 287:1083–1087

    Article  PubMed  CAS  Google Scholar 

  111. Swanson R, Locher M, Hochstrasser M (2001) A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matα2 repressor degradation. Genes Dev 15:2660–2674

    Article  PubMed  CAS  Google Scholar 

  112. Tamura K, Yamada K, Shimada T, Hara-Nishimura I (2004) Endoplasmic reticulum-resident proteins are constitutively transported to vacuoles for degradation. Plant J 39:393–402

    Article  PubMed  CAS  Google Scholar 

  113. Taxis C, Hitt R, Park SH, Deak PM, Kostova Z, Wolf DH (2003) Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J Biol Chem 278:35903–35913

    Article  PubMed  CAS  Google Scholar 

  114. Tirosh B, Furman MH, Tortorella D, Ploegh HL (2002) Protein unfolding is not a prerequisite for endoplasmic reticulum-to-cytosol dislocation. J Biol Chem 278:6664–6672

    Article  PubMed  Google Scholar 

  115. Tortorella D, Story CM, Huppa JB, Wiertz EJ, Jones TR, Bacik I, Bennink JR, Yewdell JW, Ploegh HL (1998) Dislocation of type I membrane proteins from the ER to the cytosol is sensitive to changes in redox potential. J Cell Biol 142:365–376

    Article  PubMed  CAS  Google Scholar 

  116. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    Article  PubMed  CAS  Google Scholar 

  117. Tsai B, Rodighiero C, Lencer WI, Rapoport TA (2001) Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104:937–948

    Article  PubMed  CAS  Google Scholar 

  118. Vashist S, Kim W, Belden WJ, Spear ED, Barlowe C, Ng DT (2001) Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J Cell Biol 155:355–368

    Article  PubMed  CAS  Google Scholar 

  119. Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8:135–142

    Article  PubMed  CAS  Google Scholar 

  120. Wang Q, Chang A (2003) Substrate recognition in ER-associated degradation mediated by Eps1, a member of the protein disulfide isomerase family. EMBO J 22:3792–3802

    Article  PubMed  CAS  Google Scholar 

  121. Wesche J, Rapak A, Olsnes S (1999) Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. J Biol Chem 274:34443–34449

    Article  PubMed  CAS  Google Scholar 

  122. Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapoport TA, Ploegh HL (1996) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384:432–438

    Article  PubMed  CAS  Google Scholar 

  123. Wilson CM, Farmery MR, Bulleid NJ (2000) Pivotal role of calnexin and mannose trimming in regulating the endoplasmic reticulum-associated degradation of major histocompatibility complex class I heavy chain. J Biol Chem 275:21224–21232

    Article  PubMed  CAS  Google Scholar 

  124. Yamamoto K, Fujii R, Toyofuku Y, Saito T, Koseki H, Hsu VW, Aoe T (2001) The KDEL receptor mediates a retrieval mechanism that contributes to quality control at the endoplasmic reticulum. EMBO J 20:3082–3091

    Article  PubMed  CAS  Google Scholar 

  125. Ye Y, Meyer HH, Rapoport TA (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414:652–656

    Article  PubMed  CAS  Google Scholar 

  126. Ye Y, Meyer HH, Rapoport TA (2003) Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J Cell Biol 162:71–84

    Article  PubMed  CAS  Google Scholar 

  127. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841–847

    Article  PubMed  CAS  Google Scholar 

  128. Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K, Suzuki T, Ito Y, Matsuoka K, Yoshida M, Tanaka K, Tai T (2002) E3 ubiquitin ligase that recognizes sugar chains. Nature 418:438–442

    Article  PubMed  CAS  Google Scholar 

  129. Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K (2003a) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4:265–271

    Article  PubMed  CAS  Google Scholar 

  130. Yoshida Y, Tokunaga F, Chiba T, Iwai K, Tanaka K, Tai T (2003b) Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J Biol Chem 278:43877–43884

    Article  PubMed  CAS  Google Scholar 

  131. Zhang Y, Nijbroek G, Sullivan ML, McCracken AA, Watkins SC, Michaelis S, Brodsky JL (2001) Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol Biol Cell 12:1303–1314

    PubMed  CAS  Google Scholar 

  132. Zhou M, Schekman R (1999) The engagement of Sec61p in the ER dislocation process. Mol Cell 4:925–934

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Myriam Ermonval for critical reading of the manuscript. Work in the authors' laboratory was supported by MIUR-FIRB grant RBNE01TYZF and by the UK BBSRC and The Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Ceriotti .

Editor information

David G. Robinson

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ceriotti, A., Roberts, L.M. (2006). Endoplasmic Reticulum-associated Protein Degradation in Plant Cells. In: Robinson, D.G. (eds) The Plant Endoplasmic Reticulum. Plant Cell Monographs, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_066

Download citation

Publish with us

Policies and ethics