Skip to main content

Meiotic Chromatin: The Substrate for Recombination Initiation

  • Chapter
  • First Online:
Recombination and Meiosis

Part of the book series: Genome Dynamics and Stability ((GENOME,volume 3))

Abstract

The DNA double-strand breaks (DSBs) that form during meiosis I prophase initiate recombination. DSBs also play a critical role, in many species, in driving progressive association and colocalization of homologs, which culminate in full homolog synapsis at pachytene. Data from many species indicate that DSBs and recombination are not uniformly distributed, but occur more frequently in some places than in others. Studies from Saccharomyces cerevisiae and Schizosaccharomyces pombe, where DSBs have been mapped at the molecular level, indicate that chromatin structure is an important determinant of where DSBs form, but that other factors are also involved. Less direct data from other species also address possible roles for chromatin structure and higher-order chromosome structure in DSB formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almer A, Rudolph H, Hinnen A, Hörz W (1986) Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J 5:2689–2696

    PubMed  CAS  Google Scholar 

  2. Anderson LK, Stack SM (2005) Recombination nodules in plants. Cytogenet Genome Res 109:198–204

    Article  PubMed  CAS  Google Scholar 

  3. Anderson LK, Hooker KD, Stack SM (2001) The distribution of early recombination nodules on zygotene bivalents from plants. Genetics 159:1259–1269

    PubMed  CAS  Google Scholar 

  4. Bao Y, Shen X (2007) Chromatin remodeling in DNA double-strand break repair. Curr Opin Genet Dev 17:126–131

    Article  PubMed  CAS  Google Scholar 

  5. Barlow AL, Benson FE, West SC, Hulten MA (1997) Distribution of the Rad51 recombinase in human and mouse spermatocytes. EMBO J 16:5207–5215

    Article  PubMed  CAS  Google Scholar 

  6. Baudat F, de Massy B (2007) Cis- and trans-acting elements regulate the mouse Psmb9 meiotic recombination hotspot. PLoS Genet 3:e100

    Article  PubMed  CAS  Google Scholar 

  7. Baudat F, Nicolas A (1997) Clustering of meiotic double-strand breaks on yeast chromosome III. Proc Natl Acad Sci USA 94:5213–5218

    Article  PubMed  CAS  Google Scholar 

  8. Baudat F, Manova K, Yuen JP, Jasin M, Keeney S (2000) Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell 6:989–998

    Article  PubMed  CAS  Google Scholar 

  9. Beadle GW (1932) A possible influence of the spindle fibre on crossing-over in Drosophila. Proc Natl Acad Sci USA 18:160–165

    Article  PubMed  CAS  Google Scholar 

  10. Ben-Aroya S, Mieczkowski PA, Petes TD, Kupiec M (2004) The compact chromatin structure of a Ty repeated sequence suppresses recombination hotspot activity in Saccharomyces cerevisiae. Mol Cell 15:221–231

    Article  PubMed  CAS  Google Scholar 

  11. Bender J (1998) Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem Sci 23:252–256

    Article  PubMed  CAS  Google Scholar 

  12. Blat Y, Kleckner N (1999) Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98:249–259

    Article  PubMed  CAS  Google Scholar 

  13. Blat Y, Protacio RU, Hunter N, Kleckner N (2002) Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111:791–802

    Article  PubMed  CAS  Google Scholar 

  14. Blitzblau HG, Bell GW, Rodriguez J, Bell SP, Hochwagen A (2007) Mapping of meiotic single-stranded DNA reveals double-strand break hotspots near telomeres and centromeres. Curr Biol 17:2003–2012

    Article  PubMed  CAS  Google Scholar 

  15. Borde V, Wu TC, Lichten M (1999) Use of a recombination reporter insert to define meiotic recombination domains on chromosome III of Saccharomyces cerevisiae. Mol Cell Biol 19:4832–4842

    PubMed  CAS  Google Scholar 

  16. Borde V, Goldman AS, Lichten M (2000) Direct coupling between meiotic DNA replication and recombination initiation. Science 290:806–809

    Article  PubMed  CAS  Google Scholar 

  17. Borde V, Lin W, Novikov E, Petrini JH, Lichten M, Nicolas A (2004) Association of Mre11p with double-strand break sites during yeast meiosis. Mol Cell 13:389–410

    Article  PubMed  CAS  Google Scholar 

  18. Buard J, de Massy B (2007) Playing hide and seek with mammalian meiotic crossover hotspots. Trends Genet 23:301–309

    Article  PubMed  CAS  Google Scholar 

  19. Buhler C, Borde V, Lichten M (2007) Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae. PLoS Biol 5:e324

    Article  PubMed  CAS  Google Scholar 

  20. Burgess SM, Ajimura M, Kleckner N (1999) GCN5-dependent histone H3 acetylation and RPD3-dependent histone H4 deacetylation have distinct, opposing effects on IME2 transcription, during meiosis and during vegetative growth, in budding yeast. Proc Natl Acad Sci USA 96:6835–6840

    Article  PubMed  CAS  Google Scholar 

  21. Cao L, Alani E, Kleckner N (1990) A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61:1089–1101

    Article  PubMed  CAS  Google Scholar 

  22. Civardi L, Xia Y, Edwards KJ, Schnable PS, Nikolau BJ (1994) The relationship between genetic and physical distances in the cloned a1-sh2 interval of the Zea mays L. genome. Proc Natl Acad Sci USA 91:8268–8272

    Article  PubMed  CAS  Google Scholar 

  23. Colot V, Maloisel L, Rossignol JL (1996) Interchromosomal transfer of epigenetic states in Ascobolus: transfer of DNA methylation is mechanistically related to homologous recombination. Cell 86:855–864

    Article  PubMed  CAS  Google Scholar 

  24. Company M, Errede B (1988) A Ty1 cell-type-specific regulatory sequence is a recognition element for a constitutive binding factor. Mol Cell Biol 8:5299–5309

    PubMed  CAS  Google Scholar 

  25. Coop G, Przeworski M (2007) An evolutionary view of human recombination. Nat Rev Genet 8:23–34

    Article  PubMed  CAS  Google Scholar 

  26. Coop G, Wen X, Ober C, Pritchard JK, Przeworski M (2008) High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319:1395–1398

    Article  PubMed  CAS  Google Scholar 

  27. Cromie GA, Rubio CA, Hyppa RW, Smith GR (2005) A natural meiotic DNA break site in Schizosaccharomyces pombe is a hotspot of gene conversion, highly associated with crossing over. Genetics 169:595–605

    Article  PubMed  CAS  Google Scholar 

  28. Cromie G, Hyppa RW, Cam H, Farah JA, Grewal S, Smith GR (2007) A discrete class of intergenic DNA dictates meiotic DNA break hotspots in fission yeast. PLoS Genet 3:e141

    Article  PubMed  CAS  Google Scholar 

  29. Dai J, Chuang RY, Kelly TJ (2005) DNA replication origins in the Schizosaccharomyces pombe genome. Proc Natl Acad Sci USA 102:337–342

    Article  PubMed  CAS  Google Scholar 

  30. de Massy B (2003) Distribution of meiotic recombination sites. Trends Genet 19:514–522

    Article  PubMed  CAS  Google Scholar 

  31. de Massy B, Rocco V, Nicolas A (1995) The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. EMBO J 14:4589–4598

    PubMed  Google Scholar 

  32. Dean A (2006) On a chromosome far, far away: LCRs and gene expression. Trends Genet 22:38–45

    Article  PubMed  CAS  Google Scholar 

  33. Detloff P, White MA, Petes TD (1992) Analysis of a gene conversion gradient at the HIS4 locus in Saccharomyces cerevisiae. Genetics 132:113–123

    PubMed  CAS  Google Scholar 

  34. Downs JA, Nussenzweig MC, Nussenzweig A (2007) Chromatin dynamics and the preservation of genetic information. Nature 447:951–958

    Article  PubMed  CAS  Google Scholar 

  35. Dresser ME et al. (1997) DMC1 functions in a Saccharomyces cerevisiae meiotic pathway that is largely independent of the RAD51 pathway. Genetics 147:533–544

    PubMed  CAS  Google Scholar 

  36. Drouaud J et al. (2006) Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination "hot spots". Genome Res 16:106–114

    Article  PubMed  CAS  Google Scholar 

  37. Egel R (1984) Two tightly linked silent cassettes in the mating-type region of Schizosaccharomyces pombe. Curr Genet 8:199–203

    Article  Google Scholar 

  38. Fan QQ, Petes TD (1996) Relationship between nuclease-hypersensitive sites and meiotic recombination hot spot activity at the HIS4 locus of Saccharomyces cerevisiae. Mol Cell Biol 16:2037–2043

    PubMed  CAS  Google Scholar 

  39. Fan QQ, Xu F, Petes TD (1995) Meiosis-specific double-strand DNA breaks at the HIS4 recombination hot spot in the yeast Saccharomyces cerevisiae: control in cis and trans. Mol Cell Biol 15:1679–1688

    PubMed  CAS  Google Scholar 

  40. Fan QQ, Xu F, White MA, Petes TD (1997) Competition between adjacent meiotic recombination hotspots in the yeast Saccharomyces cerevisiae. Genetics 145:661–670

    PubMed  CAS  Google Scholar 

  41. Fascher KD, Schmitz J, Hörz W (1993) Structural and functional requirements for the chromatin transition at the PHO5 promoter in Saccharomyces cerevisiae upon PHO5 activation. J Mol Biol 231:658–667

    Article  PubMed  CAS  Google Scholar 

  42. Fogel S, Mortimer RK, Lusnak K (1981) Mechanisms of meiotic gene conversion, or "Wanderings on a foreign strand". In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 289–339

    Google Scholar 

  43. Fox ME, Virgin JB, Metzger J, Smith GR (1997) Position- and orientation-independent activity of the Schizosaccharomyces pombe meiotic recombination hot spot M26. Proc Natl Acad Sci USA 94:7446–7451

    Article  PubMed  CAS  Google Scholar 

  44. Fox ME, Yamada T, Ohta K, Smith GR (2000) A family of cAMP-response-element-related DNA sequences with meiotic recombination hotspot activity in Schizosaccharomyces pombe. Genetics 156:59–68

    PubMed  CAS  Google Scholar 

  45. Fritze CE, Verschueren K, Strich R, Esposito RE (1997) Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA. EMBO J 16:6495–6509

    Article  PubMed  CAS  Google Scholar 

  46. Fu H, Zheng Z, Dooner HK (2002) Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. Proc Natl Acad Sci USA 99:1082–1087

    PubMed  CAS  Google Scholar 

  47. Galagan JE, Selker EU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20:417–423

    Article  PubMed  CAS  Google Scholar 

  48. Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO, Petes TD (2000) Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:11383–11390

    Article  PubMed  CAS  Google Scholar 

  49. Glynn EF et al. (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2:E259

    Article  PubMed  CAS  Google Scholar 

  50. Goldway M, Sherman A, Zenvirth D, Arbel T, Simchen G (1993) A short chromosomal region with major roles in yeast chromosome III meiotic disjunction, recombination and double strand breaks. Genetics 133:159–169

    PubMed  CAS  Google Scholar 

  51. Gottlieb S, Esposito RE (1989) A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56:771–776

    Article  PubMed  CAS  Google Scholar 

  52. Grewal SI, Elgin SC (2007) Transcription and RNA interference in the formation of heterochromatin. Nature 447:399–406

    Article  PubMed  CAS  Google Scholar 

  53. Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46

    Article  PubMed  CAS  Google Scholar 

  54. Grewal SI, Bonaduce MJ, Klar AJ (1998) Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast. Genetics 150:563–576

    PubMed  CAS  Google Scholar 

  55. Grigoriev M, Hsieh P (1997) A histone octamer blocks branch migration of a Holliday junction. Mol Cell Biol 17:7139–7150

    PubMed  CAS  Google Scholar 

  56. Gross DS, Garrard WT (1988) Nuclease hypersensitive sites in chromatin. Annu Rev Biochem 57:159–197

    Article  PubMed  CAS  Google Scholar 

  57. Gutz H (1971) Site specific induction of gene conversion in Schizosaccharomyces pombe. Genetics 69:317–337

    PubMed  CAS  Google Scholar 

  58. Haber JE, Leung WY, Borts RH, Lichten M (1991) The frequency of meiotic recombination in yeast is independent of the number and position of homologous donor sequences: implications for chromosome pairing. Proc Natl Acad Sci USA 88:1120–1124

    Article  PubMed  CAS  Google Scholar 

  59. Hall IM, Shankaranarayana GD, Noma K-I, Ayoub N, Cohen A, Grewal SIS (2002) Establishment and maintenance of a heterochromatin domain. Science 297:2232–2237

    Article  PubMed  CAS  Google Scholar 

  60. Hayashi M et al. (2007) Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J 26:1327–1339

    Article  PubMed  CAS  Google Scholar 

  61. Heichinger C, Penkett CJ, Bahler J, Nurse P (2006) Genome-wide characterization of fission yeast DNA replication origins. EMBO J 25:5171–5179

    Article  PubMed  CAS  Google Scholar 

  62. Hirota K, Hoffman CS, Shibata T, Ohta K (2003) Fission yeast Tup1-like repressors repress chromatin remodeling at the fbp1+ promoter and the ade6-M26 recombination hotspot. Genetics 165:505–515

    PubMed  CAS  Google Scholar 

  63. Hirota K, Steiner WW, Shibata T, Ohta K (2007) Multiple modes of chromatin configuration at natural meiotic recombination hot spots in fission yeast. Eukaryot Cell 6:2072–2080

    Article  PubMed  CAS  Google Scholar 

  64. Hirota K, Mizuno K-I, Shibata T, Ohta K (2008) Distinct chromatin modulators regulate the formation of accessible and repressive chromatin at the fission yeast recombination hotspot ade6-M26. Mol Biol Cell 19:1162–1173

    Article  PubMed  CAS  Google Scholar 

  65. Jeffreys AJ et al. (2004) Meiotic recombination hot spots and human DNA diversity. Philos Trans R Soc Lond B Biol Sci 359:141–152

    Article  PubMed  CAS  Google Scholar 

  66. Jessop L, Allers T, Lichten M (2005) Infrequent co-conversion of markers flanking a meiotic recombination initiation site in Saccharomyces cerevisiae. Genetics 169:1353–1367

    Article  PubMed  CAS  Google Scholar 

  67. Jia S, Yamada T, Grewal SI (2004) Heterochromatin regulates cell type-specific long-range chromatin interactions essential for directed recombination. Cell 119:469–480

    Article  PubMed  CAS  Google Scholar 

  68. Jinks-Robertson S, Petes TD (1985) High-frequency meiotic gene conversion between repeated genes on nonhomologous chromosomes in yeast. Proc Natl Acad Sci USA 82:3350–3354

    Article  PubMed  CAS  Google Scholar 

  69. Kauppi L, Jeffreys AJ, Keeney S (2004) Where the crossovers are: recombination distributions in mammals. Nat Rev Genet 5:413–424

    Article  PubMed  CAS  Google Scholar 

  70. Kauppi L, Jasin M, Keeney S (2007) Meiotic crossover hotspots contained in haplotype block boundaries of the mouse genome. Proc Natl Acad Sci USA 104:13396–13401

    Article  PubMed  CAS  Google Scholar 

  71. Keeney S (2001) Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52:1–53

    Article  PubMed  CAS  Google Scholar 

  72. Keeney S, Kleckner N (1995) Covalent protein–DNA complexes at the 5' strand termini of meiosis-specific double-strand breaks in yeast. Proc Natl Acad Sci USA 92:11274–11278

    Article  PubMed  CAS  Google Scholar 

  73. Keeney S, Kleckner N (1996) Communication between homologous chromosomes: genetic alterations at a nuclease-hypersensitive site can alter mitotic chromatin structure at that site both in cis and in trans. Genes Cells 1:475–489

    Article  PubMed  CAS  Google Scholar 

  74. Keeney S, Neale MJ (2006) Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem Soc Trans 34:523–525

    Article  PubMed  CAS  Google Scholar 

  75. Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–384

    Article  PubMed  CAS  Google Scholar 

  76. Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478

    PubMed  CAS  Google Scholar 

  77. Kirkpatrick DT, Wang YH, Dominska M, Griffith JD, Petes TD (1999) Control of meiotic recombination and gene expression in yeast by a simple repetitive DNA sequence that excludes nucleosomes. Mol Cell Biol 19:7661–7671

    PubMed  CAS  Google Scholar 

  78. Kleckner N (2006) Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma 115:175–194

    Article  PubMed  Google Scholar 

  79. Klein F et al. (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98:91–103

    Article  PubMed  CAS  Google Scholar 

  80. Koehler KE et al. (1996) Spontaneous X chromosome MI and MII nondisjunction events in Drosophila melanogaster oocytes have different recombinational histories. Nat Genet 14:406–414

    Article  PubMed  CAS  Google Scholar 

  81. Kon N, Krawchuk MD, Warren BG, Smith GR, Wahls WP (1997) Transcription factor Mts1/Mts2 (Atf1/Pcr1, Gad7/Pcr1) activates the M26 meiotic recombination hotspot in Schizosaccharomyces pombe. Proc Natl Acad Sci USA 94:13765–13770

    Article  PubMed  CAS  Google Scholar 

  82. Koren A, Ben-Aroya S, Kupiec M (2002) Control of meiotic recombination initiation: a role for the environment? Curr Genet 42:129–139

    Article  PubMed  CAS  Google Scholar 

  83. Kupiec M, Petes TD (1988a) Allelic and ectopic recombination between Ty elements in yeast. Genetics 119:549–559

    PubMed  CAS  Google Scholar 

  84. Kupiec M, Petes TD (1988b) Meiotic recombination between repeated transposable elements in Saccharomyces cerevisiae. Mol Cell Biol 8:2942–2954

    PubMed  CAS  Google Scholar 

  85. Kwon Y, Seong C, Chi P, Greene EC, Klein H, Sung P (2008) ATP-dependent chromatin remodeling by the Saccharomyces cerevisiae homologous recombination factor Rdh54/Tid1. J Biol Chem 283:10445–10452

    Article  PubMed  CAS  Google Scholar 

  86. Lamb NE et al. (1996) Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat Genet 14:400–405

    Article  PubMed  CAS  Google Scholar 

  87. Lambie EJ, Roeder GS (1986) Repression of meiotic crossing over by a centromere (CEN3) in Saccharomyces cerevisiae. Genetics 114:769–789

    PubMed  CAS  Google Scholar 

  88. Lambie EJ, Roeder GS (1988) A yeast centromere acts in cis to inhibit meiotic gene conversion of adjacent sequences. Cell 52:863–873

    Article  PubMed  CAS  Google Scholar 

  89. Lichten M, Borts RH, Haber JE (1987) Meiotic gene conversion and crossing over between dispersed homologous sequences occurs frequently in Saccharomyces cerevisiae. Genetics 115:233–246

    PubMed  CAS  Google Scholar 

  90. Liu CL et al. (2005) Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 3:e328

    Article  PubMed  CAS  Google Scholar 

  91. Liu J, Wu TC, Lichten M (1995) The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA–protein intermediate. EMBO J 14:4599–4608

    PubMed  CAS  Google Scholar 

  92. Maloisel L, Rossignol JL (1998) Suppression of crossing-over by DNA methylation in Ascobolus. Genes Dev 12:1381–1389

    Article  PubMed  CAS  Google Scholar 

  93. McKee AH, Kleckner N (1997) A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2. Genetics 146:797–816

    PubMed  CAS  Google Scholar 

  94. Mézard C (2006) Meiotic recombination hotspots in plants. Biochem Soc Trans 34:531–534

    Article  PubMed  Google Scholar 

  95. Mieczkowski PA, Dominska M, Buck MJ, Lieb JD, Petes TD (2007) Loss of a histone deacetylase dramatically alters the genomic distribution of Spo11p-catalyzed DNA breaks in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:3955–3960

    Article  PubMed  CAS  Google Scholar 

  96. Mizuno K, Emura Y, Baur M, Kohli J, Ohta K, Shibata T (1997) The meiotic recombination hot spot created by the single-base substitution ade6-M26 results in remodeling of chromatin structure in fission yeast. Genes Dev 11:876–886

    Article  PubMed  CAS  Google Scholar 

  97. Mizuno K et al. (2001) Counteracting regulation of chromatin remodeling at a fission yeast cAMP response element-related recombination hotspot by stress-activated protein kinase, cAMP-dependent kinase and meiosis regulators. Genetics 159:1467–1478

    PubMed  CAS  Google Scholar 

  98. Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B (2002) The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA–DNA interactions without reciprocal recombination. J Cell Sci 115:1611–1622

    PubMed  CAS  Google Scholar 

  99. Murakami H, Borde V, Shibata T, Lichten M, Ohta K (2003) Correlation between premeiotic DNA replication and chromatin transition at yeast recombination initiation sites. Nucleic Acids Res 31:4085–4090

    Article  PubMed  CAS  Google Scholar 

  100. Murti JR, Bumbulis M, Schimenti JC (1994) Gene conversion between unlinked sequences in the germline of mice. Genetics 137:837–843

    PubMed  CAS  Google Scholar 

  101. Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310:321–324

    Article  PubMed  CAS  Google Scholar 

  102. Nairz K, Klein F (1997) mre11S—a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev 11:2272–2290

    Article  PubMed  CAS  Google Scholar 

  103. Nakaseko Y, Adachi Y, Funahashi S, Niwa O, Yanagida M (1986) Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J 5:1011–1021

    PubMed  CAS  Google Scholar 

  104. Neale MJ, Pan J, Keeney S (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436:1053–1057

    Article  PubMed  CAS  Google Scholar 

  105. Neumann R, Jeffreys AJ (2006) Polymorphism in the activity of human crossover hotspots independent of local DNA sequence variation. Hum Mol Genet 15:1401–1411

    Article  PubMed  CAS  Google Scholar 

  106. Nicolas A, Treco D, Schultes NP, Szostak JW (1989) An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature 338:35–39

    Article  PubMed  CAS  Google Scholar 

  107. Nieduszynski CA, Knox Y, Donaldson AD (2006) Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev 20:1874–1879

    Article  PubMed  CAS  Google Scholar 

  108. Ohta K, Shibata T, Nicolas A (1994) Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO J 13:5754–5763

    PubMed  CAS  Google Scholar 

  109. Ohta K, Nicolas A, Furuse M, Nabetani A, Ogawa H, Shibata T (1998) Mutations in the MRE11, RAD50, XRS2, and MRE2 genes alter chromatin configuration at meiotic DNA double-stranded break sites in premeiotic and meiotic cells. Proc Natl Acad Sci USA 95:646–651

    Article  PubMed  CAS  Google Scholar 

  110. Ohta K, Wu TC, Lichten M, Shibata T (1999) Competitive inactivation of a double-strand DNA break site involves parallel suppression of meiosis-induced changes in chromatin configuration. Nucleic Acids Res 27:2175–2180

    Article  PubMed  CAS  Google Scholar 

  111. Pecina A, Smith KN, Mezard C, Murakami H, Ohta K, Nicolas A (2002) Targeted stimulation of meiotic recombination. Cell 111:173–184

    Article  PubMed  CAS  Google Scholar 

  112. Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2:360–369

    Article  PubMed  CAS  Google Scholar 

  113. Petes TD, Botstein D (1977) Simple Mendelian inheritance of the reiterated ribosomal DNA of yeast. Proc Natl Acad Sci USA 74:5091–5095

    Article  PubMed  CAS  Google Scholar 

  114. Petronczki M, Siomos MF, Nasmyth K (2003) Un ménage à quatre: the molecular biology of chromosome segregation in meiosis. Cell 112:423–440

    Article  PubMed  CAS  Google Scholar 

  115. Ponticelli AS, Smith GR (1992) Chromosomal context dependence of a eukaryotic recombinational hot spot. Proc Natl Acad Sci USA 89:227–231

    Article  PubMed  CAS  Google Scholar 

  116. Prieler S, Penkner A, Borde V, Klein F (2005) The control of Spo11's interaction with meiotic recombination hotspots. Genes Dev 19:255–269

    Article  PubMed  CAS  Google Scholar 

  117. Prinz S, Amon A, Klein F (1997) Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146:781–795

    PubMed  CAS  Google Scholar 

  118. Raisner RM et al. (2005) Histone variant H2A.Z marks the 5' ends of both active and inactive genes in euchromatin. Cell 123:233–248

    Article  PubMed  CAS  Google Scholar 

  119. Rando OJ (2007) Chromatin structure in the genomics era. Trends Genet 23:67–73

    Article  PubMed  CAS  Google Scholar 

  120. Robine N et al. (2007) Genome-wide redistribution of meiotic double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 27:1868–1880

    Article  PubMed  CAS  Google Scholar 

  121. Rockmill B, Voelkel-Meiman K, Roeder GS (2006) Centromere-proximal crossovers are associated with precocious separation of sister chromatids during meiosis in Saccharomyces cerevisiae. Genetics 174:1745–1754

    Article  PubMed  Google Scholar 

  122. Rusche LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72:481–516

    Article  PubMed  CAS  Google Scholar 

  123. Sasanuma H et al (2008) Cdc7-dependent phosphorylation of Mer2 facilitates initiation of yeast meiotic recombination. Genes Dev 22:398–410

    Article  PubMed  CAS  Google Scholar 

  124. Sasanuma H, Murakami H, Fukuda T, Shibata T, Nicolas A, Ohta K (2007) Meiotic association between Spo11 regulated by Rec102, Rec104 and Rec114. Nucleic Acids Res 35:1119–1133

    Article  PubMed  CAS  Google Scholar 

  125. Schuchert P, Langsford M, Kaslin E, Kohli J (1991) A specific DNA sequence is required for high frequency of recombination in the ade6 gene of fission yeast. EMBO J 10:2157–2163

    PubMed  CAS  Google Scholar 

  126. Schultes NP, Szostak JW (1990) Decreasing gradients of gene conversion on both sides of the initiation site for meiotic recombination at the ARG4 locus in yeast. Genetics 126:813–822

    PubMed  CAS  Google Scholar 

  127. Schultes NP, Szostak JW (1991) A poly(dA.dT) tract is a component of the recombination initiation site at the ARG4 locus in Saccharomyces cerevisiae. Mol Cell Biol 11:322–328

    PubMed  CAS  Google Scholar 

  128. Sherman JD, Stack SM (1995) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High-resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics 141:683–708

    PubMed  CAS  Google Scholar 

  129. Shifman S et al (2006) A high-resolution single nucleotide polymorphism genetic map of the mouse genome. PLoS Biol 4:e395

    Article  PubMed  CAS  Google Scholar 

  130. Shiroishi T, Sagai T, Hanzawa N, Gotoh H, Moriwaki K (1991) Genetic control of sex-dependent meiotic recombination in the major histocompatibility complex of the mouse. EMBO J 10:681–686

    PubMed  CAS  Google Scholar 

  131. Singer T, Fan Y, Chang HS, Zhu T, Hazen SP, Briggs SP (2006) A high-resolution map of Arabidopsis recombinant inbred lines by whole-genome exon array hybridization. PLoS Genet 2:e144

    Article  PubMed  CAS  Google Scholar 

  132. Sollier J et al (2004) Set1 is required for meiotic S-phase onset, double-strand break formation and middle gene expression. EMBO J 23:1957–1967

    Article  PubMed  CAS  Google Scholar 

  133. Stack SM (1984) Heterochromatin, the synaptonemal complex and crossing over. J Cell Sci 71:159–176

    PubMed  CAS  Google Scholar 

  134. Steiner WW, Smith GR (2005) Natural meiotic recombination hot spots in the Schizosaccharomyces pombe genome successfully predicted from the simple sequence motif M26. Mol Cell Biol 25:9054–9062

    Article  PubMed  CAS  Google Scholar 

  135. Steiner WW, Schreckhise RW, Smith GR (2002) Meiotic DNA breaks at the S. pombe recombination hot spot M26. Mol Cell 9:847–855

    Article  PubMed  CAS  Google Scholar 

  136. Sun H, Treco D, Schultes NP, Szostak JW (1989) Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338:87–90

    Article  PubMed  CAS  Google Scholar 

  137. Thon G, Klar AJ (1992) The clr1 locus regulates the expression of the cryptic mating-type loci of fission yeast. Genetics 131:287–296

    PubMed  CAS  Google Scholar 

  138. Thuriaux P (1977) Is recombination confined to structural genes on the eukaryotic genome? Nature 268:460–462

    Article  PubMed  CAS  Google Scholar 

  139. Topp CN, Dawe RK (2006) Reinterpreting pericentromeric heterochromatin. Curr Opin Plant Biol 9:647–653

    Article  PubMed  CAS  Google Scholar 

  140. Tsubouchi T, Roeder GS (2005) A synaptonemal complex protein promotes homology-independent centromere coupling. Science 308:870–873

    Article  PubMed  CAS  Google Scholar 

  141. van Heemst D, Heyting C (2000) Sister chromatid cohesion and recombination in meiosis. Chromosoma 109:10–26

    Article  PubMed  Google Scholar 

  142. Vedel M, Nicolas A (1999) CYS3, a hotspot of meiotic recombination in Saccharomyces cerevisiae. Effects of heterozygosity and mismatch repair functions on gene conversion and recombination intermediates. Genetics 151:1245–1259

    PubMed  CAS  Google Scholar 

  143. Virgin JB, Metzger J, Smith GR (1995) Active and inactive transplacement of the M26 recombination hotspot in Schizosaccharomyces pombe. Genetics 141:33–48

    PubMed  CAS  Google Scholar 

  144. Wahls WP, Smith GR (1994) A heteromeric protein that binds to a meiotic homologous recombination hot spot: correlation of binding and hot spot activity. Genes Dev 8:1693–1702

    Article  PubMed  CAS  Google Scholar 

  145. White MA, Wierdl M, Detloff P, Petes TD (1991) DNA-binding protein RAP1 stimulates meiotic recombination at the HIS4 locus in yeast. Proc Natl Acad Sci USA 88:9755–9759

    Article  PubMed  CAS  Google Scholar 

  146. White MA, Detloff P, Strand M, Petes TD (1992) A promoter deletion reduces the rate of mitotic, but not meiotic, recombination at the HIS4 locus in yeast. Curr Genet 21:109–116

    Article  PubMed  CAS  Google Scholar 

  147. White MA, Dominska M, Petes TD (1993) Transcription factors are required for the meiotic recombination hotspot at the HIS4 locus in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 90:6621–6625

    Article  PubMed  CAS  Google Scholar 

  148. Winzeler EA et al. (1998) Direct allelic variation scanning of the yeast genome. Science 281:1194–1197

    Article  PubMed  CAS  Google Scholar 

  149. Wu T-C, Lichten M (1994) Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263:515–518

    Article  PubMed  CAS  Google Scholar 

  150. Wu T-C, Lichten M (1995) Factors that affect the location and frequency of meiosis-induced double-strand breaks in Saccharomyces cerevisiae. Genetics 140:55–66

    PubMed  CAS  Google Scholar 

  151. Xu F, Petes TD (1996) Fine-structure mapping of meiosis-specific double-strand DNA breaks at a recombination hotspot associated with an insertion of telomeric sequences upstream of the HIS4 locus in yeast. Genetics 143:1115–1125

    PubMed  CAS  Google Scholar 

  152. Xu L, Kleckner N (1995) Sequence non-specific double-strand breaks and interhomolog interactions prior to double-strand break formation at a meiotic recombination hot spot in yeast. EMBO J 14:5115–5128

    PubMed  CAS  Google Scholar 

  153. Yamada T et al. (2004) Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. EMBO J 23:1792–1803

    Article  PubMed  CAS  Google Scholar 

  154. Yamashita K, Shinohara M, Shinohara A (2004) Rad6-Bre1-mediated histone H2B ubiquitylation modulates the formation of double-strand breaks during meiosis. Proc Natl Acad Sci USA 101:11380–11385

    Article  PubMed  CAS  Google Scholar 

  155. Yao H et al. (2002) Molecular characterization of meiotic recombination across the 140-kb multigenic a1-sh2 interval of maize. Proc Natl Acad Sci USA 99:6157–6162

    Article  PubMed  CAS  Google Scholar 

  156. Yeh E et al. (2008) Pericentric chromatin is organized into an intramolecular loop in mitosis. Curr Biol 18:81–90

    Article  PubMed  CAS  Google Scholar 

  157. Young JA, Schreckhise RW, Steiner WW, Smith GR (2002) Meiotic recombination remote from prominent DNA break sites in S. pombe. Mol Cell 9:253–263

    Article  PubMed  CAS  Google Scholar 

  158. Yuan GC et al. (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309:626–630

    Article  PubMed  CAS  Google Scholar 

  159. Zahn-Zabal M, Lehmann E, Kohli J (1995) Hotspots of recombination in fission yeast: inactivation of the M26 hotspot by deletion of the ade6 promoter, and the novel hotspot ura4-aim. Genetics 140:469–478

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lichten .

Editor information

Richard Egel Dirk-Henner Lankenau

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lichten, M. (2008). Meiotic Chromatin: The Substrate for Recombination Initiation. In: Egel, R., Lankenau, DH. (eds) Recombination and Meiosis. Genome Dynamics and Stability, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7050_2008_040

Download citation

Publish with us

Policies and ethics