Skip to main content

The Legacy of the Germ Line – Maintaining Sex and Life in Metazoans: Cognitive Roots of the Concept of Hierarchical Selection

  • Chapter
  • First Online:
Recombination and Meiosis

Part of the book series: Genome Dynamics and Stability ((GENOME,volume 3))

Abstract

The metazoan germ line is often referred to as nothing else but another organ or tissue that needs no different treatment in research compared to other somatic organs such as liver, kidneys, skin, brain or blood. However, the germ-line concept was established during the 19th century by August Weismann and was recognized since to be tightly linked with the role of maintaining sexual reproduction. By far more profoundly, Stephen Gould only recently documented how August Weismann and Charles Darwin gained insight into evolution driven by multiple levels of selection—not natural selection as the only level, each playing its particular and significant role in understanding a different aspect of evolution from the level of molecules to cells, man, societies up to the complexity of ecosystems. This chapter represents a single argument pinpointing the historical and current cognitive foundations at the grass-roots level with links to present concepts of sexual reproduction. Feeding back on this, sexual reproduction and genetic recombination including meiosis are part of the glue linking all the levels of hierarchical selection. Finally, this essay briefly sketches a tie to modern frontiers, in particular to the nuage germ plasm organelle. The nuage is recognized as an ancient key platform mediating genome encoded sex-related developmental circuits as well as germ-line-related control of transposon driven (epi)genome instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams MD, McVey M, Sekelsky JJ (2003) Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science 299:265–267

    PubMed  CAS  Google Scholar 

  2. André J, Rouiller C (1957) The ultrastructure of the vitelline body in the oocyte of the spider Tegenaria parietina. J Biophys Biochem Cytol 3:977–984

    Article  PubMed  Google Scholar 

  3. Beard J (1904) The Germ-Cells: Part III. J Anat Physiol 38:341–359

    PubMed  CAS  Google Scholar 

  4. Bell G (1982) The masterpiece of nature: the evolution and genetics of sexuality. University of California Press, Berkeley

    Google Scholar 

  5. Bell G (1997) Selection: the mechanism of evolution. Chapman & Hall, New York

    Google Scholar 

  6. Bernstein C, Bernstein H (1991) Aging, sex, and DNA repair. Academic Press, San Diego

    Google Scholar 

  7. Bernstein H, Byerly HC, Hopf FA, Michod RE (1984) Origin of sex. J Theor Biol 110:323–351

    PubMed  CAS  Google Scholar 

  8. Bernstein H, Byerly HC, Hopf FA, Michod RE (1985a) DNA repair and complementation: The major factors in the origin and maintenance of sex. In: Halvorsen HO (ed) Origin and Evoution of Sex. Alan R. Liss, New York, pp 29–45

    Google Scholar 

  9. Bernstein H, Byerly HC, Hopf FA, Michod RE (1985b) The evolutionary role of recombinational repair and sex. Int Rev Cytol 96:1–28

    PubMed  CAS  Google Scholar 

  10. Bernstein H, Byers GS, Michod RE (1981) Evolution of sexual reproduction: Importance of DNA repair, complementation and variation. Am Nat 117:537–549

    CAS  Google Scholar 

  11. Bernstein H, Hopf FA, Michod RE (1987) The molecular basis of the evolution of sex. Adv Genet 24:323–370

    PubMed  CAS  Google Scholar 

  12. Bernstein H, Hopf FA, Michod RE (1989) The role of DNA repair in sexual reproduction. In: Voland E, Vogel C (eds) Sociobiology of Reproduction, Strategies in Animal and Man. Chapman and Hall, New York, pp 3–18

    Google Scholar 

  13. Bhattacharjee Y (2001) Measuring the immeasurable. Nature 412:474–476

    PubMed  CAS  Google Scholar 

  14. Biebricher CK (1999) Mutation, Competition and Selection as Measured with Small RNA Molecules. In: Domingo E, Webster R, Holland J (eds) Origin and Evolution of Viruses. Academic Press, London, San Diego, pp 65–85

    Google Scholar 

  15. Boveri T (1887) Über Differenzierung der Zellkerne während der Furchung des Eies von Ascaris megalocephala. Anat Anz 2:688–693

    Google Scholar 

  16. Boveri T (1899) Die Entwicklung von Ascaris megalocephala mit besonderer Rücksicht auf die Kernverhältnisse. In: Festschrift für C von Kupffer. Fischer, Jena, pp 383–430

    Google Scholar 

  17. Boveri T (1910) Die Potenzen der Ascaris-Blastomeren bei abgeänderter Furchung. Zugleich ein Beitrag zur Frage qualitativ-ungleicher Chromosomen Teilung. In: Festschrift für R. Hertwig, vol III. Fischer, Jena, pp 131–214

    Google Scholar 

  18. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103

    PubMed  CAS  Google Scholar 

  19. Bull JJ, Charnov EL (1985) On irreversible evolution. Evolution 39:1149–1155

    Google Scholar 

  20. Burt A (2000) Perspective: sex, recombination, and the efficacy of selection—was Weismann right? Evolution Int J Org Evolution 54:337–351

    CAS  Google Scholar 

  21. Campbell NA, Reece JB (2005) Biology, 7th edn. Benjamin-Cummings, San Francisco

    Google Scholar 

  22. Canfield DE, Poulton SW, Narbonne GM (2007) Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315:92–95

    PubMed  CAS  Google Scholar 

  23. Cavalli G, Paro R (1998) The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 93:505–518

    PubMed  CAS  Google Scholar 

  24. Charlesworth B (1878) The population genetics of anisogamy. J Theor Biol 73:347–357

    Google Scholar 

  25. Chong S, Youngson NA, Whitelaw E (2007) Heritable germline epimutation is not the same as transgenerational epigenetic inheritance. Nat Genet 39:574–575

    PubMed  CAS  Google Scholar 

  26. Chuma S et al. (2006) Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuge/germinal granule formation in mice. Proc Natl Acad Sci USA 103:15894–15899

    PubMed  CAS  Google Scholar 

  27. Costa Y et al. (2006) Mouse MAELSTROM: the link between meiotic silencing of unsynapsed chromatin and microRNA pathway? Hum Mol Genet 15:2324–2334

    PubMed  CAS  Google Scholar 

  28. Cromie GA, Hyppa RW, Taylor AF, Zakharyevich K, Hunter N, Smith GR (2006) Single Holliday junctions are intermediates of meiotic recombination. Cell 127:1167–1178

    PubMed  CAS  Google Scholar 

  29. Crow JF (1994) Advantages of sexual reproduction. Dev Genet 15:205–213

    PubMed  CAS  Google Scholar 

  30. Crow JF, Kimura M (1965a) Evolution in sexual and asexual populations. Am Nat 99:439–450

    Google Scholar 

  31. Crow JF, Kimura M (1965b) The theory of genetic loads. Proc. XI Int. Cong Genet. 3:495–505

    Google Scholar 

  32. Crow JF, Kimura M (1970) An introduction to population genetics theory. Burgess Pub. Co., Minneapolis

    Google Scholar 

  33. Darwin C (1859) On the Origin of Species by Means of Natural Selection, or Preservation of Favored Races in the Struggle for Life. Murray, London

    Google Scholar 

  34. Darwin C (1868) The Variation of Animals and Plants under Domestication, 2nd 1875 edn. John Murray, London

    Google Scholar 

  35. Darwin C (1871) The descent of man and selection in relation to sex, [1st ] 8th thousand. edn. J. Murray, London

    Google Scholar 

  36. Darwin C (1975) Charles Darwin's Natural Selection. Being the second part of his big species book written from 1856 to 1858. In: Stauffer RC (ed). Cambridge University Press, Cambridge, New York

    Google Scholar 

  37. Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution, New edn. Academic, Oxford

    Google Scholar 

  38. Dawkins R (1989) The Selfish Gene. Oxford University Press, Oxford

    Google Scholar 

  39. de Kruif P (1926) Microbe Hunters. Harcourt Brace & Co., Orlando

    Google Scholar 

  40. Decotto E, Spradling AC (2005) The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals. Dev Cell 9:501–510

    PubMed  CAS  Google Scholar 

  41. Dennett DC (1995) Darwin's dangerous idea: evolution and the meanings of life. Simon & Schuster, New York

    Google Scholar 

  42. Dougherty EC (1955) Comparative evolution and the origin of sexuality. Syst Zool 4:145–190

    Google Scholar 

  43. Duffy JE (2003) The ecology and evolution of eusociality in sponge-dwelling shrimp. In: Kikuchi T, Higashi S, Azuma N (eds) Genes, Behaviors and evolution of Social Insects. Hokkaido University Press, Sapporo, pp 217–254

    Google Scholar 

  44. Eddy EM (1975) Germ plasm and the differentiation of the germ cell line. Int Rev Cytol 43:229–280

    Article  PubMed  CAS  Google Scholar 

  45. Eigen M (1992) Steps towards life: a perspective on evolution. Oxford University Press, Oxford; New York

    Google Scholar 

  46. Eigen M, McCaskill J, Schuster P (1988) Molecular Quasi-Species. J Phys Chem 92:6881–6891

    CAS  Google Scholar 

  47. Engels WR, Johnson-Schlitz D, Flores C, White L, Preston CR (2007) A third link connecting aging with double strand break repair. Cell Cycle 6:131–135

    PubMed  CAS  Google Scholar 

  48. Esser K (1976) Kryptogamen. Springer, Berlin Heidelberg New York

    Google Scholar 

  49. Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884

    PubMed  CAS  Google Scholar 

  50. Falaschi A (2007) Changing disciplinary borders into frontiers of progress. In: HFSP J, vol launching editorial; http://www.hfspj.aip.org/doi/10.2976/1.2422707

  51. Findley SD, Tamanaha M, Clegg NJ, Ruohola-Baker H (2003) Maelstrom, a Drosophila spindle-class gene, encodes a protein that colocalizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage. Development 130:859–871

    PubMed  CAS  Google Scholar 

  52. Fioroni P (1987) Allgemeine und vergleichende Embryologie der Tiere. Springer, Berlin Heidelberg New York

    Google Scholar 

  53. Fisher RA (1930) The Genetical Theory of Natural Selection, facsimile of the 1930 edition by Oxford University Press, University of Adelaide 1999 edn. Oxford Univ. Press, Oxford

    Google Scholar 

  54. Frank U, Leitz T, Muller WA (2001) The hydroid Hydractinia: a versatile, informative cnidarian representative. Bioessays 23:963–971

    PubMed  CAS  Google Scholar 

  55. Friedberg EC, Walker GC, Siede W (1995) DNA Repair and Mutagenesis. ASM Press, Washington, DC

    Google Scholar 

  56. Futuyma DJ (1998) Evolutionary biology, 3rd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  57. Gabriel W, Lynch M, Burger R (1993) Muller's Ratchet and mutational meltdowns. Evolution 47:1744–1757

    Google Scholar 

  58. Gazave E, Gautier P, Gilchrist S, Bickmore WA (2005) Does radial nuclear organisation influence DNA damage? Chromosome Res 13:377–388

    PubMed  CAS  Google Scholar 

  59. Gould SJ (2002) The structure of evolutionary theory. Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  60. Haeckel EHPA (1866) Generelle Morphologie der Organismen: allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenztheorie. Georg Reimer, Berlin

    Google Scholar 

  61. Hamilton WD (1964) The genetical evolution of social behaviour. I & II. J Theor Biol 7:1–52

    PubMed  CAS  Google Scholar 

  62. Hedges SB, Blair JE, Venturi ML, Shoe JL (2004) A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol 4:2

    PubMed  Google Scholar 

  63. Hennig W (1967) Untersuchungen zur Struktur und Funktion des Lampenbuersten-Y-Chromosoms in der Spermatogenese von Drosophila. Chromosoma 22:294–357

    PubMed  CAS  Google Scholar 

  64. Hennig W (1985) Y chromosome function and spermatogenesis in Drosophila hydei. Adv Genet 23:179–234

    PubMed  CAS  Google Scholar 

  65. Hennig W (1986) Heterochromatin and Germ Line-Restricted DNA. In: Hennig W (ed) Germ Line—Soma Differentiation, vol 13. Springer, Berlin Heidelberg New York, pp 175–192

    Google Scholar 

  66. Hennig W et al. (1989) Y chromosomal fertility genes of Drosophila: a new type of eukaryotic genes. Genome 31:561–571

    PubMed  CAS  Google Scholar 

  67. Hoekstra RF (1987) The evolution of sexes. In: Stearns SC (ed) The Evolution of Sex and its Consequences. Birkhäuser Vlg, Basel, pp 59–91

    Google Scholar 

  68. Hölldobler B, Wilson EO (1990) The ants. Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  69. Horstehmke B (2007) Heritable germline epimutations in humans. Nat Genet 39:573–574

    Google Scholar 

  70. Hosokawa M et al. (2007) Tudor-related proteins TDRD1/MTR-1, TDRD6 and TDRD7/TAP: Domain composition, intracellular localization, and function in male germ cells in mice. Dev Biol 301:38–52

    PubMed  CAS  Google Scholar 

  71. Hou X-G, Aldridge RJ, Bergstrom J, Siveter DJ, Siveter DJ, Feng X-H (2004) The Cambrian fossils of Chengjiang, China: the flowering of early animal life. Blackwell, Malden, MA

    Google Scholar 

  72. Iatrou K, Tsitilou SG, Kafatos FC (1984) DNA sequence transfer between two high-cysteine chorion gene families in the silkmoth Bombyx mori. Proc Natl Acad Sci USA 81:4452–4456

    PubMed  CAS  Google Scholar 

  73. Ikenishi K (1998) Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Dev Growth Differ 40:1–10

    PubMed  CAS  Google Scholar 

  74. Jacob F (1983) Molecular tinkering in evolution. In: Bendall DS (ed) Evolution from molecules to men. Cambridge University Press, Cambridge, pp 131–144

    Google Scholar 

  75. Johannsen WL (1909) Elemente der exakten Erblichkeitslehre. Gustav Fischer, Jena

    Google Scholar 

  76. Johannsen W (1911) The genotype conception of heredity. Am Nat 45:129–159

    Google Scholar 

  77. Johnson-Schlitz DM, Flores C, Engels WR (2007) Multiple-pathway analysis of double-strand break repair mutations in Drosophila. PLoS Genet 3:e50

    PubMed  Google Scholar 

  78. Johnstone O, Deuring R, Bock R, Linder P, Fuller MT, Lasko P (2005) Drosophila DEAD-box protein required for viability and in the germ line. Dev Biol 277:92–101

    PubMed  CAS  Google Scholar 

  79. Kadyk LC, Hartwell LH (1992) Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132:387–402

    PubMed  CAS  Google Scholar 

  80. Kai T, Spradling A (2003) An empty Drosophila stem cell niche reactivates the proliferation of ectopic cells. Proc Natl Acad Sci USA 100:4633–4638

    PubMed  CAS  Google Scholar 

  81. Kaneko T, Tahara S, Matsuo M (1996) Non-linear accumulation of 8-hydroxy-2'-deoxyguanosine, a marker of oxidized DNA damage, during aging. Mutat Res 316:277–285

    PubMed  CAS  Google Scholar 

  82. Karr TL (1991) Intracellular sperm/egg interactions in Drosophila: a three-dimensional structural analysis of a paternal product in the developing egg. Mech Dev 34:101–111

    PubMed  CAS  Google Scholar 

  83. Kirk DL (1998) Volvox: molecular-genetic origins of multicellularity and cellular differentiation. Cambridge University Press, Cambridge

    Google Scholar 

  84. Kirk DL (2003) Seeking the ultimate and proximate causes of Volvox multicellularity and cellular differentiation. Integr Comp Biol 43:247–253

    CAS  Google Scholar 

  85. Kirk DL (2005) A twelve-step program for evolving multicellularity and a division of labor. Bioessays 27:299–310

    PubMed  Google Scholar 

  86. Knaut H, Pelegri F, Bohmann K, Schwarz H, Nüsslein-Volhard C (2000) Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J Cell Biol 149:875–888

    PubMed  CAS  Google Scholar 

  87. Knoblich JA (1997) Mechanisms of asymmetric cell division during animal development. Curr Opin Cell Biol 9:833–841

    PubMed  CAS  Google Scholar 

  88. Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336:435–440

    PubMed  CAS  Google Scholar 

  89. Kondrashov AS (1993) Classification of hypotheses on the advantage of amphimixis. J Hered 84:372–387

    PubMed  CAS  Google Scholar 

  90. Kondrashov AS, Crow JF (1991) Haploidy or diploidy: which is better? Nature 351:314–315

    PubMed  CAS  Google Scholar 

  91. Kondrashov AS, Houle D (1994) Genotype-environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. Proc Biol Sci 258:221–227

    PubMed  CAS  Google Scholar 

  92. Kondrashov AS, Kondrashov FA (1999) Interactions among quantitative traits in the course of sympatric speciation. Nature 400:351–354

    PubMed  CAS  Google Scholar 

  93. Koufoparou V, Bell G (1993) An experimenntal approach using Volvox. Biol Sci 254:107–113

    Google Scholar 

  94. Kunz BA, Haynes R (1981) Phenomenology and genetic control of mitotic recombination in yeast. Ann Rev Genet 15:57–89

    PubMed  CAS  Google Scholar 

  95. Lankenau D-H (2007) Germline Double-Strand Break Repair and Gene Targeting in Drosophila: a Trajectory System throughout Evolution. In: Lankenau D-H (ed) Genome Integrity: Facets and Perspectives, vol 1. Springer, Berlin Heidelberg New York, pp 153–197

    Google Scholar 

  96. Levine J, Spradling A (1985) DNA sequence of a 3.8 kilobase pair region controlling Drosophila chorion gene amplification. Chromosoma 92:136–142

    PubMed  CAS  Google Scholar 

  97. Lim AK, Kai T (2007) Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc Natl Acad Sci USA 104:6714–6719

    PubMed  CAS  Google Scholar 

  98. Lynch M, Burger R, Butcher D, Gabriel W (1993) The mutational meltdown in asexual populations. J Hered 84:339–344

    PubMed  CAS  Google Scholar 

  99. Lynch M, Conery J, Burger R (1995) Mutational meltdowns in sexual populations. Evolution 49:1067–1080

    Google Scholar 

  100. Lynch M, Gabriel W (1990) Mutation load and the survival of small populations. Evolution 44:1725–1737

    Google Scholar 

  101. Maynard Smith J (1978) Optimization Theory in Evolution. Ann Rev Ecol Syst 9:31–56

    Google Scholar 

  102. Maynard Smith J (1980) Selection for recombination in a polygenic model. Genet Res 35:269–277

    Google Scholar 

  103. Maynard Smith J (1988) The evolution of recombination. In: Michod RE, Levin BR (eds) The Evolution of Sex. Sinauer Associates, Sunderland, MA, pp 106–125

    Google Scholar 

  104. Maynard Smith J, Szathmary E (1997) The major transitions in evolution. Oxford University Press, Oxford

    Google Scholar 

  105. Mayr E (1963) Animal species and evolution. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  106. Mitsialis SA, Kafatos FC (1985) Regulatory elements controlling chorion gene expression are conserved between flies and moths. Nature 317:453–456

    PubMed  CAS  Google Scholar 

  107. Mochizuki K, Nishimiya-Fujisawa C, Fujisawa T (2001) Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev Genes Evol 211:299–308

    PubMed  CAS  Google Scholar 

  108. Muller HJ (1932) Some genetic aspects of sex. Am Nat 66:118–138

    Google Scholar 

  109. Muller HJ (1966) The gene material as the initiator and organizing basis of life. Am Nat 100:493–517

    Google Scholar 

  110. O'Donnell KA, Boeke JD (2007) mighty Piwis defend the germline against genome intruders. Cell 129:37–44

    PubMed  Google Scholar 

  111. Ohlstein B, Kai T, Decotto E, Spradling A (2004) The stem cell niche: theme and variations. Curr Opin Cell Biol 16:693–699

    PubMed  CAS  Google Scholar 

  112. Omilian AR, Cristescu ME, Dudycha JL, Lynch M (2006) Ameiotic recombination in asexual lineages of Daphnia. Proc Natl Acad Sci USA 103:18638–18643

    PubMed  CAS  Google Scholar 

  113. Pearse AM, Swift K (2006) Allograft theory: transmission of devil facial-tumour disease. Nature 439:549

    PubMed  CAS  Google Scholar 

  114. Pecourt J-ML, Peon J, Kohler B (2000) Ultrafast internal conversion of electronically excited RNA and DNA nucleosides in water. J Am Chem Soc 122:9348–9349

    CAS  Google Scholar 

  115. Pickett-Heaps JD (1975) Green algae: structure, reproduction, and evolution in selected genera, 1st edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  116. Rausch H, Larsen N, Schmitt R (1989) Phylogenetic relationships of the green alga Volvox carteri deduced from small-subunit ribosomal RNA comparisons. J Mol Evol 29:255–265

    PubMed  CAS  Google Scholar 

  117. Rebscher N, Zelada-Gonzalez F, Banisch TU, Raible F, Arendt D (2007) Vasa unveils a common origin of germ cells and of somatic stem cells from the posterior growth zone in the polychaete Platynereis dumerilii. Dev Biol 306:599–611

    PubMed  CAS  Google Scholar 

  118. Rensch B (1947) Neuere Probleme der Abstammungslehre (Die transspezifische Evolution). Ferdinand Enke Verlag, Stuttgart

    Google Scholar 

  119. Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38:413–443

    PubMed  CAS  Google Scholar 

  120. Risley PL (1933) Contributions on the development of the reproductive system in Sternotherus odoratus (Latreille). I. The embryonic origin and migration of the primordial germ cells. Zeit Zellforsch Mikrosk Anat 18:459–492

    Google Scholar 

  121. Ruse M (1980) Charles Darwin and group selection. Ann Sci 37:615–630

    PubMed  CAS  Google Scholar 

  122. Schüpbach T, Wieschaus E (1987) Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo. Roux's Arch Dev Biol 195:302–317

    Google Scholar 

  123. Schuster P, Sigmund K (1982) A note on the evolution of sexual dimorphism. J Theor Biol 94:107–110

    PubMed  CAS  Google Scholar 

  124. Schwacha A, Kleckner N (1994) Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76:51–63

    PubMed  CAS  Google Scholar 

  125. Schwacha A, Kleckner N (1997) Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90:1123–1135

    PubMed  CAS  Google Scholar 

  126. Schwarzl SM, Smith JC, Fischer S (2006) Insights into the chemomechanical coupling of the myosin motor from simulation of its ATP hydrolysis mechanism. Biochemistry 45:5830–5847

    PubMed  CAS  Google Scholar 

  127. Shirae-Kurabayashi M, Nishikata T, Takamura K, Tanaka KJ, Nakamoto C, Nakamura A (2006) Dynamic redistribution of vasa homolog and exclusion of somatic cell determinants during germ cell specification in Ciona intestinalis. Development 133:2683–2693

    PubMed  CAS  Google Scholar 

  128. Shostak S (2006) (Re)defining stem cells. Bioessays 28:301–308

    PubMed  Google Scholar 

  129. Siewing R (1969) Lehrbuch der vergleichenden Entwicklungsgeschichte der Tiere. Paul Parey, Hamburg Berlin

    Google Scholar 

  130. Snee MJ, MacDonald PM (2004) Live imaging of nuage and polar granules: evidence against a precursor-product relationship and a novel role for Oskar in stabilization of polar granule components. J Cell Sci 117:2109–2120

    PubMed  CAS  Google Scholar 

  131. Strome S, Lehmann R (2007) Germ versus soma decisions: lessons from flies and worms. Science 316:392–393

    PubMed  CAS  Google Scholar 

  132. Sturtevant AH, Mather K (1938) The interrelations of inversions, heterosis and recombinations. Am Nat 72:447–452

    Google Scholar 

  133. Sulston JE (2002) The Cell Lineage and Beyond. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2002/sulston-lecture.pdf

  134. Suter CM, Martin DIK (2007) Inherited epimutation or a hyplotypic basis for the propensity to silence. Nat Genet 39:573

    PubMed  CAS  Google Scholar 

  135. Swift CH (1914) Origin and early history of the primordial germ-cell of the chick. Am J Anat 15:483–516

    Google Scholar 

  136. Tanabe H, Habermann FA, Solovei I, Cremer M, Cremer T (2002) Non-random radial arrangements of interphase chromosome territories: evolutionary considerations and functional implications. Mutat Res 504:37–45

    PubMed  CAS  Google Scholar 

  137. Tobler H (1986) The Differentiation of Germ and Somatic Cell Lines in Nematodes. In: Hennig W (ed) Results and Problems in Cell Differentiation, vol 13. Springer, Berlin Heidelberg New York, pp 1–69

    Google Scholar 

  138. Tsunekawa N, Naito M, Sakai Y, Nishida T, Noce T (2000) Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development 127:2741–2750

    PubMed  CAS  Google Scholar 

  139. Wallenfang MR, Nayak R, DiNardo S (2006) Dynamics of the male germline stem cell population during aging of Drosophila melanogaster. Aging Cell 5:297–304

    PubMed  CAS  Google Scholar 

  140. Weismann A (1889) The significance of sexual reproduction in the theory of natural selection. In: Poulton EB, Schönland S, Shipley AE (eds) Essays upon heredity and kindred biological problems. Clarendon Press, Oxford, pp 251–332

    Google Scholar 

  141. Weismann A (1892) Die Continuität des Keimplasmas als Grundlage einer Theorie der Vererbung—Ein Vortrag (1884), 2nd edn. Gustav Fischer, Freiburg

    Google Scholar 

  142. Weismann A (1893) The Germ-Plasm—A Theory of Heredity. Charles Scribner's Sons, New York

    Google Scholar 

  143. Weismann A (1896) On Germinal Selection. Open Court Publishing Co., Chicago

    Google Scholar 

  144. Weismann A (1904) The evolution theory. Edward Arnold, London

    Google Scholar 

  145. Williams GC (1966) Adaptation and natural selection; a critique of some current evolutionary thought. Princeton University Press, Princeton

    Google Scholar 

  146. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  147. Xie T, Spradling AC (2000) A niche maintaining germ-line stem cells in the Drosophila ovary. Science 290:328–330

    PubMed  CAS  Google Scholar 

  148. Zahradka K, Slade D, Bailone A, Sommer S, Averbeck D, Petranovic M, Lindner AB, Radman M (2006) Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443:569–573

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk-Henner Lankenau .

Editor information

Richard Egel Dirk-Henner Lankenau

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lankenau, DH. (2007). The Legacy of the Germ Line – Maintaining Sex and Life in Metazoans: Cognitive Roots of the Concept of Hierarchical Selection. In: Egel, R., Lankenau, DH. (eds) Recombination and Meiosis. Genome Dynamics and Stability, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7050_2007_030

Download citation

Publish with us

Policies and ethics