Skip to main content

Zero-Valent Iron and Some Other Nanometal Particles for Environmental Remediation

  • Chapter
  • First Online:
Design of Materials and Technologies for Environmental Remediation

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 115))

Abstract

The global environment has been continuously dealing with numerous natural and anthropogenic sources of pollutants leading threatening to the ecosystem and human health. In accordance with the removal of environmental pollutants, environmental chemical science and engineering science are facing challenges to upgrade the remediation technologies. This chapter is aimed to deal with nano zero-valent iron (nZVI) and other functional nanomaterials (TiO2, Ag, Mn, Au, etc.) having the properties of environmental pollutant remediation. Recently, nano zero-valent iron (nZVI) and some functional nanomaterials have become an integral part of remediation technologies for both of the inorganic and organic pollutants. These functional materials have the potentiality to convert the toxic pollutants into more environmentally friendly chemical or to reduce into a concentration acceptable for environmental discharge. The synthesis procedure of these functional materials is facile, and a tremendous effort has been given for the enhancement of their functionality, reactivity, and efficiency throughout the remediation researches. The authors have given emphasis to draw a clear outline of the function, application, and overall significant contribution of nZVI and other nanomaterials in the sector of environmental pollutant remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu HJ, Wang JK, Ferguson S et al (2016) Mechanism, synthesis and modification of nano zerovalent iron in water treatment. Nanoscale 8:9962

    Article  CAS  Google Scholar 

  2. Zou Y, Wang X, Khan A et al (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50:7290–7304

    Article  CAS  Google Scholar 

  3. Chen X, Ji D, Wang X et al (2017) Review on nano zerovalent iron (nZVI): from modification to environmental applications. Earth Environ Sci 51:012004

    Google Scholar 

  4. Pasinszki T, Krebsz M (2020) Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nano 10:917

    CAS  Google Scholar 

  5. Sikder MT, Mihara Y, Islam MS et al (2014) Preparation and characterization of chitosan-caboxymethyl-β-cyclodextrin entrapped nano zerovalent iron composite for Cu (II) and Cr (IV) removal from waste water. Chem Eng J 236:378–387

    Article  CAS  Google Scholar 

  6. Sikder MT, Kubota R, Akter M et al (2019) Adsorption mechanism of Cu(II) in water environment using chitosan- nano zero valent iron-activated carbon composite beads. Desalin Water Treat 145:202–210

    Article  CAS  Google Scholar 

  7. Sikder MT, Tanaka S, Saito T et al (2014) Synthesis and application of a arsenic sorbent using zerovalent iron impregnated chitosan-caboxymethyl-β-cyclodextrin composite beads. J Environ Chem Eng 2:370–376

    Article  Google Scholar 

  8. Miranda NA, Baltazar SE, Garcia A et al (2016) Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution. J Hazard Mater 301:371–380

    Article  Google Scholar 

  9. Yuan C, Lien HL (2006) Removal of arsenate from aqueous solution using nanoscale iron particles. Water Qual Res J Can 41:210–215

    Article  CAS  Google Scholar 

  10. Kanel SR, Manning B, Charlet L et al (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298

    Article  CAS  Google Scholar 

  11. Kanel SR, Greneche JM, Choi H et al (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050

    Article  CAS  Google Scholar 

  12. Celebi O, Uzum C, Shahwan T et al (2007) A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. J Hazard Mater 148:761–767

    Article  CAS  Google Scholar 

  13. Uzum C, Shahwan T, Eroglu AE et al (2008) Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chem Eng J 144:213–220

    Article  CAS  Google Scholar 

  14. Boparai HK, Joseph MO, Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465

    Article  CAS  Google Scholar 

  15. Karabelli D, Uzum C, Shahwan T et al (2008) Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: a study of the capacity and mechanism of uptake. Ind Eng Chem Res 47:4758–4764

    Article  CAS  Google Scholar 

  16. Zhu HJ, Jia YF, Wu X et al (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172:1591–1596

    Article  CAS  Google Scholar 

  17. Lv XS, Xu J, Jiang GM et al (2011) Removal of chromium (VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere 85:1204–1209

    Article  CAS  Google Scholar 

  18. Shi LN, Zhang X, Chen ZL (2011) Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45:886–892

    Article  CAS  Google Scholar 

  19. Jabeen H, Kemp KC, Chandra V et al (2013) Synthesis of nano zerovalent iron nanoparticles-graphene composite for the treatment of lead contaminated water. J Environ Manage 130:429–435

    Article  CAS  Google Scholar 

  20. Lv XS, Xue XQ, Jiang GM et al (2014) Nanoscale zero-valent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (VI) removal from aqueous solution. J Colloid Interface Sci 417:51–59

    Article  CAS  Google Scholar 

  21. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater:112–125. https://doi.org/10.1016/j.jhazmat.2011.11.073

  22. Adusei-Gyamfi J, Acha V (2016) Carriers for nano zerovalent iron (nZVI): synthesis, application and efficiency. RSC Adv 6:91025–91044

    Article  CAS  Google Scholar 

  23. Mackenzie K, Georgi A (2019) NZVI synthesis and characterization. In: Phenrat T, Lowry GV (eds) Nanoscale zerovalent iron particles for environmental restoration, fundamental science to field scale engineering applications. Springer, Cham, pp 45–95

    Google Scholar 

  24. Hahn H (1997) Gas phase synthesis of nanocrystalline materials. Nanostruct Mater 9:3–12

    Article  CAS  Google Scholar 

  25. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Article  CAS  Google Scholar 

  26. Li S, Yan W, Zhang WX (2009) Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chem 11:1618–1626

    Article  CAS  Google Scholar 

  27. Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156

    Article  CAS  Google Scholar 

  28. Kończak M, Oleszczuk P, Ok YS (2015) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Environ Sci Technol. https://doi.org/10.1016/j.cej.2015.11.046

  29. Sun H, Zhou G, Liu S et al (2012) Nano-Fe0 encapsulated in microcarbon spheres: synthesis, characterization, and environmental applications. ACS Appl Mater Interfaces 4:6235–6241

    Article  CAS  Google Scholar 

  30. Joseyphus RJ, Kodama D, Matsumoto T et al (2007) Role of polyol in the synthesis of Fe particles. J Magn Magn Mater 310:2393–2395

    Article  CAS  Google Scholar 

  31. Seip CT, Connor CJO (1999) The fabrication and organization of self-assembled metallic nanoparticles formed in reverse micelles. Nanostruct Mater 12:183–186

    Article  Google Scholar 

  32. Chen SS, Hsu HD, Li CW (2004) A new method to produce nanoscale iron for nitrate removal. J Nanopart Res 6:639–647

    Article  CAS  Google Scholar 

  33. Huang L, Weng X, Chen Z et al (2014) Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity. Spectrochim Acta A 130:295–301

    Article  CAS  Google Scholar 

  34. Machado S, Pinto SL, Grosso JP et al (2013) Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci Total Environ 445:1–8

    Article  Google Scholar 

  35. Phenrat T, Navid S, Kevin S et al (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284–290

    Article  CAS  Google Scholar 

  36. Phenrat T, Lowry GV (2014) Nanotechnology applications for clean water. Ch 30, pp 473–490

    Google Scholar 

  37. Kanel SR, Goswami RR, Clement TP et al (2008) Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ Sci Technol 42:896–900

    Article  CAS  Google Scholar 

  38. Bonder MJ, Kiick KL, Papaefthymiou V et al (2007) Controlling synthesis of Fe nanoparticles with polyethylene glycol. J Magn Magn Mater 311:658–664

    Article  CAS  Google Scholar 

  39. Phenrat T, Fritjof F, Tissa I et al (2011) Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: effect of particle concentration, NAPL saturation, and injection strategy. Environ Sci Technol 45:6102–6109

    Article  CAS  Google Scholar 

  40. Jiemvarangkul P, Zhang WX, Lien HL (2011) Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chem Eng J 170:482–491

    Article  CAS  Google Scholar 

  41. Sita K, Harjyoti K, Chisholm BJ et al (2012) Simulating adsorption of organic pollutants on finite (8,0) single-walled carbon nanotubes in water. Environ Sci Technol 46:8887–8894

    Article  Google Scholar 

  42. Saleh N, Sirk K, Liu Y et al (2007) Inorganic nanoparticles synthesis, applications and perspectives. Environ Eng Sci 24:45–57

    Article  CAS  Google Scholar 

  43. Bezbaruah AN, Krajangpan S, Chisholm BJ et al (2009) Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J Hazard Mater 166:1339–1343

    Article  CAS  Google Scholar 

  44. Velimirovic M, Schmid D, Wagner S et al (2015) Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2015.11.007

  45. Dror I, Jacov OM, Cortis A et al (2012) Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent iron. ACS Appl Mater Interfaces 4:3416–3423

    Article  CAS  Google Scholar 

  46. Cwiertny DM, Bransfield SJ, Livi KJT et al (2006) Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction. Environ Sci Technol 40:6837–6843

    Article  CAS  Google Scholar 

  47. Zhang WX, Wang CB, Lien HL (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395

    Article  CAS  Google Scholar 

  48. Xu FY, Deng SB, Xu J et al (2012) Mechanically synthesized SiO2–Fe metal matrix composite for effective dechlorination of aqueous 2-chlorophenol: the optimum of the preparation conditions. Environ Sci Technol 46:4576–4582

    Article  CAS  Google Scholar 

  49. Hosseini SM, Ataie-Ashtiani B, Kholghi M (2011) Nitrate reduction by nano-Fe/Cu particles in packed column. Desalination 276:214–221

    Article  Google Scholar 

  50. Pasinszki T, Krebsz M (2020) Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nano 10:917

    CAS  Google Scholar 

  51. Kalhapure RS, Sonawane SJ, Sikwal DR et al (2015) Solid lipid nanoparticles of clotrimazole silver complex: an efficient nano antibacterial against Staphylococcus aureus and MRSA. Colloids Surf B 136:651–658

    Article  CAS  Google Scholar 

  52. Singh R, Misra V (2015) Handbook of nanoparticles. Springer, pp 985–1007

    Google Scholar 

  53. Hoch LB, Mack EJ, Hydutsky BW et al (2008) Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environ Sci Technol 42:2600–2605

    Article  CAS  Google Scholar 

  54. Sun Z, Zheng S, Ayoko GA et al (2013) Degradation of simazine from aqueous solutions by diatomite-supported nanosized zero-valent iron composite materials. J Hazard Mater 263:768–777

    Article  CAS  Google Scholar 

  55. Liu ZT, Gu CG, Mao Y et al (2015) Debromination of polybrominated diphenyl ethers by attapulgite-supported Fe/Ni bimetallic nanoparticles: Influencing factors, kinetics and mechanism. J Hazard Mater 298:328–337

    Article  CAS  Google Scholar 

  56. Li XY, Ai LH, Jiang J (2016) Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(VI) removal from aqueous solution: Surface corrosion retard induced the enhanced performance. Chem Eng J 288:789–797

    Article  CAS  Google Scholar 

  57. Wang CB, Luo HJ, Zhang ZL et al (2014) Environmental nanotechnology for water purification. J Hazard Mater 268:124–131

    Article  CAS  Google Scholar 

  58. Liu FL, Yang JH, Zuo J et al (2014) Graphene-supported nanoscale zero-valent iron: removal of phosphorus from aqueous solution and mechanistic study. J Environ Sci 26:1751–1762

    Article  CAS  Google Scholar 

  59. Dai Y, Hu YC, Jiang BJJ et al (2016) Enhancing cleanup of environmental pollutants. J Hazard Mater 309:249–258

    Article  CAS  Google Scholar 

  60. Tesh SJ, Scott TB (2014) Nano-composites for water remediation: a review. Adv Mater 26:6056–6068

    Article  CAS  Google Scholar 

  61. Ghaffar A, Zhang L, Zhu X et al (2018) Porous PVdF/GO nanofibrous membranes for selective separation and recycling of charged organic dyes from water. Environ Sci Tech 52. https://doi.org/10.1021/acs.est.7b06081

  62. Li A, Tai C, Zhao ZS et al (2007) Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Environ Sci Technol 41:6841–6846

    Article  CAS  Google Scholar 

  63. Li YC, Xiu ZM, Li TL et al (2013) Stabilization of Fe0 nanoparticles with silica for enhanced transport and remediation of hexavalent chromium in groundwater. ACS Symp Ser 1124:307–326

    Article  CAS  Google Scholar 

  64. Ling X, Li J, Zhu W et al (2012) Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon for adsorption and synergistic reduction of nitrobenzene. Chemosphere 87:655–660

    Article  CAS  Google Scholar 

  65. Liu TY, Zhao L, Sun DS et al (2010) Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater. J Hazard Mater 184:724–730

    Article  CAS  Google Scholar 

  66. Lv XS, Xu J, Jiang GM et al (2011) Highly active nanoscale zero-valent iron (nZVI)-Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions. J Colloid Interface Sci 369:460–469

    Article  Google Scholar 

  67. Lv XS, Xue XQ, Jiang GM et al (2014) Nanoscale zero-valent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (VI) removal from aqueous solutionJ. Colloid Interface Sci 417:51–59

    Article  CAS  Google Scholar 

  68. Berge ND, Andrew RC (2009) Oil-in-water emulsions for encapsulated delivery of reactive iron particles. Environ Sci Technol 43:5060–5066

    Article  CAS  Google Scholar 

  69. Shu HY, Chang MC, Chen CC et al (2010) Using resin supported nano zero-valent iron particles for decoloration of acid blue 113 azo dye solution. J Hazard Mater 184:499–505

    Article  CAS  Google Scholar 

  70. Jiang ZM, Lv L, Zhang WM et al (2011) Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Water Res 45:2191–2198

    Article  CAS  Google Scholar 

  71. Li J, Chen CL, Zhu K (2016) Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd(II) removal. J Taiwan Inst Chem Eng 59:389–394

    Article  CAS  Google Scholar 

  72. Wang C, Luo HJ, Zhang ZL et al (2014) Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J Hazard Mater 268:124–131

    Article  CAS  Google Scholar 

  73. Lv XS, Xue XQ, Jiang GM et al (2014) Nanoscale zero-valent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (VI) removal from aqueous solution. J Colloid Interface Sci 417:51–59

    Article  CAS  Google Scholar 

  74. Lazar P, Otyepka M (2012) Dissociation of water at iron surfaces: generalized gradient functional and range-separated hybrid functional study. J Phys Chem C 116:25470–25477

    Article  CAS  Google Scholar 

  75. Wang CM, Baer DR, Amonette JE (2009) Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J Am Chem Soc 131:8824–8832

    Article  CAS  Google Scholar 

  76. Shu HY, Chang MC, Yu HH et al (2007) Reduction of an azo dye acid black 24 solution using synthesized nanoscale zerovalent iron particles. J Colloid Interface Sci 314:89–97

    Article  CAS  Google Scholar 

  77. Zhang Y, Li YM, Zheng XM (2011) Removal of atrazine by nanoscale zero valent iron supported on organobentonite. Sci Total Environ 409:625–630

    Article  CAS  Google Scholar 

  78. Liu MH, Wang YH, Chen LT et al (2015) Mg (OH)2 supported nanoscale zero valent iron enhancing the removal of Pb(II) from aqueous solution. ACS Appl Mater Interfaces 7:7961–7969

    Article  CAS  Google Scholar 

  79. Li YM, Cheng W, Sheng GD et al (2015) Synergetic effect of a pillared bentonite support on SE(VI) removal by nanoscale zero valent iron. Appl Catal B 174:329–335

    Article  Google Scholar 

  80. Elsner M, Chartrand M, Vanstone N et al (2008) Identifying abiotic chlorinated ethene degradation: characteristic isotope patterns in reaction products with nanoscale zero-valent iron. Environ Sci Technol 42:5963–5970

    Article  CAS  Google Scholar 

  81. Li J, Zhou Q, Liu Y et al (2017) Recyclable nanoscale zero-valent iron-based magnetic polydopamine coated nanomaterials for the adsorption and removal of phenanthrene and anthracene. Sci Technol Adv Mater 18:3–17

    Article  CAS  Google Scholar 

  82. He D, Niu H, He S et al (2019) Strengthened Fenton degradation of phenol catalyzed by core/shell Fe-Pd@C nanocomposites derived from mechanochemically synthesized Fe-Metal organic frameworks. Water Res 62:151–160

    Article  Google Scholar 

  83. Ma L, He H, Zhu R et al (2016) Bisphenol A degradation by a new acidic nano zero-valent iron diatomite composite. Cat Sci Technol 6:6066–6075

    Article  CAS  Google Scholar 

  84. Karim S, Bae S, Greenwood D et al (2017) Degradation of 17a-ethinylestradiol by nano zero valent iron under different pH and dissolved oxygen levels. Water Res 125:32–41

    Article  CAS  Google Scholar 

  85. Machado S, Pacheco JG, Nouws HPA et al (2017) Green zero-valent iron nanoparticles for the degradation of amoxicillin. Int J Environ Sci Technol 14:1109–1118

    Article  CAS  Google Scholar 

  86. Chen J, Qiu X, Fang Z et al (2012) Removal mechanism of antibiotic metronidazole from aquatic solutions by using nanoscale zero-valent iron particles. Chem Eng J 181:113–119

    Article  Google Scholar 

  87. Chen H, Luo H, Lan Y et al (2011) Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron. J Hazard Mater 192:44–53

    CAS  Google Scholar 

  88. Sun X, Kurokawa T, Suzuki M et al (2015) Removal of cationic dye methylene blue by zero-valent iron: Effects of pH and dissolved oxygen on removal mechanisms. J Environ Sci Health A 50:1057–1071

    Article  CAS  Google Scholar 

  89. Son YH, Lee JK, Soong Y et al (2012) Heterostructured zero valent iron-montmorillonite nanohybrid and their catalytic efficacy. Appl Clay Sci 62:21–26

    Article  Google Scholar 

  90. Yang Y, Sun M, Zhou J et al (2020) Degradation of orange II by Fe@Fe2O3 core shell nanomaterials assisted by NaHSO3. Chemosphere 244:125588

    Article  CAS  Google Scholar 

  91. Barreto-Rodrigues M, Silveira J, Zazo JA et al (2017) Synthesis, characterization and application of nanoscale zero-valent iron in the degradation of the azo dye Disperse Red 1. J Environ Chem Eng 5:628–634

    Article  CAS  Google Scholar 

  92. Xu H, Tian W, Zhang Y et al (2018) Reduced graphene oxide/attapulgite-supported nanoscale zero-valent iron removal of acid red 18 from aqueous solution. Water Air Soil Pollut 229:388

    Article  Google Scholar 

  93. Li S, Yan W, Zhang WX (2009) Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chem 11:1618–1626

    Article  CAS  Google Scholar 

  94. Ribas D, Peskova K, Jubany I et al (2019) High reactive nano zero-valent iron produced via wet milling through abrasion by alumina. Chem Eng J 366:235–245

    Article  CAS  Google Scholar 

  95. Cao Z, Liu X, Xu J et al (2017) Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron. Environ Sci Technol 51:11269–11277

    Article  CAS  Google Scholar 

  96. Mehrotra N, Tripathi RM, Zafar F et al (2017) Catalytic degradation of dichlorvos using biosynthesized zero valent iron nanoparticles. IEEE Trans Nanobioscience 16:280–286

    Article  Google Scholar 

  97. Tan L, Lu S, Fang Z et al (2017) Enhanced reductive debromination and subsequent oxidative ring-opening of decabromodiphenyl ether by integrated catalyst of nZVI supported on magnetic Fe3O4 nanoparticles. Appl Catal B Environ 200:200–210

    Article  CAS  Google Scholar 

  98. Tan L, Liang B, Cheng W et al (2016) Effect of solvent on debromination of decabromodiphenyl ether by Ni/Fe nanoparticles and nano zero-valent iron particles. Environ Sci Pollut Res 23:22172–22182

    Article  CAS  Google Scholar 

  99. Chen SS, Hsu HD, Li CW (2004) A new method to produce nanoscale iron for nitrate removal. J Nanopart Res 6:639–647

    Article  CAS  Google Scholar 

  100. Wang Q, Snyder S, Kim J et al (2009) Aqueous ethanol modified nanoscale zero valent iron in bromate reduction: synthesis, characterization, and reactivity. Environ Sci Technol 43:3292–3299

    Article  CAS  Google Scholar 

  101. Ryu A, Jeong SW, Jang A et al (2011) Reduction of highly concentrated nitrate using nano scale zero-valent iron: effects of aggregation and catalyst on reactivity. Appl. Cat. B: Environ. 105:128–135

    Article  CAS  Google Scholar 

  102. Cao J, Elliott D, Zhang (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res 7:499–506

    Article  CAS  Google Scholar 

  103. Hu YB, Li XY (2018) Influence of a thin aluminum hydroxide coating layer on the suspension stability and reductive reactivity of nanoscale zero-valent iron. Appl Catal B Environ 226:554–564

    Article  CAS  Google Scholar 

  104. Ma L, He H, Zhu R et al (2016) Bisphenol A degradation by a new acidic nano zero-valent iron diatomite composite. Cat Sci Technol 6:6066–6075

    Article  CAS  Google Scholar 

  105. Machado S, Pacheco JG, Nouws HPA et al (2017) Green zero-valent iron nanoparticles for the degradation of amoxicillin. Int J Environ Sci Technol 14:1109–1118

    Article  CAS  Google Scholar 

  106. Wang X, Wang P, Ma J et al (2015) Synthesis, characterization, and reactivity of cellulose modified nano zero-valent iron for dye discoloration. Appl Surf Sci 345:57–66

    Article  CAS  Google Scholar 

  107. Chen HF, Cao Y, Wei E et al (2016) Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water. Chemosphere 146:32–39

    Article  CAS  Google Scholar 

  108. Choi CJ, Tolochko O, Kim BK (2002) Nanoparticles in the fight against parasites. Mater Lett 56:289–294

    Article  CAS  Google Scholar 

  109. Park SJ, Kim S, Lee S et al (2000) ChemInform abstract: synthesis and magnetic studies of uniform iron nanorods and nanospheres. ChemInform 31:8581–8582

    Google Scholar 

  110. Hoch LB, Mack EJ, Hydutsky BW et al (2008) Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environ Sci Technol 42:2600–2605

    Article  CAS  Google Scholar 

  111. Guerra FD, Attia MF, Whitehead DC, Frank A (2018) Nanotechnology for environmental remediation: materials and applications. Molecules 23:1760. https://doi.org/10.3390/molecules23071760

    Article  CAS  Google Scholar 

  112. Akter M, Sikder MT, Rahman MM et al (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16. https://doi.org/10.1016/j.jare.2017.10.008

    Article  CAS  Google Scholar 

  113. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    Article  CAS  Google Scholar 

  114. Kumar S, Bhushan P, Bhattacharya S (2018) Fabrication of nanostructures with bottom-up approach and their utility in diagnostics, therapeutics, and others. In: Bhattacharya S, Agarwal A, Chanda N, Pandey A, Sen A (eds) Environmental, chemical and medical sensors. Energy, environment, and sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7751-7_8

    Chapter  Google Scholar 

  115. Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F (2012) Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interface Sci 170:2–27

    Article  CAS  Google Scholar 

  116. Horikoshi S, Serpone N (2013) Microwaves in nanoparticle synthesis: fundamentals and applications, introduction to nanoparticles. Wiley, pp 1–24. https://doi.org/10.1002/9783527648122.ch1

    Book  Google Scholar 

  117. Filho S, Paulo CD, Osvalso SA (2015) Liquid phase synthesis methodologies for the obtainment of rare earth-based inorganic nanomaterials. Quím Nova 38:679–696

    Google Scholar 

  118. Khin MM, Nair AS, Jagadeesh VB et al (2012) A review on nanomaterials for environmental remediation. Energ Environ Sci 5:8075. https://doi.org/10.1039/c2ee21818f

    Article  CAS  Google Scholar 

  119. Huang J, Li Q, Sun D et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104. 11 pp

    Article  Google Scholar 

  120. Akter M, Rahman MM, Ullah AKMA et al (2018) Brassica rapa var. japonica leaf extract mediated green synthesis of crystalline silver nanoparticles and evaluation of their stability, cytotoxicity and antibacterial activity. J Inorg Organomet Polymer Mater 28:1483–1493

    Article  CAS  Google Scholar 

  121. Ullah AKMA, Kabir MF, Akter M (2018) Green synthesis of bio-molecule encapsulated magnetic silver nanoparticles and their antibacterial activity. RSC Adv 8:37176–37183

    Article  CAS  Google Scholar 

  122. Ullah AKMA, Tamanna AN, Hossain A et al (2019) In vitro cytotoxicity and antibiotic application of green route surface modified ferromagnetic TiO2 nanoparticles. RSC Adv 9. https://doi.org/10.1039/c9ra01395d

  123. Ullah AKMA, Haque MM, Akter M et al (2020) Green synthesis of Bryophyllum pinnatum aqueous leaf extract mediated bio-molecule capped dilute ferromagnetic α-MnO2 nanoparticles. Mater Res Express. https://doi.org/10.1088/2053-1591/ab6c20

  124. Chen Y, Crittenden JC, Hackney S et al (2005) Preparation of a novel TiO2-Based p–n junction nanotube photocatalyst. Environ Sci Technol 39:1201–1208. https://doi.org/10.1021/es049252g

    Article  CAS  Google Scholar 

  125. Park JY, Lee IH (2014) Photocatalytic degradation of 2-chlorophenol using Ag-doped TiO2 nanofibers and a near-UV light-emitting diode system. J Nanomater 2014:250803. https://doi.org/10.1155/2014/250803

    Article  CAS  Google Scholar 

  126. Chen X, Cen C, Tang Z (2013) The key role of pH value in the synthesis of titanate nanotubes-loaded manganese oxides as a superior catalyst for the selective catalytic reduction of NO with NH3. J Nanomater 2013:871528. https://doi.org/10.1155/2013/871528

    Article  CAS  Google Scholar 

  127. Ullah AKMA, Kibria AKMF, Akter M (2017) Oxidative degradation of methylene blue using Mn3O4 nanoparticles. Water Conserv Sci Eng 1:249–256

    Article  Google Scholar 

  128. Pradeep T, Anshup (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478

    Article  CAS  Google Scholar 

  129. Rengaraj S, Li XZ (2006) Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension. J Mol Catal A Chem 243:60–67

    Article  CAS  Google Scholar 

  130. Srisitthiratkul C, Pongsorrarith V, Intasanta N (2011) The potential use of nanosilver-decorated titanium dioxide nanofibers for toxin decomposition with antimicrobial and self-cleaning properties. Appl Surf Sci 257:8850–8856

    Article  CAS  Google Scholar 

  131. Sa J, Agüera CA, Gross S, Anderson JA (2009) Photocatalytic nitrate reduction over metal modified TiO2. Appl Catal Environ 85:192–200

    Article  CAS  Google Scholar 

  132. Diallo MS, Falconer K, Johnson JH et al (2007) Dendritic anion hosts: perchlorate uptake by G5-NH2 poly (propyleneimine) dendrimer in water and model electrolyte solutions. Environ Sci Technol 41:6521–6527

    Article  CAS  Google Scholar 

  133. Kouketsu T, Duan S, Kai T et al (2007) PAMAM dendrimer composite membrane for CO2 separation: formation of a chitosan gutter layer. J Membr Sci 287:51–59

    Article  CAS  Google Scholar 

  134. Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6:335–340

    Article  CAS  Google Scholar 

  135. Baybas D, Ulusoy U (2019) The use of polyacrylamide-aluminosilicate composites for thorium adsorption. Appl Clay Sci 51:138–146

    Article  Google Scholar 

  136. Li YH, Wang S, Cao A et al (2001) Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem Phys Lett 350:412–416

    Article  CAS  Google Scholar 

  137. Lu C, Chiu H (2006) Adsorption of zinc (II) from water with purified carbon nanotubes. Chem Eng Sci 61:1138–1145

    Article  CAS  Google Scholar 

  138. Lien HL, Zhang W (2005) Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. J Environ Eng 131:4–10

    Article  CAS  Google Scholar 

  139. Huang HY, Yang RT, Chinn D et al (2003) Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind Eng Chem Res 42:2427–2433

    Article  CAS  Google Scholar 

  140. Nomura A, Jones CW (2013) Amine-functionalized porous silicas as adsorbents for aldehyde abatement. ACS Appl Mater Interfaces 5:5569–5577

    Article  CAS  Google Scholar 

  141. Tsai CH, Chang WC, Saikia D et al (2016) Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes. J Hazard Mater 309:236–248

    Article  CAS  Google Scholar 

  142. Wang S, Wang K, Dai C (2015) Adsorption of Pb2+ on amino-functionalized core–shell magnetic mesoporous SBA-15 silica composite. Chem Eng J 262:897–903

    Article  CAS  Google Scholar 

  143. Arencibia A, Aguado J, Arsuaga JM (2010) Regeneration of thiol-functionalized mesostructured silica adsorbents of mercury. Appl Surf Sci 256:5453–5457

    Article  CAS  Google Scholar 

  144. Lai Y, Wang L, Liu D et al (2015) TiO2-based nanomaterials: design, synthesis and applications. J Nanomater 2015:1–3

    Google Scholar 

  145. Waghmode MS, Gunjal AB, Mulla JA et al (2019) Studies on the titanium dioxide nanoparticles: biosynthesis, applications and remediation. SN Appl Sci. https://doi.org/10.1007/s42452-019-0337-3

  146. U.S. EPA 2008 Nanotechnology for site remediation fact sheet. Solid waste and emergency response. EPA 542-F-08-009. http://www.clu-in.org/download/remed/542-f-08-009.pdf

  147. Manivannan S, Ramaraj R (2013) Silver nanoparticles embedded in cyclodextrin-silicate composite and their applications in Hg(ii) ion and nitrobenzene sensing. Analyst 138:1733–1739

    Article  CAS  Google Scholar 

  148. Sharma P, Mourya M, Choudhary D et al (2018) Thiol terminated chitosan capped silver nanoparticles for sensitive and selective detection of mercury (II) ions in water. Sens Actuators B Chem 268:310–318

    Article  CAS  Google Scholar 

  149. Ullah AKMA, Kibria AKMF, Akter M et al (2017) Synthesis of Mn3O4 nanoparticles via a facile gel formation route and study of their phase and structural transformation with distinct surface morphology upon heat treatment. J Saudi Chem Soc 21:830–836

    Article  Google Scholar 

  150. Zhang HP, Gu L, Zhang L et al (2017) Removal of aqueous Pb(II) by adsorption on Al2O3-pillared layered MnO2. Appl Surf Sci 406:330–338

    Article  CAS  Google Scholar 

  151. Wang Z, Qin Y, Pan F et al (2018) Mesoporous silica-supported manganese oxides for complete oxidation of volatile organic compounds: Influence of mesostructure, redox properties, and hydrocarbon dimension. Ind Eng Chem Res 57:7374–7382

    Article  CAS  Google Scholar 

  152. Zhang H, Xu F, Xue J et al (2020) Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: behavior and mechanism. Sci Rep. https://doi.org/10.1038/s41598-020-63000-z

  153. Wang LZ, Sakai N, Ebina Y (2005) Inorganic multilayer films of manganese oxide nanosheets and aluminum polyoxocations: fabrication, structure, and electrochemical behavior. Chem Mater 17:1352–1357

    Article  CAS  Google Scholar 

  154. Ullah AKMA, Hossain A, Akter M et al (2019) Room temperature ferromagnetic behavior of Mn/Manganese oxides nanocomposites. Mater Lett 238:51–54

    Article  Google Scholar 

  155. Nitti F (2014) Synthesis of gold nanoparticles and their application for detection and removal of water contaminants. Rev Media Sains 13:221–232

    Google Scholar 

  156. Lisha KP, Pradeep T (2009) Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles. Gold Bull 42:144–152

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Tajuddin Sikder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akter, M., Tajuddin Sikder, M., Atique Ullah, A.K.M. (2022). Zero-Valent Iron and Some Other Nanometal Particles for Environmental Remediation. In: Tanaka, S., Kurasaki, M., Morikawa, M., Kamiya, Y. (eds) Design of Materials and Technologies for Environmental Remediation. The Handbook of Environmental Chemistry, vol 115. Springer, Singapore. https://doi.org/10.1007/698_2021_821

Download citation

Publish with us

Policies and ethics