Skip to main content

Uptake of Microplastics and Their Effects on Plants

  • Chapter
  • First Online:
Microplastics in Terrestrial Environments

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 95))

Abstract

Microplastics (MPs, 100 nm to 5 mm) may represent a risk to ecosystem and human health, and MP pollution has become a topic of global environmental concern. Despite many reports on the accumulation of MPs in aquatic species, research on terrestrial ecosystems is relatively scarce, and there is very little information on the uptake and accumulation of MPs by plants. In this chapter we review the published research on potential single effects and on combined effects of MPs with other pollutants such as organic and nano-sized pollutant MPs in aquatic plants including microalgae and macrophytes. We focus on recent studies on the accumulation of MPs and their potential effects on crop plants. In this chapter we also discuss the mechanisms and factors affecting MP accumulation in crop plants. Finally, we conclude by pointing to knowledge gaps and suggesting key future areas of research. This review provides a new basis for further research on MP accumulation and its potential effects on plants. Future studies are required on the accumulation and translocation of submicron and even micron-sized MPs in edible plants and their potential impacts on food safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A et al (2015) Plastic waste inputs from land into the ocean. Science 347(6223):768–771. https://doi.org/10.1126/science.1260352

    Article  CAS  Google Scholar 

  2. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci 364(1526):1985–1998. https://doi.org/10.1098/rstb.2008.0205

    Article  CAS  Google Scholar 

  3. Rochman CM, Lewison RL, Eriksen M, Allen H, Cook AM, Teh SJ (2014) Polybrominated diphenyl ethers (PBDEs) in fish tissue may be an indicator of plastic contamination in marine habitats. Sci Total Environ 476–477:622–633. https://doi.org/10.1016/j.scitotenv.2014.01.058

    Article  CAS  Google Scholar 

  4. Lebreton LCM, Joost VDZ, Damsteeg JW, Slat B, Andrady A, Reisser J (2017) River plastic emissions to the world’s oceans. Nat Commun 8:15611. https://doi.org/10.1038/ncomms15611

    Article  CAS  Google Scholar 

  5. Rillig MC (2012) Microplastic in terrestrial ecosystems and the soil? Environ Sci Technol 46(12):6453–6454. https://doi.org/10.1021/es302011r

    Article  CAS  Google Scholar 

  6. Nizzetto L, Futter M, Langaas S (2016) Are agricultural soils dumps for microplastics of urban origin? Environ Sci Technol 50:10777–10779. https://doi.org/10.1021/acs.est.6b04140

    Article  CAS  Google Scholar 

  7. Nizzetto L, Bussi G, Futter MN, Butterfield D, Whitehead PG (2016) A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environ Sci Process Impacts 18:1050–1059. https://doi.org/10.1039/C6EM00206D

    Article  CAS  Google Scholar 

  8. Sebille EV, Wilcox C, Lebreton L, Maximenko N, Hardesty BD, Franeker JAV et al (2015) A global inventory of small floating plastic debris. Environ Res Lett 10(12):124006. https://doi.org/10.1088/1748-9326/10/12/124006

    Article  Google Scholar 

  9. Yearbook CS (2012) China statistical yearbook from 1982 to 2012. China Statistics Press, Beijing

    Google Scholar 

  10. Wang J, Luo Y, Teng Y, Ma W, Christie P, Li Z (2013) Soil contamination by phthalate esters in chinese intensive vegetable production systems with different modes of use of plastic film. Environ Pollut 180:265–273. https://doi.org/10.1016/j.envpol.2013.05.036

    Article  CAS  Google Scholar 

  11. Rillig MC, Ziersch L, Hempel S (2017) Microplastic transport in soil by earthworms. Sci Rep 7(1):1362. https://doi.org/10.1038/s41598-017-01594-7

    Article  CAS  Google Scholar 

  12. Neves D, Sobral P, Ferreira JL, Pereira T (2015) Ingestion of microplastics by commercial fish off the Portuguese coast. Mar Pollut Bull 101(1):119–126. https://doi.org/10.1016/j.marpolbul.2015.11.008

    Article  CAS  Google Scholar 

  13. Moos NV, Burkhardt-Holm P, Köhler A (2012) Uptake and effects of microplastics on cells and tissue of the blue mussel mytilus edulis L. after an experimental exposure. Environ Sci Technol 46(20):11327–11335. https://doi.org/10.1021/es302332w

    Article  CAS  Google Scholar 

  14. Green SD (2016) Effects of microplastics on european flat oysters, ostrea edulis and their associated benthic communities. Environ Pollut 216:95–103. https://doi.org/10.1016/j.envpol.2016.05.043

    Article  CAS  Google Scholar 

  15. Li J, Yang D, Li L, Jabeen K, Shi H (2015) Microplastics in commercial bivalves from China. Environ Pollut 207:190–195. https://doi.org/10.1016/j.envpol.2015.09.018

    Article  CAS  Google Scholar 

  16. Zhang C, Chen X, Wang J, Tan L (2017) Toxic effects of microplastic on marine microalga Skeletonema costatum: interactions between microplastic and algae. Environ Pollut 220:1282–1288. https://doi.org/10.1016/j.envpol.2016.11.005

    Article  CAS  Google Scholar 

  17. Lagarde F, Olivier O, Zanella M, Daniel P, Hiard S, Caruso A (2016) Microplastic interactions with freshwater microalgae: hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ Pollut 215:331–339. https://doi.org/10.1016/j.envpol.2016.05.006

    Article  CAS  Google Scholar 

  18. Mao YF, Ai HN, Chen Y, Zhang ZY, Zeng P et al (2018) Phytoplankton response to polystyrene microplastics: perspective from an entire growth period. Chemosphere 208:59–68. https://doi.org/10.1016/j.chemosphere.2018.05.170

    Article  CAS  Google Scholar 

  19. Long M, Paul-Pont I, Hégaret H, Moriceau B, Lambert C et al (2017) Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation. Environ Pollut 228:454–463. https://doi.org/10.1016/j.envpol.2017.05.047

    Article  CAS  Google Scholar 

  20. Besseling E, Wang B, Lürling M, Koelmans AA (2014) Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol 48:12336–12343. https://doi.org/10.1021/es503001d

    Article  CAS  Google Scholar 

  21. Casado MP, Macken A, Byrne HJ (2013) Ecotoxicological assessment of silica and polystyrene nanoparticles assessed by a multitrophic test battery. Environ Int 51:97–105. https://doi.org/10.1016/j.envint.2012.11.001

    Article  CAS  Google Scholar 

  22. Sjollema SB, Redondo-Hasselerharm P, Leslie HA, Kraak MH, Vethaak AD (2016) Do plastic particles affect microalgal photosynthesis and growth? Aquat Toxicol 170:259–261. https://doi.org/10.1016/j.aquatox.2015.12.002

    Article  CAS  Google Scholar 

  23. Au SY, Bruce TF, Bridges WC, Klaine SJ (2015) Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ Toxicol Chem 34(11):2564–2572. https://doi.org/10.1002/etc.3093

    Article  CAS  Google Scholar 

  24. Güven O, Gökdag K, Jovanovi B, Kıdeyş EA (2017) Microplastic litter composition of the Turkish territorial waters of the mediterranean sea, and its occurrence in the gastrointestinal tract of fish. Environ Pollut 223:286–294. https://doi.org/10.1016/j.envpol.2017.01.025

    Article  CAS  Google Scholar 

  25. Redondo-Hasselerharm PE, Falahudin D, Peeters ETHM, Koelmans AA (2018) Microplastic effect thresholds for freshwater benthic macroinvertebrates. Environ Sci Technol 52(4):2278–2286. https://doi.org/10.1021/acs.est.7b05367

    Article  CAS  Google Scholar 

  26. Kalčíková G, Gotvajn AZ, Kladnik A, Jemec A (2017) Impact of polyethylene microbeads on the floating freshwater plant duckweed lemna minor. Environ Pollut 230:1108–1115. https://doi.org/10.1016/j.envpol.2017.07.050

    Article  CAS  Google Scholar 

  27. van Weert S, Redondo-Hasselerharm PE, Diepens NJ, Koelmans AA (2019) Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes. Sci Total Environ 654:1040–1047. https://doi.org/10.1016/j.scitotenv.2018.11.183

    Article  CAS  Google Scholar 

  28. Bergami E, Pugnalini S, Vannuccini ML, Manfra L, Faleri C, Savorelli F et al (2017) Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquat Toxicol 189:159–169. https://doi.org/10.1016/j.aquatox.2017.06.008

    Article  CAS  Google Scholar 

  29. Lyakurwa DK (2017) Uptake and effects of microplastic particles in selected marine microalgae species; Oxyrrhis marina and Rhodomonas baltica. Master’s thesis, SINTEF

    Google Scholar 

  30. Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L et al (2011) Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45(14):6136–6144. https://doi.org/10.1021/es200506b

    Article  CAS  Google Scholar 

  31. Bhattacharya P, Lin S, Turner JP, Ke PC (2010) Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J Phys Chem C 114:16556–16561. https://doi.org/10.1021/jp1054759

    Article  CAS  Google Scholar 

  32. Chae Y, Kim D, Kim SW, An YJ (2018) Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Sci Rep 8(1):284. https://doi.org/10.1038/s41598-017-18849-y

    Article  CAS  Google Scholar 

  33. Nolte TM, Hartmann NB, Kleijn JM, Garnæs J, van de Meent D, Hendriks AJ, Baun A (2017) The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquat Toxicol 183:11–20. https://doi.org/10.1016/j.aquatox.2016.12.005

    Article  CAS  Google Scholar 

  34. Prata JC, Lavorante BRBO, Montenegro MDBSM, Guilhermino L (2018) Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae, tetraselmis chuii. Aquat Toxicol 197:143–152. https://doi.org/10.1016/j.aquatox.2018.02.015

    Article  CAS  Google Scholar 

  35. Yi X, Wang J, Li Z, Zhang Z, Chi T, Guo M, Li W, Zhou H (2019) The effect of polystyrene plastics on the toxicity of triphenyltin to the marine diatom Skeletonema costatum: influence of plastic particle size. Environ Sci Pollut Res 26:25445–25451. https://doi.org/10.1007/s11356-019-05826-3

    Article  CAS  Google Scholar 

  36. Yi X, Chi T, Li Z, Wang J, Yu M, Wu M, Zhou H (2019) Combined effect of polystyrene plastics and triphenyltin chloride on the green algae Chlorella pyrenoidosa. Environ Sci Pollut Res 26:15011–15018. https://doi.org/10.1007/s11356-019-04865-0

    Article  CAS  Google Scholar 

  37. Zhang Q, Qu Q, Lu T, Ke M, Zhu Y, Zhang M et al (2018) The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth. Environ Pollut 243:1106–1112. https://doi.org/10.1016/j.envpol.2018.09.073

    Article  CAS  Google Scholar 

  38. Gao M, Liu Y, Song Z (2019) Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Chemosphere 237:124482. https://doi.org/10.1016/j.chemosphere.2019.124482

    Article  CAS  Google Scholar 

  39. Barboza LGA, Vieira LR, Branco V, Figueiredo N, Carvalho F, Carvalho C, Guihermino L (2018) Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat Toxicol 195:49–57. https://doi.org/10.1016/j.aquatox.2017.12.008

    Article  CAS  Google Scholar 

  40. Davarpanah E, Guilhermino L (2015) Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii. Estuar Coast Shelf Sci 167:269–275. https://doi.org/10.1016/j.ecss.2015.07.023

    Article  CAS  Google Scholar 

  41. Khan FR, Syberg K, Shashoua Y, Bury NR (2015) Influence of polyethylene microplastic beads on the uptake and localization of silver in zebrafish (Danio rerio). Environ Pollut 206(11):73–79. https://doi.org/10.1016/j.envpol.2015.06.009

    Article  CAS  Google Scholar 

  42. Khan F, Boyle D, Chang E, Bury N (2017) Do polyethylene microplastic beads alter the intestinal uptake of ag in rainbow trout (Oncorhynchus mykiss)? Environ Pollut 231(Pt 1):200–206. https://doi.org/10.1016/j.envpol.2017.08.019

    Article  CAS  Google Scholar 

  43. Kim D, Chae Y, An YJ (2017) Mixture toxicity of nickel and microplastics with different functional groups on daphnia magna. Environ Sci Technol 51(21):12852–12858. https://doi.org/10.1021/acs.est.7b03732

    Article  CAS  Google Scholar 

  44. Brennecke D, Duarte B, Paiva F, Caçador I, Canning-Clode J (2016) Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci 178:189–195. https://doi.org/10.1016/j.ecss.2015.12.003

    Article  CAS  Google Scholar 

  45. Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35(2):318–324. https://doi.org/10.1021/es0010498

    Article  CAS  Google Scholar 

  46. Pacheco A, Martins A, Guilhermino L (2018) Toxicological interactions induced by chronic exposure to gold nanoparticles and microplastics mixtures in Daphnia magna. Sci Total Environ 628–629:474–483. https://doi.org/10.1016/j.scitotenv.2018.02.081

    Article  CAS  Google Scholar 

  47. Thiagarajan V, Iswarya Seenivasan RPAJ, Chandrasekaran N, Mukherjee A (2019) Influence of differently functionalized polystyrene microplastics on the toxic effects of p25 TiO2 NPs towards marine algae chlorella sp. Aquat Toxicol 207:208–216. https://doi.org/10.1016/j.aquatox.2018.12.014

    Article  CAS  Google Scholar 

  48. Davarpanah E, Guilhermino L (2015) Are gold nanoparticles and microplastics mixtures more toxic to the marine microalgae Tetraselmis chuii than the substances individually? Ecotoxicol Environ Saf 181:60–68. https://doi.org/10.1016/j.ecoenv.2019.05.078

    Article  CAS  Google Scholar 

  49. Bandmann V, Müller JD, Köhler T, Homann U (2012) Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis. FEBS Lett 586:3626–3632. https://doi.org/10.1016/j.febslet.2012.08.008

    Article  CAS  Google Scholar 

  50. Li L, Zhou Q, Yin N, Luo Y (2019) Uptake and accumulation of microplastics in an edible plant. Chin Sci Bull 64(9):928–934. https://doi.org/10.1360/N972018-00845

    Article  Google Scholar 

  51. Wen F, Vanetten HD, Tsaprailis G, Hawes MC (2007) Extracellular proteins in pea root tip and border cell exudates. Plant Physiol 143(2):773–783. https://doi.org/10.1104/pp.106.091637

    Article  CAS  Google Scholar 

  52. Driouich A, Follet-Gueye ML, Vicré-Gibouin M, Hawes M (2013) Root border cells and secretions as critical elements in plant host defense. Curr Opin Plant Biol 16(4):489–495. https://doi.org/10.1016/j.pbi.2013.06.010

    Article  CAS  Google Scholar 

  53. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557. https://doi.org/10.1038/nmat2442

    Article  CAS  Google Scholar 

  54. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32(5):577–584. https://doi.org/10.1111/j.1365-3040.2009.01952.x

    Article  CAS  Google Scholar 

  55. Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang JY et al (2013) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47(11):5635–5642. https://doi.org/10.1021/es401032m

    Article  CAS  Google Scholar 

  56. Schwabe F, Schulin R, Limbach LK, Stark W, Bürge D, Nowack B (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91(4):512–520. https://doi.org/10.1016/j.chemosphere.2012.12.025

    Article  CAS  Google Scholar 

  57. Kielar F, Helsel ME, Wang Q, Franz KJ (2012) Prochelator bhapi protects cells against paraquat-induced damage by ROS-triggered iron chelation. Metallomics 4(9):899. https://doi.org/10.1039/c2mt20069d

    Article  CAS  Google Scholar 

  58. Jiang XF, Chen H, Liao YC, Liao YC, Ye ZQ, Li M, Klobučar G (2019) Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ Pollut 250:831–838. https://doi.org/10.1016/j.envpol.2019.04.055

    Article  CAS  Google Scholar 

  59. Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2015) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-critical review. Nanotoxicol 10(3):257–278. https://doi.org/10.3109/17435390.2015.1048326

    Article  CAS  Google Scholar 

  60. Gonzalez-Melendi P, Fernandez-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueno MC et al (2007) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101(1):187–195. https://doi.org/10.1093/aob/mcm283

    Article  Google Scholar 

  61. Taylor AF, Rylott EL, Anderson CWN, Bruce NC, Rozhkova EA (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 9(4):e93793. https://doi.org/10.1371/journal.pone.0093793

    Article  CAS  Google Scholar 

  62. de Souza Machado AA, Lau CW, Till J, Kloas W, Lehmann A, Becker R, Rillig MC (2018) Impacts of microplastics on the soil biophysical environment. Environ Sci Technol 52(17):9656–9665. https://doi.org/10.1021/acs.est.8b02212

    Article  CAS  Google Scholar 

  63. Zhang GS, Zhang FX, Li XT (2019) Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment. Sci Total Environ 670:1–7. https://doi.org/10.1016/j.scitotenv.2019.03.149

    Article  CAS  Google Scholar 

  64. Liu H, Yang X, Liu G, Liang C, Geissen V (2017) Response of soil dissolved organic matter to microplastic addition in chinese loess soil. Chemosphere 185:907–917. https://doi.org/10.1016/j.chemosphere.2017.07.064

    Article  CAS  Google Scholar 

  65. Bosker T, Bouwman LJ, Brun NR, Behrens P, Vijver MG (2019) Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226:774–781. https://doi.org/10.1016/j.chemosphere.2019.03.163

    Article  CAS  Google Scholar 

  66. Qi Y, Yang X, Pelaez AM, Huerta Lwanga E, Beriot N, Gertsen H, Garbeva P, Geissen V (2018) Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci Total Environ 645:1048–1056. https://doi.org/10.1016/j.scitotenv.2018.07.229

    Article  CAS  Google Scholar 

  67. de Souza Machado AA, Lau CW, Till J, Kloas W, Bergmann J, Bachelier JB, Faltin E, Becker R, Görlich AS, Rillig MC (2018) Impacts of microplastics on the soil biophysical environment. Environ Sci Technol 52(17):9656–9665. https://doi.org/10.1021/acs.est.8b02212

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (Grant No. 41877142); the National Key Research and Development Program of China (Grant No. 2016YFC1402202); the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDJ-SSW-DQC015); and the External Cooperation Program of BIC, Chinese Academy of Sciences (Grant No. 133337KYSB20160003). We appreciate the contributions of language polishing by Professor Peter Christie from the Institute of Soil Science, Chinese Academy of Sciences, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, L., Yang, J., Zhou, Q., Peijnenburg, W.J.G.M., Luo, Y. (2020). Uptake of Microplastics and Their Effects on Plants. In: He, D., Luo, Y. (eds) Microplastics in Terrestrial Environments. The Handbook of Environmental Chemistry, vol 95. Springer, Cham. https://doi.org/10.1007/698_2020_465

Download citation

Publish with us

Policies and ethics