Skip to main content

Introduction to Pyrethroid Insecticides: Chemical Structures, Properties, Mode of Action and Use

  • Chapter
  • First Online:
Pyrethroid Insecticides

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 92))

Abstract

During the 1920s, pyrethrin was studied because of its potential as a precursor for synthetic organic pesticides. The first pyrethroid pesticide, allethrin, was identified in 1949. It is a type I pyrethroid because of a carboxylic ester of cyclopropane. Type II was created with the addition of a cyano group in α position. Some phenylacetic 3-phenoxybenzyl esters missing the cyclopropane but with the cyano group are also considered type II. In the 1970s, pyrethroids transitioned from mere household products to pest control agents in agriculture. Later, pyrethroids have replaced organophosphate pesticides in most of their applications the same way the latter had replaced organochlorinated pesticides before. Works on the optimisation of pyrethroids has granted them better photostability without compromising their biodegradability, as well as selective toxicity, metabolic routes of degradation and more effectivity, translating into the use of smaller amounts. Most pyrethroids present different isomers, each with different biological activity and, therefore, different toxicity. Pyrethroids account for a quarter of the pesticides used nowadays. Pyrethroids’ relative molecular mass is clearly above 300 g mol−1; they are highly hydrophobic, photosensitive and get easily hydrolysed, with degradation times below 60 days. They are not persistent and mammals can metabolise them. However, pyrethroids have been proven to bioaccumulate in marine mammals and humans. Studies in mammals reported carcinogenic, neurotoxic and immunosuppressive properties and potential for reproductive toxicity mainly. Acceptable daily intake values and no observed adverse effect level values have been established at 0.02–0.07 mg (kg body weight)−1 day−1 and 1–7 mg (kg body weight)−1 day−1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADI:

Acceptable daily intake

BAF:

Bioaccumulation factor

BCF:

Bioconcentration factor

DDT:

Dichlorodiphenyltrichloroethane

DT50:

Degradation time for 50% of the substance

EFSA:

European Food Safety Authority

EPA:

Environmental Protection Agency

IC50:

Half-maximal inhibitory concentration

K ow :

Octanol-water partition coefficient

LOD:

Limit of detection

LOEC:

Lowest observed effect concentration

M r :

Relative molecular mass

MRL:

Maximum residue level

NOAEL:

No observed adverse effect level

NOEC:

No observed effect concentration

POP:

Persistent organic pollutant

References

  1. Casida JE, Quistad GB (1998) Golden age of insecticide research: past, present, or future? Annu Rev Entomol 43:1–16. https://doi.org/10.1146/annurev.ento.43.1.1

    Article  CAS  Google Scholar 

  2. Hellou J, Lebeuf M, Rudi M (2013) Review on DDT and metabolites in birds and mammals of aquatic ecosystems. Environ Rev 21:53–69. https://doi.org/10.1139/er-2012-0054

    Article  CAS  Google Scholar 

  3. Rabitto I d S, Bastos WR, Almeida R et al (2011) Mercury and DDT exposure risk to fish-eating human populations in Amazon. Environ Int 37:56–65. https://doi.org/10.1016/j.envint.2010.07.001

    Article  CAS  Google Scholar 

  4. Resnik DB (2009) Human health and the environment: in harmony or in conflict? Health Care Anal 17:261–276. https://doi.org/10.1007/s10728-008-0104-x

    Article  Google Scholar 

  5. Richardson M (1998) Pesticides – friend or foe? Water Sci Technol 37:19–25. https://doi.org/10.1016/s0273-1223(98)00257-1

    Article  CAS  Google Scholar 

  6. Roberts DR, Manguin S, Mouchet J (2000) DDT house spraying and re-emerging malaria. Lancet 356:330–332. https://doi.org/10.1016/s0140-6736(00)02516-2

    Article  CAS  Google Scholar 

  7. Narahashi T, Ginsburg KS, Nagata K et al (1998) Ion channels as targets for insecticides. Neurotoxicology 19:581–590

    CAS  Google Scholar 

  8. Kozawa K, Aoyama Y, Mashimo S et al (2009) Toxicity and actual regulation of organophosphate pesticides. Toxin Rev 28:245–254. https://doi.org/10.3109/15569540903297808

    Article  CAS  Google Scholar 

  9. Amweg EL, Weston DP, You J et al (2006) Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee. Environ Sci Technol 40:1700–1706. https://doi.org/10.1021/es051407c

    Article  CAS  Google Scholar 

  10. Zhan Y, Zhang MH (2014) Spatial and temporal patterns of pesticide use on California almonds and associated risks to the surrounding environment. Sci Total Environ 472:517–529. https://doi.org/10.1016/j.scitotenv.2013.11.022

    Article  CAS  Google Scholar 

  11. Bradberry SM, Cage SA, Proudfoot AT et al (2005) Poisoning due to pyrethroids. Toxicol Rev 24:93–106. https://doi.org/10.2165/00139709-200524020-00003

    Article  CAS  Google Scholar 

  12. Jin YX, Liu JW, Wang LG et al (2012) Permethrin exposure during puberty has the potential to enantioselectively induce reproductive toxicity in mice. Environ Int 42:144–151. https://doi.org/10.1016/j.envint.2011.05.020

    Article  CAS  Google Scholar 

  13. Shafer TJ, Meyer DA, Crofton KM (2005) Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ Health Perspect 113:123–136. https://doi.org/10.1289/ehp.7254

    Article  CAS  Google Scholar 

  14. Casida JE, Ueda K, Gaughan LC et al (1975) Structure-biodegradability relationships in pyrethroid insecticides. Arch Environ Contam Toxicol 3:491–500

    Article  CAS  Google Scholar 

  15. Leng G, Leng A, Kuhn KH et al (1997) Human dose-excretion studies with the pyrethroid insecticide cyfluthrin: urinary metabolite profile following inhalation. Xenobiotica 27:1273–1283

    Article  CAS  Google Scholar 

  16. Ridgway RL, Tinney JC, Macgregor JT et al (1978) Pesticide use in agriculture. Environ Health Perspect 27:103–112. https://doi.org/10.2307/3428869

    Article  CAS  Google Scholar 

  17. Grube A, Donaldson D, Kiely T et al (2011) Pesticides industry sales and usage – 2006 and 2007 market estimates [en línia]. U.S. Environmental Protection Agency (EPA), Washington. http://www.epa.gov/pesticides/pestsales/. Accessed Aug 2015

  18. HSDB (2001) Hazardous Substances Data Bank (HSDB). TOXNET Toxicology Data Network, United States National Library of Medicine. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB. Accessed Nov 2019

  19. Metcalf RL (1995) Insect control technology. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, New York

    Google Scholar 

  20. NAWQA (2001) U.S. Geological Survey (U.S. Department of the Interior). Pesticide National Synthesis Project (National Water-Quality Assessment (NAWQA) Program). https://water.usgs.gov/nawqa/pnsp. Accessed Nov 2019

  21. AERU – Agriculture & Environment Research Unit (University of Hertfordshire) (2007) PPDB: Pesticide Properties DataBase. http://sitem.herts.ac.uk/aeru/footprint/index2.htm. Accessed Nov 2019

  22. SC (2008) Stockholm Convention on Persistent Organic Pollutants. http://chm.pops.int/. Accessed Aug 2017

  23. Abernath C, Ueda K, Engel JL et al (1973) Substrate specificity and toxicological significance of pyrethroyd-hydrolyzing esterases of mouse liver-microsomes. Pestic Biochem Physiol 3:300–311. https://doi.org/10.1016/0048-3575(73)90028-x

    Article  Google Scholar 

  24. Alonso MB, Feo ML, Corcellas C et al (2012) Pyrethroids: a new threat to marine mammals? Environ Int 47:99–106. https://doi.org/10.1016/j.envint.2012.06.010

    Article  CAS  Google Scholar 

  25. Corcellas C, Feo ML, Torres JP et al (2012) Pyrethroids in human breast milk: occurrence and nursing daily intake estimation. Environ Int 47:17–22. https://doi.org/10.1016/j.envint.2012.05.007

    Article  CAS  Google Scholar 

  26. Daughton CG (2004) Non-regulated water contaminants: emerging research. Environ Impact Assess Rev 24:711–732. https://doi.org/10.1016/j.eiar.2004.06.003

    Article  Google Scholar 

  27. Corcellas C (2017) Estudi dels insecticides piretroides en mostres biològiques i humanes. Universitat de Barcelona, Barcelona, 234 pp

    Google Scholar 

  28. Heudorf U, Angerer J, Drexler H (2004) Current internal exposure to pesticides in children and adolescents in Germany: urinary levels of metabolites of pyrethroid and organophosphorus insecticides. Int Arch Occup Environ Health 77:67–72. https://doi.org/10.1007/s00420-003-0470-5

    Article  CAS  Google Scholar 

  29. Satoh T, Hosokawa M (1998) The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol 38:257–288. https://doi.org/10.1146/annurev.pharmtox.38.1.257

    Article  CAS  Google Scholar 

  30. Hosokawa M, Maki T, Satoh T (1990) Characterization of molecular species of liver microsomal carboxylesterases of several animal species and humans. Arch Biochem Biophys 277:219–227

    Article  CAS  Google Scholar 

  31. Huang H, Fleming CD, Nishi K et al (2005) Stereoselective hydrolysis of pyrethroid-like fluorescent substrates by human and other mammalian liver carboxylesterases. Chem Res Toxicol 18:1371–1377. https://doi.org/10.1021/tx050072+

    Article  CAS  Google Scholar 

  32. Tange S, Fujimoto N, Uramaru N et al (2014) In vitro metabolism of cis- and trans-permethrin by rat liver microsomes, and its effect on estrogenic and anti-androgenic activities. Environ Toxicol Pharmacol 37:996–1005. https://doi.org/10.1016/j.etap.2014.03.009

    Article  CAS  Google Scholar 

  33. Zehringer M, Herrmann A (2001) Analysis of polychlorinated biphenyls, pyrethroid insecticides and fragrances in human milk using a laminar cup liner in the GC injector. Eur Food Res Technol 212:247–251. https://doi.org/10.1007/s002170000223

    Article  CAS  Google Scholar 

  34. Mauck WL, Olson LE (1976) Toxicity of natural pyrethrins and five pyrethroids to fish. Arch Environ Contam Toxicol 4:18–29

    Article  CAS  Google Scholar 

  35. Shafer T, Rijal S, Gross G (2008) Complete inhibition of spontaneous activity in neuronal networks in vitro by deltamethrin and permethrin. Neurotoxicology 29:203–212

    Article  CAS  Google Scholar 

  36. WHO (2005) Safety of pyrethroids for public health use. World Health Organization, Geneva

    Google Scholar 

  37. Ray DE, Forshaw PJ (2000) Pyrethroid insecticides: poisoning syndromes, synergies, and therapy. J Toxicol Clin Toxicol 38:95–101

    Article  CAS  Google Scholar 

  38. Pollack RJ, Kiszewski A, Armstrong P et al (1999) Differential permethrin susceptibility of head lice sampled in the United States and Borneo. Arch Pediatr Adolesc Med 153:969–973

    Article  CAS  Google Scholar 

  39. Ostrea EM, Bielawski DM, Posecion NC et al (2009) Combined analysis of prenatal (maternal hair and blood) and neonatal (infant hair, cord blood and meconium) matrices to detect fetal exposure to environmental pesticides. Environ Res 109:116–122. https://doi.org/10.1016/j.envres.2008.09.004

    Article  CAS  Google Scholar 

  40. Channa KR, Rollin HB, Wilson KS et al (2012) Regional variation in pesticide concentrations in plasma of delivering women residing in rural Indian Ocean coastal regions of South Africa. J Environ Monit 14:2952–2960. https://doi.org/10.1039/c2em30264k

    Article  CAS  Google Scholar 

  41. Alonso MB, Feo ML, Corcellas C et al (2015) Toxic heritage: maternal transfer of pyrethroid insecticides and sunscreen agents in dolphins from Brazil. Environ Pollut 207:391–402. https://doi.org/10.1016/j.envpol.2015.09.039

    Article  CAS  Google Scholar 

  42. Aznar-Alemany Ò, Giménez J, de Stephanis R et al (2017b) Insecticide pyrethroids in liver of striped dolphin from the Mediterranean Sea. Environ Pollut 225:346–353. https://doi.org/10.1016/j.envpol.2017.02.060

    Article  CAS  Google Scholar 

  43. Corcellas C, Eljarrat E, Barceló D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110–116. https://doi.org/10.1016/j.envint.2014.11.007

    Article  CAS  Google Scholar 

  44. FAO – Food and Agriculture Organization of the United Nations (2016) The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all [en línia]. http://reliefweb.int/sites/reliefweb.int/files/resources/a-i5555e.pdf. Accessed Sept 2017

  45. Aznar-Alemany Ò, Eljarrat E, Barceló D (2017a) Effect of pyrethroid treatment against sea lice in salmon farming regarding consumers’ health. Food Chem Toxicol 105:347–354. https://doi.org/10.1016/j.fct.2017.04.036

    Article  CAS  Google Scholar 

  46. Kolaczinski JH, Curtis CF (2004) Chronic illness as a result of low-level exposure to synthetic pyrethroid insecticides: a review of the debate. Food Chem Toxicol 42:697–706. https://doi.org/10.1016/j.fct.2003.12.008

    Article  CAS  Google Scholar 

  47. Muller-Mohnssen H, Hahn K (1995) A new method for early detection of neurotoxic diseases (exemplified by pyrethroid poisoning). Gesundheitswesen (Bundesverband der Arzte des Offentlichen Gesundheitsdienstes (Germany)) 57:214–222

    CAS  Google Scholar 

  48. Issam C, Zohra H, Monia Z et al (2011) Effects of dermal sub-chronic exposure of pubescent male rats to permethrin (PRMT) on the histological structures of genital tract, testosterone and lipoperoxidation. Exp Toxicol Pathol 63:393–400. https://doi.org/10.1016/j.etp.2010.02.016

    Article  CAS  Google Scholar 

  49. Moshammer H (1996) Comment on Muller-Mohnssen, H., K. Hahn. A method for early detection of neurotoxic diseases. Gesundheitswesen (Bundesverband der Arzte des Offentlichen Gesundheitsdienstes (Germany)) 58:47–49

    CAS  Google Scholar 

  50. Nasterlack M, Chr Dietz M (1996) Comment on Muller-Mohnssen, H., K. Hahn. A method for early detection of neurotoxic diseases. Gesundheitswesen (Bundesverband der Arzte des Offentlichen Gesundheitsdienstes (Germany)) 58:49–50

    CAS  Google Scholar 

  51. Narahashi T (1992) Nerve membrane Na+ channels as targets of insecticides. Trends Pharmacol Sci 13:236–241

    Article  CAS  Google Scholar 

  52. Woollen BH, Marsh JR, Laird WJD et al (1992) The metabolism of cypermethrin in man – differences in urinary metabolite profiles following oral and dermal administration. Xenobiotica 22:983–991

    Article  CAS  Google Scholar 

  53. Wang C, Chen F, Zhang Q et al (2009) Chronic toxicity and cytotoxicity of synthetic pyrethroid insecticide cis-bifenthrin. J Environ Sci (China) 21:1710–1715. https://doi.org/10.1016/s1001-0742(08)62477-8

    Article  CAS  Google Scholar 

  54. Ravula AR, Yenugu S (2019) Long term oral administration of a mixture of pyrethroids affects reproductive function in rats. Reprod Toxicol 89:1–12. https://doi.org/10.1016/j.reprotox.2019.06.007

    Article  CAS  Google Scholar 

  55. Wang H, He Y, Cheng D et al (2019) Cypermethrin exposure reduces the ovarian reserve by causing mitochondrial dysfunction in granulosa cells. Toxicol Appl Pharmacol 379:114693. https://doi.org/10.1016/j.taap.2019.114693

    Article  CAS  Google Scholar 

  56. Sun D, Pang J, Zhou Z et al (2016) Enantioselective environmental behavior and cytotoxicity of chiral acaricide cyflumetofen. Chemosphere 161:167–173. https://doi.org/10.1016/j.chemosphere.2016.06.087

    Article  CAS  Google Scholar 

  57. Wang F, Liu D, Qu H et al (2016) A full evaluation for the enantiomeric impacts of lactofen and its metabolites on aquatic macrophyte Lemna minor. Water Res 101:55–63. https://doi.org/10.1016/j.watres.2016.05.064

    Article  CAS  Google Scholar 

  58. Zhao M, Chen F, Wang C et al (2010) Integrative assessment of enantioselectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids. Environ Pollut 158:1968–1973. https://doi.org/10.1016/j.envpol.2009.10.027

    Article  CAS  Google Scholar 

  59. EC – European Commission (2012) Health and consumers > plants > pesticides. http://ec.europa.eu/food/plant/pesticides/index_en.htm. Accessed Mar 2017

  60. DG SANCO – Directorate General for Health and Consumers (2008) EU Pesticides database. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=EN. Accessed Nov 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ò. Aznar-Alemany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aznar-Alemany, Ò., Eljarrat, E. (2020). Introduction to Pyrethroid Insecticides: Chemical Structures, Properties, Mode of Action and Use. In: Eljarrat, E. (eds) Pyrethroid Insecticides. The Handbook of Environmental Chemistry, vol 92. Springer, Cham. https://doi.org/10.1007/698_2019_435

Download citation

Publish with us

Policies and ethics