Skip to main content

Body Composition and Endocrine Adaptations to High-Altitude Trekking in the Himalayas

  • Chapter
  • First Online:
Advancements and Innovations in Health Sciences

Abstract

Long-term exposure to high altitude causes adaptive changes in several blood biochemical markers along with a marked body mass reduction involving both the lean and fat components. The aim of this study was to evaluate the impact of extended physical strain, due to extensive trekking at high altitude, on body composition, selected biomarkers in the blood, and the protective role of a high-protein diet in muscle dysfunction. We found that physical strain at high altitude caused a significant reduction in body mass and body fat, with a concomitant increase in the cross-sectional area of thigh muscles and an unchanged total lean body mass. Further, we found reductions in plasma leptin and homocysteine, while myoglobin, insulin, and C-reactive protein significantly increased. Creatine kinase, lactate dehydrogenase, and leptin normalized per body fat were unchanged. These findings demonstrate that high-altitude hypoxia, involving extended physical effort, has an impact on muscle function and body composition, facilitating sarcopenia and affecting body mass and fat distribution. It also activates pro-inflammatory metabolic pathways in response to muscular distress. These changes can be mitigated by a provision of a high-protein diet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bailey DM, Davies B, Baker J (2000) Training in hypoxia: modulation of metabolic and cardiovascular risk factors in men. Med Sci Sports Exerc 32(6):1058–1066

    CAS  PubMed  Google Scholar 

  • Baird MF, Graham SM, Baker JS, Bickerstaff GF (2012) Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab 2012:960363

    PubMed  PubMed Central  Google Scholar 

  • Benso A, Broglio F, Aimaretti G, Lucatello B, Lanfranco F, Ghigo E, Grottoli S (2007) Endocrine and metabolic responses to extreme altitude and physical exercise in climbers. Eur J Endocrinol 157(6):733–740

    CAS  PubMed  Google Scholar 

  • Beretta E, Lanfranconi F, Grasso GS, Bartesaghi M, Alemayehu HK, Pratali L, Catuzzo B, Giardini G, Miserocchi G (2017) Air blood barrier phenotype correlates with alveolo–capillary O2 equilibration in hypobaric hypoxia. Respir Physiol Neurobiol 246:53–58

    PubMed  Google Scholar 

  • Boos CJ, Hodkinson PD, Mellor A, Green NP, Bradley D, Greaves K, Woods DR (2013) The effects of prolonged acute hypobaric hypoxia on novel measures of biventricular performance. Echocardiography 30(5):534–541

    PubMed  Google Scholar 

  • Bosco G, Ionadi A, Panico S, Faralli F, Gagliardi R, Data P, Mortola JP (2003) Effects of hypoxia on the circadian patterns in men. High Alt Med Biol 4(3):305–318

    PubMed  Google Scholar 

  • Bosco G, Verratti V, Fanò G (2010) Performances in extreme environments: effects of hyper/hypobarism and hypogravity on skeletal muscle. Eur J Translat Myol 20(3):83–90

    Google Scholar 

  • Broglio F, Prodam F, Riganti F, Muccioli G, Ghigo E (2006) Ghrelin: from somatotrope secretion to new perspectives in the regulation of peripheral metabolic functions. Front Horm Res 35:102–114

    CAS  PubMed  Google Scholar 

  • Cacciani N, Paoli A, Reggiani C, Patruno M (2008) Hypoxia: the third wheel between nerve and muscle. Neurol Res 30(2):149–154

    CAS  PubMed  Google Scholar 

  • di Cerretelli P, Prampero PE (1987) Gas exchange at exercise. In: Farhi LE, Tenney SM (eds) Handbook of physiology. the respiratory system IV. American Physiological Society, Bethesda, pp 555–632

    Google Scholar 

  • Di Giulio C, Bianchi G, Cacchio M, Artese L, Piccirilli M, Verratti V, Valerio R, Iturriaga R (2006) Neuroglobin, a new oxygen binding protein is present in the carotid body and increases after chronic intermittent hypoxia. Adv Exp Med Biol 580:15–19

    PubMed  Google Scholar 

  • Doria C, Toniolo L, Verratti V, Cancellara P, Pietrangelo T, Marconi V, Paoli A, Pogliaghi S, Fanò G, Reggiani C, Capelli C (2011) Improved VO2 uptake kinetics and shift in muscle fiber type in high–altitude trekkers. J Appl Physiol 111(6):1597–1605

    CAS  PubMed  Google Scholar 

  • Durnin JV, Womersley J (1974) Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32:77–97

    CAS  PubMed  Google Scholar 

  • Hartmann G, Tschöp M, Fischer R, Bidlingmaier C, Riepl R, Tschöp K, Hautmann H, Endres S, Toepfer M (2000) High altitude increases circulating interleukin–6, interleukin–1 receptor antagonist and C–reactive protein. Cytokine 12:246–252

    CAS  PubMed  Google Scholar 

  • Hoppeler H, Vogt M (2001) Muscle tissue adaptations to hypoxia. J Exp Biol 204(Pt 18):3133–3139

    CAS  PubMed  Google Scholar 

  • Housh DJ, Housh TJ, Weir JP, Weir LL, Johnson GO, Stout JR (1995) Anthropometric estimation of thigh muscle cross–sectional area. Med Sci Sports Exerc 27(5):784–791

    CAS  PubMed  Google Scholar 

  • Hultgren HN (1978) High–altitude edema. JAMA 239(21):2239

    CAS  PubMed  Google Scholar 

  • Kylhammar D, Rådegran G (2017) The principal pathways involved in the in vivo modulation of hypoxic pulmonary vasoconstriction, pulmonary arterial remodelling and pulmonary hypertension. Acta Physiol (Oxf) 219(4):728–756

    CAS  Google Scholar 

  • Larsen JJ, Hansen JM, Olsen NV, Galbo H, Dela F (1997) The effect of altitude hypoxia on glucose homeostasis in men. J Physiol 504(1):241–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li JJ, Fang CH (2004) C-reactive protein is not only an inflammatory marker but also a direct cause of cardiovascular diseases. Med Hypotheses 62(4):499–506

    CAS  PubMed  Google Scholar 

  • Luks AM, Levett D, Martin DS, Goss CH, Mitchell K, Fernandez BO, Feelisch M, Grocott MP, Swenson ER, Investigators CXE (2017) Changes in acute pulmonary vascular responsiveness to hypoxia during a progressive ascent to high altitude (5300 m). Exp Physiol 102(6):711–724

    CAS  PubMed  Google Scholar 

  • Mancinelli R, Di Filippo ES, Verratti V, Fulle S, Toniolo L, Reggiani C, Pietrangelo T (2016) The regenerative potential of female skeletal muscle upon hypobaric hypoxic exposure. Front Physiol 7:303

    PubMed  PubMed Central  Google Scholar 

  • Mariggiò MA, Falone S, Morabito C, Guarnieri S, Mirabilio A, Pilla R, Bucciarelli T, Verratti V, Amicarelli F (2010) Peripheral blood lymphocytes: a model for monitoring physiological adaptation to high altitude. High Alt Med Biol 11(4):333–342

    PubMed  Google Scholar 

  • Moore LG, Zamudio S, Zhuang J, Droma T, Shohet RV (2002) Analysis of the myoglobin gene in Tibetans living at high altitude. High Alt Med Biol 3(1):39–47

    CAS  PubMed  Google Scholar 

  • Nedergaard A, Karsdal MA, Sun S, Henriksen K (2013) Serological muscle loss biomarkers: an overview of current concepts and future possibilities. J Cachexia Sarcopenia Muscle 4(1):1–17

    PubMed  Google Scholar 

  • Palmer BF, Clegg DJ (2014) Ascent to altitude as a weight loss method: the good and bad of hypoxia inducible factor activation. Obesity (Silver Spring) 22(2):311–317

    Google Scholar 

  • Paoli A, Bianco A, Damiani E, Bosco G (2014) Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed Res Int 2014(474296):1

    Google Scholar 

  • Paoli A, Bosco G, Camporesi EM, Mangar D (2015) Ketosis, ketogenic diet and food intake control: a complex relationship. Front Psychol 6:27

    PubMed  PubMed Central  Google Scholar 

  • Pelliccione F, Verratti V, D’Angeli A, Micillo A, Doria C, Pezzella A, Iacutone G, Francavilla F, Di Giulio C, Francavilla S (2011) Physical exercise at high altitude is associated with a testicular dysfunction leading to reduced sperm concentration but healthy sperm quality. Fertil Steril 96(1):28–33

    PubMed  Google Scholar 

  • Petousi N, Croft QP, Cavalleri GL, Cheng HY, Formenti F, Ishida K, Lunn D, McCormack M, Shianna KV, Talbot NP, Ratcliffe PJ, Robbins PA (2014) Tibetans living at sea level have a hyporesponsive hypoxia-inducible factor system and blunted physiological responses to hypoxia. J Appl Physiol 116(7):893–904

    CAS  PubMed  Google Scholar 

  • Pugh LG (1962) Physiological and medical aspects of the Himalayan scientific and mountaineering expedition, 1960–61. Br Med J 2(5305):621–627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richalet JP (2010) Operation Everest III: COMEX ’97. High Alt Med Biol 11(2):121–132

    PubMed  Google Scholar 

  • Rose MS, Houston CS, Fulco CS, Coates G, Sutton JR, Cymerman A (1988) Operation Everest. II: nutrition and body composition. J Appl Physiol 65(6):2545–2551

    CAS  PubMed  Google Scholar 

  • San T, Polat S, Cingi C, Eskiizmir G, Oghan F, Cakir B (2013) Effects of high altitude on sleep and respiratory system and theirs adaptations. ScientificWorldJournal 2013:241569

    PubMed  PubMed Central  Google Scholar 

  • Sumi D, Kojima C, Goto K (2018) Impact of endurance exercise in hypoxia on muscle damage, inflammatory and performance responses. J Strength Cond Res 32(4):1053–1062

    PubMed  Google Scholar 

  • Vats P, Singh VK, Singh SN, Singh SB (2007) High altitude induced anorexia: effect of changes in leptin and oxidative stress levels. Nutr Neurosci 10(5–6):243–249

    CAS  PubMed  Google Scholar 

  • Verhoef P, van Vliet T, Olthof MR, Katan MB (2005) A high–protein diet increases postprandial but not fasting plasma total homocysteine concentrations: a dietary controlled, crossover trial in healthy volunteers. Am J Clin Nutr 82(3):553–558

    CAS  PubMed  Google Scholar 

  • Verratti V, Di Giulio C, Bianchi G, Cacchio M, Petruccelli G, Artese L, Lahiri S, Iturriaga R (2009) Neuroglobin in aging carotid bodies. Adv Exp Med Biol 648:191–195

    CAS  PubMed  Google Scholar 

  • Verratti V, Falone S, Fanò G, Paoli A, Reggiani C, Tenaglia R, Di Giulio C (2011) Effects of hypoxia on nocturnal erection quality: a case report from the Manaslu expedition. J Sex Med 8(8):2386–2390

    PubMed  Google Scholar 

  • Verratti V, Falone S, Doria C, Pietrangelo T, Di Giulio C (2015) Kilimanjaro Abruzzo expedition: effects of high–altitude trekking on anthropometric, cardiovascular and blood biochemical parameters. Sport Sci Health 11(3):271–278

    PubMed  PubMed Central  Google Scholar 

  • Verratti V, Ietta F, Paulesu L, Romagnoli R, Ceccarelli I, Doria C, Fanò Illic G, Di Giulio C, Aloisi AM (2017) Physiological effects of high–altitude trekking on gonadal, thyroid hormones and macrophage migration inhibitory factor (MIF) responses in young lowlander women. Phys Rep 5(20):e13400. https://doi.org/10.14814/phy2.13400

    Article  CAS  Google Scholar 

  • West JB (2012) High–altitude medicine. Am J Respir Crit Care Med 186(12):1229–1237

    PubMed  Google Scholar 

  • Westerterp-Plantenga MS, Westerterp KR, Rubbens M, Verwegen CR, Richalet JP, Gardette B (1999) Appetite at “high altitude” [Operation Everest III (Comex-’97)]: a simulated ascent of Mount Everest. J Appl Physiol 87:391–399

    CAS  PubMed  Google Scholar 

  • Woo J (2018) Nutritional interventions in sarcopenia: where do we stand? Curr Opin Clin Nutr Metab Care 21(1):19–23

    PubMed  Google Scholar 

  • Yanai H (2015) Nutrition for sarcopenia. J Clin Med Res 7(12):926–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang MH (2012) Rhabdomyolosis and its pathogenesis. World J Emerg Med 3(1):11–15

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Our thanks go to all the porters and Sherpas, whose role was crucial to the success of this scientific project.

Competing Interests

The authors declare no competing interests in relation to this article.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the Bioethics Committee of “G. D’Annunzio” University of Chieti-Pescara in Italy.

Subjects’ Consent

Written informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittore Verratti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bosco, G. et al. (2019). Body Composition and Endocrine Adaptations to High-Altitude Trekking in the Himalayas. In: Pokorski, M. (eds) Advancements and Innovations in Health Sciences. Advances in Experimental Medicine and Biology(), vol 1211. Springer, Cham. https://doi.org/10.1007/5584_2019_414

Download citation

Publish with us

Policies and ethics