Skip to main content

Decellularization Concept in Regenerative Medicine

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 6

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1212))

Abstract

Decellularized organs and tissues are effectively utilized in a diversity of regenerative medicine purposes, and the decellularization approaches employed differ as broadly as the tissues/organs of concern. Biological scaffold substances formed by extracellular matrix (ECM) are mostly produced with methods that include decellularization of tissues. Conservation of the multifaceted arrangement and three-dimensional (3D) construction of the ECM is very wanted but it is documented that almost every approach of decellularization cause disturbance of the organization and possible forfeiture of surface organization and conformation. The competence of cell elimination from a tissue is reliant on the basis of the tissue and the precise physical, chemical, and enzymatic approaches that are utilized. Here, the most frequently applied and newly developed decellularization techniques are designated, organ engineering with decellularized scaffolds for different organs, recent knowledge in the field are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three dimensional

ADSCs:

Adipose-derived stem cells

CC10:

Secretoglobin Family 1A

CCSP:

Clara cell secretory protein

CD 31:

Cluster of differentiation 31

CK18:

Keratin 18

ECM:

Extracellular matrix

ESCs:

Embryonic stem cells

FOXJ1:

Forkhead box protein J1

GAG:

Glycosaminoglycans

Mg:

Miligram

MIN-6:

Mouse insulinoma 6

Ng:

Nano gram

Nkx2.1:

NK2 Homeobox 1

PBS:

Phosphate buffered saline

PDGFR:

Platelet derived growth factor receptor

ProSPC:

Alveolar type 2 cell marker

SDS:

Sodium dodecyl sulfate

SPC:

Pulmonary-associated surfactant protein C

TNF:

Tumor necrosis factor

TTF-1:

Transcription termination factor 1

References

  • Agmon G, Christman KL (2016) Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr Opin Solid State Mater Sci 20(4):193–201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53

    CAS  PubMed  Google Scholar 

  • Balestrini JL et al (2015) Production of decellularized porcine lung scaffolds for use in tissue engineering. Integr Biol 7(12):1598–1610

    CAS  Google Scholar 

  • Bourgine PE et al (2013) Tissue decellularization by activation of programmed cell death. Biomaterials 34(26):6099–6108

    CAS  PubMed  Google Scholar 

  • Clevers H (2015) What is an adult stem cell? Science 350(6266):1319–1320

    CAS  PubMed  Google Scholar 

  • Conrad C et al (2010) Bio-engineered endocrine pancreas based on decellularized pancreatic matrix and mesenchymal stem cell/islet cell coculture. J Am Coll Surg 211(3):S62–S62

    Google Scholar 

  • Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duisit J et al (2018) Perfusion-decellularization of human ear grafts enables ECM-based scaffolds for auricular vascularized composite tissue engineering. Acta Biomater 73:339–354

    CAS  PubMed  Google Scholar 

  • Frohlich M et al (2010) Bone grafts engineered from human adipose-derived stem cells in perfusion bioreactor culture. Tissue Eng A 16(1):179–189

    Google Scholar 

  • Garreta E et al (2017) Tissue engineering by decellularization and 3D bioprinting. Mater Today 20(4):166–178

    CAS  Google Scholar 

  • Gilpin A, Yang Y (2017) Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int 2017:1–13

    Google Scholar 

  • Gray FL et al (2012) Prenatal tracheal reconstruction with a hybrid amniotic mesenchymal stem cells-engineered construct derived from decellularized airway. J Pediatr Surg 47(6):1072–1079

    PubMed  Google Scholar 

  • Hassanein W et al (2017) Recellularization via the bile duct supports functional allogenic and xenogenic cell growth on a decellularized rat liver scaffold. Organogenesis 13(1):16–27

    CAS  PubMed  Google Scholar 

  • Heidenreich PA et al (2011) Forecasting the future of cardiovascular disease in the United States a policy statement from the American Heart Association. Circulation 123(8):933–944

    PubMed  Google Scholar 

  • Hopkins RA et al (2013) Bioengineered human and allogeneic pulmonary valve conduits chronically implanted orthotopically in baboons: hemodynamic performance and immunologic consequences. J Thorac Cardiovasc Surg 145(4):1098

    PubMed  Google Scholar 

  • Hoshiba T et al (2010) Decellularized matrices for tissue engineering. Expert Opin Biol Ther 10(12):1717–1728

    CAS  PubMed  Google Scholar 

  • Hung SH et al (2016) Preliminary experiences in trachea scaffold tissue engineering with segmental organ decellularization. Laryngoscope 126(11):2520–2527

    CAS  PubMed  Google Scholar 

  • Jansen J et al (2014) Biotechnological challenges of bioartificial kidney engineering. Biotechnol Adv 32(7):1317–1327

    CAS  PubMed  Google Scholar 

  • Kang HJ et al (2014) In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage ECM scaffolds. J Tissue Eng Regen Med 8(6):442–453

    CAS  PubMed  Google Scholar 

  • Khan AA et al (2014) Repopulation of decellularized whole organ scaffold using stem cells: an emerging technology for the development of neo-organ. J Artif Organs 17(4):291–300

    CAS  PubMed  Google Scholar 

  • Laronda MM et al (2015) Initiation of puberty in mice following decellularized ovary transplant. Biomaterials 50:20–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu TY et al (2013) Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun 4:2307

    PubMed  Google Scholar 

  • Mao AS, Mooney DJ (2015) Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci U S A 112(47):14452–14459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng FW et al (2017) Whole liver engineering: a promising approach to develop functional liver surrogates. Liver Int 37(12):1759–1772

    PubMed  Google Scholar 

  • Ng SLJ et al (2011) Lineage restricted progenitors for the repopulation of decellularized heart. Biomaterials 32(30):7571–7580

    CAS  PubMed  Google Scholar 

  • Ott HC et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221

    CAS  PubMed  Google Scholar 

  • Papadimitropoulos A et al (2015) Engineered decellularized matrices to instruct bone regeneration processes. Bone 70:66–72

    CAS  PubMed  Google Scholar 

  • Parmaksiz M et al (2016) Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed Mater 11(2):022003

    PubMed  Google Scholar 

  • Rana D et al (2017) Development of decellularized scaffolds for stem cell-driven tissue engineering. J Tissue Eng Regen Med 11(4):942–965

    CAS  PubMed  Google Scholar 

  • Rijal G (2017) The decellularized extracellular matrix in regenerative medicine. Regen Med 12(5):475–477

    CAS  PubMed  Google Scholar 

  • Salvatori M et al (2014) Extracellular matrix scaffold technology for bioartificial pancreas engineering: state of the art and future challenges. J Diabetes Sci Technol 8(1):159–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seetapun D, Ross JJ (2017) Eliminating the organ transplant waiting list: the future with perfusion decellularized organs. Surgery 161(6):1474–1478

    PubMed  Google Scholar 

  • Song JJ, Ott HC (2011) Organ engineering based on decellularized matrix scaffolds. Trends Mol Med 17(8):424–432

    CAS  PubMed  Google Scholar 

  • Tapias LF, Ott HC (2014) Decellularized scaffolds as a platform for bioengineered organs. Curr Opin Organ Transplant 19(2):145–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor DA et al (2018) Decellularized matrices in regenerative medicine. Acta Biomater 74:74–89

    CAS  PubMed  Google Scholar 

  • Uygun BE et al (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16(7):814–U120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner DE et al (2013) Can stem cells be used to generate new lungs? Ex vivo lung bioengineering with decellularized whole lung scaffolds. Respirology 18(6):895–911

    PubMed  Google Scholar 

  • Wang B et al (2010) Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res A 94a(4):1100–1110

    CAS  Google Scholar 

  • Wu D et al (2015) 3D culture of min-6 cells on decellularized pancreatic scaffold: in vitro and in vivo study. Biomed Res Int 2015:432645

    PubMed  PubMed Central  Google Scholar 

  • Yu YL et al (2016) Decellularized scaffolds in regenerative medicine. Oncotarget 7(36):58671–58683

    PubMed  PubMed Central  Google Scholar 

  • Zang MQ et al (2013) Decellularized tracheal matrix scaffold for tracheal tissue engineering: in vivo host response. Plast Reconstr Surg 132(4):549e–559e

    CAS  PubMed  Google Scholar 

  • Zia S et al (2016) Hearts beating through decellularized scaffolds: whole-organ engineering for cardiac regeneration and transplantation. Crit Rev Biotechnol 36(4):705–715

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özge Sezin Somuncu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Somuncu, Ö.S. (2019). Decellularization Concept in Regenerative Medicine. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 6. Advances in Experimental Medicine and Biology(), vol 1212. Springer, Cham. https://doi.org/10.1007/5584_2019_338

Download citation

Publish with us

Policies and ethics