Skip to main content

Molecular Mechanisms Responsible for Anti-inflammatory and Immunosuppressive Effects of Mesenchymal Stem Cell-Derived Factors

  • Conference paper
  • First Online:
Tissue Engineering and Regenerative Medicine

Abstract

Mesenchymal stem cells (MSCs) are self-renewable cells capable for multilineage differentiation and immunomodulation. MSCs are able to differentiate into all cell types of mesodermal origin and, due to their plasticity, may generate cells of neuroectodermal or endodermal origin in vitro. In addition to the enormous differentiation potential, MSCs efficiently modulate innate and adaptive immune response and, accordingly, were used in large number of experimental and clinical trials as new therapeutic agents in regenerative medicine. Although MSC-based therapy was efficient in the treatment of many inflammatory and degenerative diseases, unwanted differentiation of engrafted MSCs represents important safety concern. MSC-based beneficial effects are mostly relied on the effects of MSC-derived immunomodulatory, pro-angiogenic, and trophic factors which attenuate detrimental immune response and inflammation, reduce ischemic injuries, and promote tissue repair and regeneration. Accordingly, MSC-conditioned medium (MSC-CM), which contains MSC-derived factors, has the potential to serve as a cell-free, safe therapeutic agent for the treatment of inflammatory diseases. Herein, we summarized current knowledge regarding identification, isolation, ontogeny, and functional characteristics of MSCs and described molecular mechanisms responsible for MSC-CM-mediated anti-inflammatory and immunosuppressive effects in the therapy of inflammatory lung, liver, and kidney diseases and ischemic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(EMT):

Epithelial-to-mesenchymal transition

AF-MSCs:

Amniotic fluid-derived MSCs

AT-MSCs:

Adipose tissue-derived MSCs

ATP:

Adenosine triphosphate

BDNF:

Brain-derived neurotrophic factor

BM-MSCs:

Bone marrow-derived MSCs

BMP:

Bone morphogenetic protein

BPD:

Bronchopulmonary dysplasia

C/EBPα:

CCAAT/enhancer-binding protein alpha

CCL:

CC chemokine ligand

c-MYC:

Avian myelocytomatosis virus oncogene cellular homolog

CTLs:

Cytotoxic T lymphocytes

DCs:

Dendritic cells

ERK:

Extracellular signal-regulated kinases

ESCs:

Embryonic stem cells

FABP4:

Fatty acid-binding protein 4

FAS:

Fatty acid synthase

FasL:

First apoptosis signal ligand

GLUT4:

Glucose transporter type 4

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

hMSCs:

Human MSCs

HO-1:

Heme oxygenase-1

IDO:

Indoleamine 2,3-dioxygenase

IFN-β:

Interferon beta

IFN-γ:

Interferon gamma

Ig:

Immunoglobulin

IGF-1:

Insulin-like growth factor 1

IL:

Interleukin

IL-1Ra:

Interleukin 1 receptor antagonist

iNOS:

Inducible nitric oxide synthase

JAK:

Janus kinase

JNK:

c-Jun N-terminal kinase

KGF:

Keratinocyte growth factor

LPL:

Lipoprotein lipase

LPS:

Lipopolysaccharides

MAPK:

Mitogen-activated protein kinase

M-CSF:

Monocyte colony-stimulating factor

MHC:

Major histocompatibility complex

MIF:

Macrophage migration inhibitory factor

MSC-CM:

MSC-conditioned medium

MSCs:

Mesenchymal stem cells

mMSCs:

Murine MSCs

MZ:

Marginal zone

NECs:

Neuroepithelial cells

NK:

Natural killer

NKT:

Natural killer T cells

NKTregs:

Regulatory NKT cells

PAX:

Paired box

PGE2:

Prostaglandin E2

PL-MSCs:

Placenta-derived MSCs

PPAR-γ:

Peroxisome proliferator-activated receptor-gamma

RUNX2:

Runt-related transcription factor 2

SCF:

Stem cell factor

Sox9:

Sex-determining region Y-box 9

SSEA:

Stage-specific embryonic antigen

STAT:

Signal transducer and activator of transcription

TGF-β:

Transforming growth factor-beta

TIMP-1:

Tissue inhibitor of metalloproteinase-1

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor alpha

TRA-1–60:

Tumor resistance antigen 1–60

TRAIL:

TNF-related apoptosis-inducing ligand

Tregs:

T regulatory cells

TSG-6:

TNF-α-stimulated gene/protein 6

UC-MSCs:

Umbilical cord-derived MSCs

References

  • Abreu, S. C., Antunes, M. A., Xisto, D. G., Cruz, F. F., Branco, V. C., Bandeira, E., Zola Kitoko, J., de Araújo, A. F., Dellatorre-Texeira, L., Olsen, P. C., Weiss, D. J., Diaz, B. L., Morales, M. M., & Rocco, P. R. M. (2017). Bone marrow, adipose, and lung tissue-derived murine mesenchymal stromal cells release different mediators and differentially affect airway and lung parenchyma in experimental asthma. Stem Cells Translational Medicine, 6, 1557–1567.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105, 1815–1822.

    CAS  PubMed  Google Scholar 

  • Akiyama, H., Chaboissier, M. C., Martin, J. F., Schedl, A., & de Crombrugghe, B. (2002). The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes & Development, 16, 2813–2828.

    CAS  Google Scholar 

  • Arsenijevic, A., Harrell, C. R., Fellabaum, C., & Volarevic, V. (2017). Mesenchymal stem cells as new therapeutic agents for the treatment of primary biliary cholangitis. Analytical Cellular Pathology (Amsterdam), 2017, 7492836.

    Google Scholar 

  • Aslam, M., Baveja, R., Liang, O. D., Fernandez-Gonzalez, A., Lee, C., Mitsialis, S. A., & Kourembanas, S. (2009). Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. American Journal of Respiratory and Critical Care Medicine, 180, 1122–1130.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aubin, J. E., LiuF, M. L., & Gupta, A. K. (1995). Osteoblast and chondroblast differentiation. Bone, 17, 77–83.

    Google Scholar 

  • Baksh, D., Yao, R., & Tuan, R. S. (2007). Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells, 25, 1384–1392.

    CAS  PubMed  Google Scholar 

  • Battula, V. L., Evans, K. W., Hollier, B. G., Shi, Y., Marini, F. C., Ayyanan, A., Wang, R. Y., Brisken, C., Guerra, R., Andreeff, M., & Mani, S. A. (2010). Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells, 28, 1435–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardo, M. E., & Fibbe, W. E. (2013). Mesenchymal stromal cells: Sensors and switchers of inflammation. Cell Stem Cell, 13, 392–402.

    CAS  PubMed  Google Scholar 

  • Bethel, M., Chitteti, B. R., Srour, E. F., & Kacena, M. A. (2013). The changing balance between osteoblastogenesis and adipogenesis in aging and its impact on hematopoiesis. Current Osteoporosis Reports, 11, 99–106.

    PubMed  PubMed Central  Google Scholar 

  • Beyth, S., Borovsky, Z., Mevorach, D., Liebergall, M., Gazit, Z., Aslan, H., Galun, E., & Rachmilewitz, J. (2005). Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 105, 2214–2219.

    CAS  PubMed  Google Scholar 

  • Bi, B., Schmitt, R., Israilova, M., Nishio, H., & Cantley, L. G. (2007). Stromal cells protect against acute tubular injury via an endocrine effect. Journal of the American Society of Nephrology, 18, 2486–2496.

    PubMed  Google Scholar 

  • Bianco, P. (2014). “Mesenchymal” stem cells. Annual Review of Cell and Developmental Biology, 30, 677–704.

    CAS  PubMed  Google Scholar 

  • Bitsika, V., Roubelakis, M. G., Zagoura, D., Trohatou, O., Makridakis, M., Pappa, K. I., Marini, F. C., Vlahou, A., & Anagnou, N. P. (2012). Human amniotic fluid-derived mesenchymal stem cells as therapeutic vehicles: A novel approach for the treatment of bladder cancer. Stem Cells and Development, 21, 1097–1111.

    CAS  PubMed  Google Scholar 

  • Bright, J. J., Kerr, L. D., & Sriram, S. (1997). TGF-beta inhibits IL-2-induced tyrosine phosphorylation and activation of Jak-1 and Stat 5 in T lymphocytes. Journal of Immunology, 159, 175–183.

    CAS  Google Scholar 

  • Cassatella, M. A., Mosna, F., Micheletti, A., Lisi, V., Tamassia, N., Cont, C., Calzetti, F., Pelletier, M., Pizzolo, G., & Krampera, M. (2011). Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells, 29, 1001–1011.

    CAS  PubMed  Google Scholar 

  • Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25, 2739–2749.

    CAS  PubMed  Google Scholar 

  • Chen, W. C., Park, T. S., Murray, I. R., Zimmerlin, L., Lazzari, L., Huard, J., & Péault, B. (2013). Cellular kinetics of perivascular MSC precursors. Stem Cells International, 2013, 983059.

    PubMed  PubMed Central  Google Scholar 

  • Chen, H., Ghori-Javed, F. Y., Rashid, H., Adhami, M. D., Serra, R., Gutierrez, S. E., & Javed, A. (2014). Runx2 regulates endochondral ossification through control of chondrocyte proliferation and differentiation. Journal of Bone and Mineral Research, 29, 2653–2665.

    CAS  PubMed  Google Scholar 

  • Cho, J. S., Lee, J., Jeong, D. U., Kim, H. W., Chang, W. S., Moon, J., & Chang, J. W. (2018). Effect of placenta-derived mesenchymal stem cells in a dementia rat model via microglial mediation: A comparison between stem cell transplant methods. Yonsei Medical Journal, 59, 406–415.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, H., Lee, R. H., Bazhanov, N., Oh, J. Y., & Prockop, D. J. (2011). Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages. Blood, 118, 330–338.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti, F., Risso, M., Gualandi, F., Mancardi, G. L., Pistoia, V., & Uccelli, A. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107, 367–372.

    CAS  PubMed  Google Scholar 

  • Crisan, M., Yap, S., Casteilla, L., Chen, C. W., Corselli, M., Park, T. S., Andriolo, G., Sun, B., Zheng, B., Zhang, L., Norotte, C., Teng, P. N., Traas, J., Schugar, R., Deasy, B. M., Badylak, S., Buhring, H. J., Giacobino, J. P., Lazzari, L., Huard, J., & Péault, B. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.

    CAS  PubMed  Google Scholar 

  • Cruz, F. F. B. Z., Goodwin, M., Sokocevic, D., Wagner, D. E., Coffey, A., Antunes, M., Robinson, K. L., Mitsials, S. A., Kourembanas, S., Thane, K., Hoffman, A. M., McKenna, D. H., Rocco, P. R. M., & Weiss, D. J. (2015). Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Translational Medicine, 4, 1302–1316.

    CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva Meirelles, L., Caplan, A. I., & Nardi, N. B. (2008). In search of the in vivo identity of mesenchymal stem cells. Stem Cells, 26, 2287–2299.

    PubMed  Google Scholar 

  • Danišovič, L., Varga, I., & Polák, S. (2012). Growth factors and chondrogenic differentiation of mesenchymal stem cells. Tissue and Cell, 44, 69–73.

    PubMed  Google Scholar 

  • Day, T. F., Guo, X., Garrett-Beal, L., & Yang, Y. (2005). Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Developmental Cell, 8, 739–750.

    CAS  PubMed  Google Scholar 

  • Dazzi, F., & Krampera, M. (2011). Mesenchymal stem cells and autoimmune diseases. Best Practice & Research. Clinical Haematology, 24, 49–57.

    CAS  Google Scholar 

  • De Coppi, P., Bartsch, G., Jr., Siddiqui, M. M., Xu, T., Santos, C. C., Perin, L., Mostoslavsky, G., Serre, A. C., Snyder, E. Y., Yoo, J. J., Furth, M. E., Soker, S., & Atala, A. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 25, 100–106.

    PubMed  Google Scholar 

  • Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. J., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8, 315–317.

    CAS  PubMed  Google Scholar 

  • Dorman, L. J., Tucci, M., & Benghuzzi, H. (2012). In vitro effects of bmp-2, bmp-, and bmp-13 on proliferation and differentiation of mouse mesenchymal stem cells. Biomedical Sciences Instrumentation, 48, 81–87.

    PubMed  Google Scholar 

  • Du, Y. M., Zhuansun, Y. X., Chen, R., Lin, L., Lin, Y., & Li, J. G. (2018). Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Experimental Cell Research, 363, 114–120.

    CAS  PubMed  Google Scholar 

  • Duffy, M. M., Pindjakova, J., Hanley, S. A., McCarthy, C., Weidhofer, G. A., Sweeney, E. M., English, K., Shaw, G., Murphy, J. M., Barry, F. P., Mahon, B. P., Belton, O., Ceredig, R., & Griffin, M. D. (2011). Mesenchymal stem cell inhibition of T-helper 17 cell- differentiation is triggered by cell-cell contact and mediated by prostaglandin E2 via the EP4 receptor. European Journal of Immunology, 41, 2840–2851.

    CAS  PubMed  Google Scholar 

  • Egashira, Y., Sugitani, S., Suzuki, Y., Mishiro, K., Tsuruma, K., Shimazawa, M., Yoshimura, S., Iwama, T., & Hara, H. (2012). The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model. Brain Research, 1461, 87–95.

    CAS  PubMed  Google Scholar 

  • Eggenhofer, E., & Hoogduijn, M. J. (2012). Mesenchymal stem cell-educated macrophages. Transplant Research, 1, 12.

    CAS  Google Scholar 

  • Faezi, M., Nasseri Maleki, S., Aboutaleb, N., & Nikougoftar, M. (2018). The membrane mesenchymal stem cell derived conditioned medium exerts neuroprotection against focal cerebral ischemia by targeting apoptosis. Journal of Chemical Neuroanatomy, 94, 21–31.

    CAS  PubMed  Google Scholar 

  • Fitzsimmons, R. E. B., Mazurek, M. S., Soos, A., & Simmons, C. A. (2018). Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells International, 2018, 8031718.

    PubMed  PubMed Central  Google Scholar 

  • François, M., Romieu-Mourez, R., Li, M., & Galipeau, J. (2012). Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Molecular Therapy, 20, 187–195.

    PubMed  Google Scholar 

  • Frith, J., & Genever, P. (2008). Transcriptional control of mesenchymal stem cell differentiation. Transfusion Medicine and Hemotherapy, 35, 216–227.

    PubMed  PubMed Central  Google Scholar 

  • Gaur, T., Lengner, C. J., Hovhannisyan, H., Bhat, R. A., Bodine, P. V., Komm, B. S., Javed, A., van Wijnen, A. J., Stein, J. L., Stein, G. S., & Lian, J. B. (2005). Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. The Journal of Biological Chemistry, 280, 33132–33140.

    CAS  PubMed  Google Scholar 

  • Gazdic, M., Volarevic, V., Arsenijevic, N., & Stojkovic, M. (2015). Mesenchymal stem cells: A friend or foe in immune-mediated diseases. Stem Cell Reviews, 11, 280–287.

    CAS  Google Scholar 

  • Gazdic, M., Arsenijevic, A., Markovic, B. S., Volarevic, A., Dimova, I., Djonov, V., Arsenijevic, N., Stojkovic, M., & Volarevic, V. (2017). Mesenchymal stem cell-dependent modulation of liver diseases. International Journal of Biological Sciences, 13, 1109–1117.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gazdic, M., Markovic, B. S., Arsenijevic, A., Jovicic, N., Acovic, A., Harrell, C. R., Fellabaum, C., Djonov, V., Arsenijevic, N., Lukic, M. L., & Volarevic, V. (2018a). Crosstalk between mesenchymal stem cells and T regulatory cells is crucially important for the attenuation of acute liver injury. Liver Transplantation, 24, 687–702.

    PubMed  Google Scholar 

  • Gazdic, M., Simovic Markovic, B., Vucicevic, L., Nikolic, T., Djonov, V., Arsenijevic, N., Trajkovic, V., Lukic, M. L., & Volarevic, V. (2018b). Mesenchymal stem cells protect from acute liver injury by attenuating hepatotoxicity of liver natural killer T cells in an inducible nitric oxide synthase- and indoleamine 2,3-dioxygenase-dependent manner. Journal of Tissue Engineering and Regenerative Medicine, 12, e1173–e1185.

    CAS  PubMed  Google Scholar 

  • Ghannam, S., Bouffi, C., Djouad, F., Jorgensen, C., & Noël, D. (2010a). Immunosuppression by mesenchymal stem cells: Mechanisms and clinical applications. Stem Cell Research & Therapy, 1, 2.

    Google Scholar 

  • Ghannam, S., Pène, J., Moquet-Torcy, G., Jorgensen, C., & Yssel, H. (2010b). Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. Journal of Immunology, 185, 302–312.

    CAS  Google Scholar 

  • Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W., & Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105, 2821–2827.

    CAS  PubMed  Google Scholar 

  • Greco, S. J., Liu, K., & Rameshwar, P. (2007). Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells, 25, 3143–3154.

    CAS  PubMed  Google Scholar 

  • Griffin, M., Elliman, S. J., Cahill, E., English, K., Ceredig, R., & Ritter, T. (2013). Concise review: Adult mesenchymal stromal cell therapy for inflammatory diseases: How well are we joining the dots? Stem Cells, 31, 2033–2041.

    CAS  PubMed  Google Scholar 

  • Harrell, C. R., Simovic Markovic, B., Fellabaum, C., Arsenijevic, A., Djonov, V., & Volarevic, V. (2018a). Molecular mechanisms underlying therapeutic potential of pericytes. Journal of Biomedical Science, 25, 21.

    PubMed  PubMed Central  Google Scholar 

  • Harrell, C. R., Fellabaum, C., Simovic Markovic, B., Arsenijevic, A., & Volarevic, V. (2018b). Therapeutic potential of “Exosomes derived multiple allogeneic proteins paracrine signaling: Exosomes d-MAPPS” is based on the effects of exosomes, immunosuppressive and trophic factors. Serbian Journal of Experimental and Clinical Research. https://doi.org/10.2478/sjecr-2018-0032.

  • Hass, R., Kasper, C., Böhm, S., & Jacobs, R. (2011). Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling: CCS, 9, 12.

    CAS  PubMed Central  Google Scholar 

  • Hsieh, J. Y., Fu, Y. S., Chang, S. J., Tsuang, Y. H., & Wang, H. W. (2010). Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton’s jelly of umbilical cord. Stem Cells and Development, 19, 1895–1910.

    CAS  PubMed  Google Scholar 

  • Huang, B., Cheng, X., Wang, H., Huang, W., la Ga Hu, Z., Wang, D., Zhang, K., Zhang, H., Xue, Z., Da, Y., Zhang, N., Hu, Y., Yao, Z., Qiao, L., Gao, F., & Zhang, R. (2016). Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. Journal of Translational Medicine, 14, 45.

    PubMed  PubMed Central  Google Scholar 

  • Ikeda, T., Kamekura, S., Mabuchi, A., Kou, I., Seki, S., Takato, T., Nakamura, K., Kawaguchi, H., Ikegawa, S., & Chung, U. I. (2004). The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis and Rheumatism, 50, 3561–3573.

    CAS  PubMed  Google Scholar 

  • Im, G. I., & Quan, Z. (2010). The effects of Wnt inhibitors on the chondrogenesis of human mesenchymal stem cells. Tissue Engineering. Part A, 16, 2405–2413.

    CAS  PubMed  Google Scholar 

  • Ionescu, L., Byrne, R. N., van Haaften, T., Vadivel, A., Alphonse, R. S., Rey-Parra, G. J., Weissmann, G., Hall, A., Eaton, F., & Thébaud, B. (2012a). Stem cell conditioned medium improves acute lung injury in mice: In vivo evidence for stem cell paracrine action. American Journal of Physiology. Lung Cellular and Molecular Physiology, 303, L967–L977.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ionescu, L. I., Alphonse, R. S., Arizmendi, N., Morgan, B., Abel, M., Eaton, F., Duszyk, M., Vliagoftis, H., Aprahamian, T. R., Walsh, K., & Thébaud, B. (2012b). Airway delivery of soluble factors from plastic-adherent bone marrow cells prevents murine asthma. American Journal of Respiratory Cell and Molecular Biology, 46, 207–216.

    CAS  PubMed  PubMed Central  Google Scholar 

  • James, A. W. (2013). Review of signaling pathways governing MSC osteogenic and Adipogenic differentiation. Scientifica (Cairo), 2013, 684736.

    Google Scholar 

  • Jiang, X. X., Zhang, Y., Liu, B., Zhang, S. X., Wu, Y., Yu, X. D., & Mao, N. (2005). Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 105, 4120–4126.

    CAS  PubMed  Google Scholar 

  • Jiang, H., Zhang, Y., Tian, K., Wang, B., & Han, S. (2017). Amelioration of experimental autoimmune encephalomyelitis through transplantation of placental derived mesenchymal stem cells. Scientific Reports, 7, 41837.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, R. H., Wu, C. J., Xu, X. Q., Lu, S. S., Zu, Q. Q., Zhao, L. B., Wang, J., Liu, S., & Shi, H. B. (2018). Hypoxic conditioned medium derived from bone marrow mesenchymal stromal cells protects against ischemic stroke in rats. Journal of Cellular Physiology, 234(2), 1354–1368. https://doi.org/10.1002/jcp.26931.

    Article  CAS  PubMed  Google Scholar 

  • Joerger-Messerli, M. S., Marx, C., Oppliger, B., Mueller, M., Surbek, D. V., & Schoeberlein, A. (2016). Mesenchymal stem cells from Wharton’s jelly and amniotic fluid. Best Practice & Research. Clinical Obstetrics & Gynaecology, 31, 30–44.

    Google Scholar 

  • Kalinski, P. (2012). Regulation of immune responses by prostaglandin E2. Journal of Immunology, 188, 21–28.

    CAS  Google Scholar 

  • Kang, Q., Song, W. X., Luo, Q., Tang, N., Luo, J., Luo, X., Chen, J., Bi, Y., He, B. C., Park, J. K., Jiang, W., Tang, Y., Huang, J., Su, Y., Zhu, G. H., He, Y., Yin, H., Hu, Z., Wang, Y., Chen, L., Zuo, G. W., Pan, X., Shen, J., Vokes, T., Reid, R. R., Haydon, R. C., Luu, H. H., & He, T. C. (2009). A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells and Development, 18, 545–559.

    CAS  PubMed  Google Scholar 

  • Kil, K., Choi, M. Y., Kong, J. S., Kim, W. J., & Park, K. H. (2016). Regenerative efficacy of mesenchymal stromal cells from human placenta in sensorineural hearing loss. International Journal of Pediatric Otorhinolaryngology, 91, 72–81.

    PubMed  Google Scholar 

  • Kim, J., Lee, Y., Kim, H., Hwang, K. J., Kwon, H. C., Kim, S. K., Cho, D. J., Kang, S. G., & You, J. (2007). Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Proliferation, 40, 75–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klemmt, P. A., Vafaizadeh, V., & Groner, B. (2011). The potential of amniotic fluid stem cells for cellular therapy and tissue engineering. Expert Opinion on Biological Therapy, 11, 1297–1314.

    CAS  PubMed  Google Scholar 

  • Lai, C. F., & Cheng, S. L. (2002). Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells. The Journal of Biological Chemistry, 277, 15514–15522.

    CAS  PubMed  Google Scholar 

  • Lee, J. W., Fang, X., Gupta, N., Serikov, V., & Matthay, M. A. (2009). Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proceedings of the National Academy of Sciences of the United States of America, 106, 16357–16362.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J., Abdeen, A. A., Tang, X., Saif, T. A., & Kilian, K. A. (2016). Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from adipose tissue and bone marrow. Acta Biomaterialia, 42, 46–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., Ren, G., Huang, Y., Su, J., Han, Y., Li, J., Chen, X., Cao, K., Chen, Q., Shou, P., Zhang, L., Yuan, Z. R., Roberts, A. I., Shi, S., Le, A. D., & Shi, Y. (2012). Mesenchymal stem cells: A double-edged sword in regulating immune responses. Cell Death and Differentiation, 19, 1505–1513.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M., Sun, X., Kuang, X., Liao, Y., Li, H., & Luo, D. (2014). Mesenchymal stem cells suppress CD8(+) T cell-mediated activation by suppressing natural killer group 2, member D protein receptor expression and secretion of prostaglandin E2, indoleamine 2, 3- dioxygenase and transforming growth factor-β. Clinical and Experimental Immunology, 178, 516–524.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, B., Ding, F., Hu, D., Zhou, Y., Long, C., Shen, L., Zhang, Y., Zhang, D., & Wei, G. (2018). Human umbilical cord mesenchymal stem cell conditioned medium attenuates renal fibrosis by reducing inflammation and epithelial-to-mesenchymal transition via the TLR4/NF-κB signaling pathway in vivo and in vitro. Stem Cell Research & Therapy, 9, 7.

    Google Scholar 

  • Lü, L. L., Song, Y. P., Wei, X. D., Fang, B. J., Zhang, Y. L., & Li, Y. F. (2008). Comparative characterization of mesenchymal stem cells from human umbilical cord tissue and bone marrow. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 16, 140–146.

    PubMed  Google Scholar 

  • Majore, I., Moretti, P., Stahl, F., Hass, R., & Kasper, C. (2011). Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Reviews, 7, 17–31.

    Google Scholar 

  • Markovic, B. S., Kanjevac, T., Harrell, C. R., Gazdic, M., Fellabaum, C., Arsenijevic, N., & Volarevic, V. (2018). Molecular and cellular mechanisms involved in mesenchymal stem cell-based therapy of inflammatory bowel diseases. Stem Cell Reviews, 14, 153–165.

    CAS  Google Scholar 

  • Melief, S., Geutskens, S., Fibbe, W., & Roelofs, H. (2013a). Multipotent stromal cells skew monocytes towards an anti-inflammatory interleukin-10-producing phenotype by production of interleukin-6. Haematologica, 98, 888–895.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melief, S. M., Schrama, E., Brugman, M. H., Tiemessen, M. M., Hoogduijn, M. J., Fibbe, W. E., & Roelofs, H. (2013b). Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells, 31, 1980–1991.

    CAS  PubMed  Google Scholar 

  • Mennan, C., Wright, K., Bhattacharjee, A., Balain, B., Richardson, J., & Roberts, S. (2013). Isolation and characterisation of mesenchymal stem cells from different regions of the human umbilical cord. BioMed Research International, 2013, 916136.

    PubMed  PubMed Central  Google Scholar 

  • Milosavljevic, N., Gazdic, M., Simovic Markovic, B., Arsenijevic, A., Nurkovic, J., Dolicanin, Z., Djonov, V., Lukic, M. L., & Volarevic, V. (2017). Mesenchymal stem cells attenuate acute liver injury by altering ratio between interleukin 17 producing and regulatory natural killer T cells. Liver Transplantation, 23, 1040–1050.

    PubMed  Google Scholar 

  • Milosavljevic, N., Gazdic, M., Simovic Markovic, B., Arsenijevic, A., Nurkovic, J., Dolicanin, Z., Jovicic, N., Jeftic, I., Djonov, V., Arsenijevic, N., Lukic, M. L., & Volarevic, V. (2018). Mesenchymal stem cells attenuate liver fibrosis by suppressing Th17 cells – An experimental study. Transplant International, 31, 102–115.

    CAS  PubMed  Google Scholar 

  • Monsel, A., Zhu, Y. G., Gudapati, V., Lim, H., & Lee, J. W. (2016). Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opinion on Biological Therapy, 16, 859–871.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, M. C., Van De Walle, A., Chang, J., Juran, C., & McFetridge, P. S. (2017). Human perinatal-derived biomaterials. Advanced Healthcare Materials, 6(18), 1700345.

    CAS  Google Scholar 

  • Moraghebi, R., Kirkeby, A., Chaves, P., Rönn, R. E., Sitnicka, E., Parmar, M., Larsson, M., Herbst, A., & Woods, N. B. (2017). Term amniotic fluid: An unexploited reserve of mesenchymal stromal cells for reprogramming and potential cell therapy applications. Stem Cell Research & Therapy, 8, 190.

    Google Scholar 

  • Moschidou, D., Mukherjee, S., Blundell, M. P., Jones, G. N., Atala, A. J., Thrasher, A. J., Fisk, N. M., De Coppi, P., & Guillot, P. V. (2013). Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with valproic acid acquire pluripotent characteristics. Stem Cells and Development, 22, 444–458.

    CAS  PubMed  Google Scholar 

  • Mu, Y., Gudey, S. K., & Landström, M. (2012). Non-Smad signaling pathways. Cell and Tissue Research, 347, 11–20.

    CAS  PubMed  Google Scholar 

  • Mueller, S. M., & Glowacki, J. (2001). Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. Journal of Cellular Biochemistry, 82, 583–590.

    CAS  PubMed  Google Scholar 

  • Muruganandan, S., Roman, A. A., & Sinal, C. J. (2009). Adipocyte differentiation of bone marrow-derived mesenchymal stem cells: Cross talk with the osteoblastogenic program. Cellular and Molecular Life Sciences, 66, 236–253.

    CAS  PubMed  Google Scholar 

  • Nagamura-Inoue, T., & He, H. (2014). Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World Journal of Stem Cells, 6, 195–202.

    PubMed  PubMed Central  Google Scholar 

  • Nauta, A. J., Kruisselbrink, A. B., Lurvink, E., Willemze, R., & Fibbe, W. E. (2006). Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. Journal of Immunology, 177, 2080–2087.

    CAS  Google Scholar 

  • Németh, K., Leelahavanichkul, A., Yuen, P. S., Mayer, B., Parmelee, A., Doi, K., Robey, P. G., Leelahavanichkul, K., Koller, B. H., Brown, J. M., Hu, X., Jelinek, I., Star, R. A., & Mezey, E. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)- dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 15, 42–49.

    PubMed  Google Scholar 

  • Nikolic, A., Simovic Markovic, B., Gazdic, M., Randall Harrell, C., Fellabaum, C., Jovicic, N., Djonov, V., Arsenijevic, N., L Lukic, M., Stojkovic, M., & Volarevic, V. (2018). Intraperitoneal administration of mesenchymal stem cells ameliorates acute dextran sulfate sodium-induced colitis by suppressing dendritic cells. Biomedicine & Pharmacotherapy, 100, 426–432.

    CAS  Google Scholar 

  • Nishida, S., Endo, N., Yamagiwa, H., Tanizawa, T., & Takahashi, H. E. (1999). Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. Journal of Bone and Mineral Metabolism, 17, 17171–17177.

    Google Scholar 

  • Oger, F., Dubois-Chevalier, J., Gheeraert, C., Avner, S., Durand, E., Froguel, P., Salbert, G., Staels, B., Lefebvre, P., & Eeckhoute, J. (2014). Peroxisome proliferator-activated receptor γ regulates genes involved in insulin/insulin-like growth factor signaling and lipid metabolism during adipogenesis through functionally distinct enhancer classes. The Journal of Biological Chemistry, 289, 708–722.

    CAS  PubMed  Google Scholar 

  • Ortiz, L. A., Dutreil, M., Fattman, C., Pandey, A. C., Torres, G., Go, K., & Phinney, D. G. (2007). Interleukin 1 receptor antagonist mediates the anti-inflammatory and anti-fibrotic effect of mesenchymal stem cells during lung injury. Proceedings of the National Academy of Sciences of the United States of America, 104, 11002–11007.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Overath, J. M., Gauer, S., Obermüller, N., Schubert, R., Schäfer, R., Geiger, H., & Baer, P. C. (2016). Short-term preconditioning enhances the therapeutic potential of adipose-derived stromal/stem cell-conditioned medium in cisplatin-induced acute kidney injury. Experimental Cell Research, 342, 175–183.

    CAS  PubMed  Google Scholar 

  • Pae, H. O., Oh, G. S., Choi, B. M., Chae, S. C., Kim, Y. M., Chung, K. R., & Chung, H. T. (2004). Carbon monoxide produced by Heme oxygenase-1 suppresses T cell proliferation by inhibition of IL2 production. Journal of Immunology, 172, 4744–4751.

    CAS  Google Scholar 

  • Parekkadan, B., van Poll, D., Megeed, Z., Kobayashi, N., Tilles, A. W., Berthiaume, F., & Yarmush, M. L. (2007). Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells. Biochemical and Biophysical Research Communications, 363, 247–252.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perin, L., Sedrakyan, S., Giuliani, S., Da Sacco, S., Carraro, G., Shiri, L., Lemley, K. V., Rosol, M., Wu, S., Atala, A., Warburton, D., & De Filippo, R. E. (2010). Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One, 5, e9357.

    PubMed  PubMed Central  Google Scholar 

  • Pierro, M., Ionescu, L., Montemurro, T., Vadivel, A., Weissmann, G., Oudit, G., Emery, D., Bodiga, S., Eaton, F., Péault, B., Mosca, F., Lazzari, L., & Thébaud, B. (2013). Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax, 68, 475–484.

    PubMed  Google Scholar 

  • Prusa, A. R., Marton, E., Rosner, M., Bernaschek, G., & Hengstschlager, M. (2003). Oct-4-expressing cells in human amniotic fluid: A new source for stem cell research? Human Reproduction, 18, 1489–1493.

    PubMed  Google Scholar 

  • Quirici, N., Soligo, D., Bossolasco, P., Servida, F., Lumini, C., & Deliliers, G. L. (2002). Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Experimental Hematology, 30, 783–791.

    CAS  PubMed  Google Scholar 

  • Rafei, M., Hsieh, J., Fortier, S., Li, M., Yuan, S., Birman, E., Forner, K., Boivin, M. N., Doody, K., Tremblay, M., Annabi, B., & Galipeau, J. (2008). Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood, 112, 4991–4998.

    CAS  PubMed  Google Scholar 

  • Raffaghello, L., Bianchi, G., Bertolotto, M., Montecucco, F., Busca, A., Dallegri, F., Ottonello, L., & Pistoia, V. (2008). Human mesenchymal stem cells inhibit neutrophil apoptosis: A model for neutrophil preservation in the bone marrow niche. Stem Cells, 26, 151–162.

    CAS  PubMed  Google Scholar 

  • Ramasamy, R., Fazekasova, H., Lam, E., Soeiro, I., Lombardi, G., & Dazzi, F. (2007). Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation, 83, 71–76.

    PubMed  Google Scholar 

  • Rasmusson, I., Le Blanc, K., Sundberg, B., & Ringdén, O. (2007a). Mesenchymal stem cells stimulate antibody secretion in human B cells. Scandinavian Journal of Immunology, 65, 336–343.

    CAS  PubMed  Google Scholar 

  • Rasmusson, I., Uhlin, M., Le Blanc, K., & Levitsky, V. (2007b). Mesenchymal stem cells fail to trigger effector functions of cytotoxic T lymphocytes. Journal of Leukocyte Biology, 82, 887–893.

    CAS  PubMed  Google Scholar 

  • Ren, G., Su, J., Zhang, L., Zhao, X., Ling, W., L’huillie, A., Zhang, J., Lu, Y., Roberts, A. I., Ji, W., Zhang, H., Rabson, A. B., & Shi, Y. (2009). Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells, 27, 1954–1962.

    CAS  PubMed  Google Scholar 

  • Roach, H. I. (1994). Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biology International, 18, 617–628.

    CAS  PubMed  Google Scholar 

  • Rosen, E. D., Sarraf, P., Troy, A. E., Bradwin, G., Moore, K., Milstone, D. S., Spiegelman, B. M., & Mortensen, R. M. (1999). PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Molecular Cell, 4, 611–617.

    CAS  PubMed  Google Scholar 

  • Sato, K., Ozaki, K., Oh, I., Meguro, A., Hatanaka, K., Nagai, T., Muroi, K., & Ozawa, K. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 109, 228–234.

    CAS  PubMed  Google Scholar 

  • Savickienė, J., Matuzevičius, D., Baronaitė, S., Treigytė, G., Krasovskaja, N., Zaikova, I., Navakauskas, D., Utkus, A., & Navakauskienė, R. (2017). Histone modifications pattern associated with a state of mesenchymal stem cell cultures derived from amniotic fluid of normal and fetus-affected gestations. Journal of Cellular Biochemistry, 118, 3744–3755.

    PubMed  Google Scholar 

  • Selmani, Z., Naji, A., Zidi, I., Favier, B., Gaiffe, E., Obert, L., Borg, C., Saas, P., Tiberghien, P., Rouas-Freiss, N., Carosella, E. D., & Deschaseaux, F. (2008). Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+regulatory T cells. Stem Cells, 26, 212–222.

    CAS  PubMed  Google Scholar 

  • Sheng, G. (2015). The developmental basis of mesenchymal stem/stromal cells (MSCs). BMC Developmental Biology, 15, 44–48.

    PubMed  PubMed Central  Google Scholar 

  • Simovic Markovic, B., Gazdic, M., Arsenijevic, A., Jovicic, N., Jeremic, J., Djonov, V., Arsenijevic, N., Lukic, M. L., & Volarevic, V. (2017). Mesenchymal stem cells attenuate cisplatin-induced nephrotoxicity in iNOS-dependent Manner. Stem Cells International, 2017, 1315378.

    PubMed  PubMed Central  Google Scholar 

  • Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N., & Papamichail, M. (2006). Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 24, 74–85.

    PubMed  Google Scholar 

  • Spaggiari, G. M., Capobianco, A., Abdelrazik, H., Becchetti, F., Mingari, M. C., & Moretta, L. (2008). Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood, 111, 1327–1333.

    CAS  PubMed  Google Scholar 

  • Spaggiari, G. M., Abdelrazik, H., Becchetti, F., & Moretta, L. (2009). MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: Central role of MSC-derived prostaglandin E2. Blood, 113, 6576–6583.

    CAS  PubMed  Google Scholar 

  • Spitzhorn, L. S., Rahman, M. S., Schwindt, L., Ho, H. T., Wruck, W., Bohndorf, M., Wehrmeyer, S., Ncube, A., Beyer, I., Hagenbeck, C., Balan, P., Fehm, T., & Adjaye, J. (2017). Isolation and molecular characterization of amniotic fluid-derived mesenchymal stem cells obtained from caesarean sections. Stem Cells International, 2017, 5932706.

    PubMed  PubMed Central  Google Scholar 

  • Stenderup, K., Justesen, J., Clausen, C., & Kassem, M. (2003). Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone, 33, 919–926.

    PubMed  Google Scholar 

  • Sutsko, R. P., Young, K. C., Ribeiro, A., Torres, E., Rodriguez, M., Hehre, D., Devia, C., McNiece, I., & Suguihara, C. (2013). Long-term reparative effects of mesenchymal stem cell therapy following neonatal hyperoxia-induced lung injury. Pediatric Research, 73, 46–53.

    CAS  PubMed  Google Scholar 

  • Tabera, S., Pérez-Simón, J. A., Díez-Campelo, M., Sánchez-Abarca, L. I., Blanco, B., López, A., Benito, A., Ocio, E., Sánchez-Guijo, F. M., Cañizo, C., & San Miguel, J. F. (2008). The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica, 93, 1301–1309.

    CAS  PubMed  Google Scholar 

  • Takashima, Y., Era, T., Nakao, K., Kondo, S., Kasuga, M., Smith, A. G., & Nishikawa, S. (2007a). Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell, 129, 1377–1388.

    CAS  PubMed  Google Scholar 

  • Takashima, Y., Era, T., Nakao, K., Kondo, S., Kasuga, M., Smith, A. G., & Nishikawa, S. (2007b). Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell, 129, 1377–1388.

    CAS  PubMed  Google Scholar 

  • Tan, J. L., Lau, S. N., Leaw, B., Nguyen, H. P. T., Salamonsen, L. A., Saad, M. I., Chan, S. T., Zhu, D., Krause, M., Kim, C., Sievert, W., Wallace, E. M., & Lim, R. (2018). Amnion epithelial cell-derived exosomes restrict lung injury and enhance endogenous lung repair. Stem Cells Translational Medicine, 7, 180–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Traggiai, E., Volpi, S., Schena, F., Gattorno, M., Ferlito, F., Moretta, L., & Martini, A. (2008). Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells, 26, 562–569.

    CAS  PubMed  Google Scholar 

  • Tsai, M. S., Lee, J. L., Chang, Y. J., & Hwang, S. M. (2004). Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Human Reproduction, 19, 1450–1456.

    PubMed  Google Scholar 

  • Tsai, M. S., Hwang, S. M., Chen, K. D., Lee, Y. S., Hsu, L. W., Chang, Y. J., Wang, C. N., Peng, H. H., Chang, Y. L., Chao, A. S., Chang, S. D., Lee, K. D., Wang, T. H., Wang, H. S., & Soong, Y. K. (2007). Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem Cells, 25, 2511–2523.

    CAS  PubMed  Google Scholar 

  • Tuli, R., Tuli, S., Nandi, S., Huang, X., Manner, P. A., Hozack, W. J., Danielson, K. G., Hall, D. J., & Tuan, R. S. (2003). Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. The Journal of Biological Chemistry, 278, 41227–41236.

    CAS  PubMed  Google Scholar 

  • van Poll, D., Parekkadan, B., Cho, C. H., Berthiaume, F., Nahmias, Y., Tilles, A. W., & Yarmush, M. L. (2008). Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology, 47, 1634–1643.

    PubMed  Google Scholar 

  • Volarevic, V., Ljujic, B., Stojkovic, P., Lukic, A., Arsenijevic, N., & Stojkovic, M. (2011a). Human stem cell research and regenerative medicine – Present and future. British Medical Bulletin, 99, 155–168.

    PubMed  Google Scholar 

  • Volarevic, V., Arsenijevic, N., Lukic, M. L., & Stojkovic, M. (2011b). Concise review: Mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells, 29, 5–10.

    CAS  PubMed  Google Scholar 

  • Volarevic, V., Nurkovic, J., Arsenijevic, N., & Stojkovic, M. (2014). Concise review: Therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure and cirrhosis. Stem Cells, 32, 2818–2823.

    CAS  PubMed  Google Scholar 

  • Volarevic, V., Gazdic, M., Simovic Markovic, B., Jovicic, N., Djonov, V., & Arsenijevic, N. (2017). Mesenchymal stem cell-derived factors: Immuno-modulatory effects and therapeutic potential. BioFactors, 43, 633–644.

    CAS  PubMed  Google Scholar 

  • Volarevic, V., Markovic, B. S., Gazdic, M., Volarevic, A., Jovicic, N., Arsenijevic, N., Armstrong, L., Djonov, V., Lako, M., & Stojkovic, M. (2018). Ethical and safety issues of stem cell-based therapy. International Journal of Medical Sciences, 15, 36–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, E. A., Israel, D. I., Kelly, S., & Luxenberg, D. P. (1993). Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors, 9, 57–71.

    CAS  PubMed  Google Scholar 

  • Wu, Z., Rosen, E. D., Brun, R., Hauser, S., Adelmant, G., Troy, A. E., McKeon, C., Darlington, G. J., & Spiegelman, B. M. (1999). Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Molecular Cell, 3, 151–158.

    CAS  PubMed  Google Scholar 

  • Wu, J., Zhang, W., Ran, Q., Xiang, Y., Zhong, J. F., Li, S. C., & Li, Z. (2018). The differentiation balance of bone marrow mesenchymal stem cells is crucial to hematopoiesis. Stem Cells International, 2018, 1540148.

    PubMed  PubMed Central  Google Scholar 

  • Xagorari, A., Siotou, E., Yiangou, M., Tsolaki, E., Bougiouklis, D., Sakkas, L., Fassas, A., & Anagnostopoulos, A. (2013). Protective effect of mesenchymal stem cell-conditioned medium on hepatic cell apoptosis after acute liver injury. International Journal of Clinical and Experimental Pathology, 6, 831–840.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, D. A., Han, J., & Kim, B. S. (2012). Stimulation of chondrogenic differentiation of mesenchymal stem cells. International Journal of Stem Cells, 5, 16–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y. E. (2009). Non-Smad pathways in TGF-beta signaling. Cell Research, 19, 128e139.

    Google Scholar 

  • Zhang, W., Ge, W., Li, C., You, S., Liao, L., Han, Q., Deng, W., & Zhao, R. C. (2004). Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells and Development, 13, 263–271.

    CAS  PubMed  Google Scholar 

  • Zhou, J., Wang, D., Liang, T., Guo, Q., & Zhang, G. (2014a). Amniotic fluid-derived mesenchymal stem cells: Characteristics and therapeutic applications. Archives of Gynecology and Obstetrics, 290, 223–231.

    CAS  PubMed  Google Scholar 

  • Zhou, J., Wang, D., Liang, T., Guo, Q., & Zhang, G. (2014b). Amniotic fluid-derived mesenchymal stem cells: Characteristics and therapeutic applications. Archives of Gynecology and Obstetrics, 290, 223–231.

    CAS  PubMed  Google Scholar 

  • Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P., & Hedrick, M. H. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav Volarevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Harrell, C.R. et al. (2018). Molecular Mechanisms Responsible for Anti-inflammatory and Immunosuppressive Effects of Mesenchymal Stem Cell-Derived Factors. In: Pham, P. (eds) Tissue Engineering and Regenerative Medicine. Advances in Experimental Medicine and Biology(), vol 1084. Springer, Cham. https://doi.org/10.1007/5584_2018_306

Download citation

Publish with us

Policies and ethics