Skip to main content

Characterization of Senescence of Human Adipose-Derived Stem Cells After Long-Term Expansion

  • Conference paper
  • First Online:
Tissue Engineering and Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((ICRRM,volume 1084))

Abstract

Introduction: Since the 1980s, adipose-derived stem cells (ASCs) have become a powerful and potential source for stem cell-based therapy, regenerative medicine, and even drug delivery in cancer treatment. The development of off-the-shelf mesenchymal stem cells (MSCs), including ASCs, has rapidly advanced in recent years with several clinical trials and approved products. In this technology, ASCs should be expanded long term in order to harvest higher cell number. In this study, senescence of ASCs after long-term expansion was evaluated. Methods: Human ASCs (hASCs) were isolated and cultured continuously at a density of 103 cells/cm2 up to passage 15. The cells were assessed for aging via changes in the following: characteristics of MSCs, mitochondrial activity, accumulation of beta-galactosidase, and expression of tumor suppressor genes. Results: The results showed that following in vitro expansion to the 15th passage, ASCs did not show changes in immunophenotype, except for decreased expression of CD105. However, the cells increased in size and in shape and complexity (toward the “fried egg” morphology). They also almost ceased to proliferate in passage 15. Nonetheless, they maintained in vitro differentiation potential toward osteoblasts, chondrocytes, and adipocytes. Expression of tumor suppressor genes p53 and p16 did not significantly change, while p27 was significantly downregulated. Mitochondrial activities also decreased slightly in culture from passage 5 to passage 10 and remained stable to passage 15. ASCs also showed increased accumulation of beta-galactosidase in culture, but it was negligible. Conclusion: In conclusion, hASCs exhibited some particular characteristics of aged stem cells when the number of subculture cells increased. However, up to passage 10, ASCs also retained almost all of the characteristics of MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASCs::

Adipose-derived stem cells

BM-MSCs::

Bone marrow-derived mesenchymal stem cells

CFU-F::

Fibroblast colony-forming units

DE::

Germany

FBS::

Fetal bovine serum

FCM::

Flow cytometry

FSC::

Forward scatter

hASCs::

Human adipose-derived stem cells

iPSCs::

Induced pluripotent stem cells

KR::

Korean

MSCs::

Mesenchymal stem cells

PBS::

Phosphate-buffered saline

ROS::

Reactive oxygen species

SA-β-gal::

Senescence-associated β-galactosidase enzyme

SSC::

Side scatter

SVF::

Stromal vascular fraction

UK::

United Kingdom

USA::

United States

References

  • Adams, P. D., Jasper, H., & Rudolph, K. L. (2015). Aging-induced stem cell mutations as drivers for disease and Cancer. Cell Stem Cell, 16(6), 601–612.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ameur, A., et al. (2011). Ultra-deep sequencing of mouse mitochondrial DNA: Mutational patterns and their origins. PLoS Genetics, 7(3), e1002028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora, M. (2013). Cell culture media: A review. Mater Methods, 3, 175.

    Article  Google Scholar 

  • Azari, H., et al. (2010). Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. Journal of Visualized Experiments, 45, 2393.

    Google Scholar 

  • Baer, P. C., et al. (2010). Human adipose-derived mesenchymal stem cells in vitro: Evaluation of an optimal expansion medium preserving stemness. Cytotherapy, 12(1), 96–106.

    Article  CAS  PubMed  Google Scholar 

  • Bakopoulou, A., et al. (2017). Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects “stemness” properties. Stem Cell Research & Therapy, 8(1), 247.

    Article  CAS  Google Scholar 

  • Barnes, D., & Sato, G. (1980). Serum-free cell culture: A unifying approach. Cell, 22(3), 649–655.

    Article  CAS  PubMed  Google Scholar 

  • Baxter, M. A., et al. (2004). Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells, 22(5), 675–682.

    Article  CAS  PubMed  Google Scholar 

  • Bekaert, S., Derradji, H., & Baatout, S. (2004). Telomere biology in mammalian germ cells and during development. Developmental Biology, 274(1), 15–30.

    Article  CAS  PubMed  Google Scholar 

  • Bernardo, M. E., et al. (2007). Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Research, 67(19), 9142–9149.

    Article  CAS  PubMed  Google Scholar 

  • Bertolo, A., et al. (2017). Oxidative status predicts quality in human mesenchymal stem cells. Stem Cell Research & Therapy, 8(1), 3.

    Article  CAS  Google Scholar 

  • Blasco, M. A. (2005). Telomeres and human disease: Ageing, cancer and beyond. Nature Reviews Genetics, 6(8), 611–622.

    Article  CAS  PubMed  Google Scholar 

  • Bochkov, N. P., et al. (2007). Chromosome variability of human multipotent mesenchymal stromal cells. Bulletin of Experimental Biology and Medicine, 143(1), 122–126.

    Article  CAS  PubMed  Google Scholar 

  • Boregowda, S. V., et al. (2018). Basal p53 expression is indispensable for mesenchymal stem cell integrity. Cell Death and Differentiation, 25, 677–690.

    Article  PubMed Central  CAS  Google Scholar 

  • Bratic, A., & Larsson, N. G. (2013). The role of mitochondria in aging. The Journal of Clinical Investigation, 123(3), 951–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunnell, B. A., et al. (2008). Adipose-derived stem cells: Isolation, expansion and differentiation. Methods, 45(2), 115–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campisi, J. (2013). Aging, cellular senescence, and cancer. Annual Review of Physiology, 75, 685–705.

    Article  CAS  PubMed  Google Scholar 

  • Campisi, J., & d’Adda di Fagagna, F. (2007). Cellular senescence: When bad things happen to good cells. Nature Reviews. Molecular Cell Biology, 8(9), 729–740.

    Article  CAS  PubMed  Google Scholar 

  • Choi, M. R., et al. (2010). Selection of optimal passage of bone marrow-derived mesenchymal stem cells for stem cell therapy in patients with amyotrophic lateral sclerosis. Neuroscience Letters, 472(2), 94–98.

    Article  CAS  PubMed  Google Scholar 

  • Chosa, N., & Ishisaki, A. (2017). Two novel mechanisms for maintenance of stemness in mesenchymal stem cells: SCRG1/BST1 axis and cell–cell adhesion through N-cadherin. Japanese Dental Science Review, 54, 37–44.

    Article  Google Scholar 

  • Devereux, T. R., Risinger, J. I., & Barrett, J. C. (1999). Mutations and altered expression of the human cancer genes: What they tell us about causes. IARC Scientific Publications, 146, 19–42.

    CAS  Google Scholar 

  • Dimri, G. P., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences of the United States of America, 92(20), 9363–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominici, M., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  CAS  PubMed  Google Scholar 

  • Estrada, J. C., et al. (2013). Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy. Cell Death & Disease, 4, e691.

    Article  CAS  Google Scholar 

  • Fletcher, A. (2013). The cell membrane and receptors. Anaesthesia & Intensive Care Medicine, 14(9), 417–421.

    Article  Google Scholar 

  • Foudah, D., et al. (2009). Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells. Chromosome Research, 17(8), 1025–1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frese, L., Dijkman, P. E., & Hoerstrup, S. P. (2016). Adipose tissue-derived stem cells in regenerative medicine. Transfusion Medicine and Hemotherapy, 43(4), 268–274.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, Y., et al. (2010). p27 modulates tropism of mesenchymal stem cells toward brain tumors. Experimental and Therapeutic Medicine, 1(4), 695–699.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25, 585–621.

    Article  CAS  PubMed  Google Scholar 

  • Hiyama, E., & Hiyama, K. (2007). Telomere and telomerase in stem cells. British Journal of Cancer, 96(7), 1020–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, L., et al. (2013). Effects of adipose stem cell-conditioned medium on the migration of vascular endothelial cells, fibroblasts and keratinocytes. Experimental and Therapeutic Medicine, 5(3), 701–706.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, H. L., et al. (2010). Trypsin-induced proteome alteration during cell subculture in mammalian cells. Journal of Biomedical Science, 17, 36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hwang, E. S., Yoon, G., & Kang, H. T. (2009). A comparative analysis of the cell biology of senescence and aging. Cellular and Molecular Life Sciences, 66(15), 2503–2524.

    Article  CAS  PubMed  Google Scholar 

  • Ikebe, C., & Suzuki, K. (2014). Mesenchymal stem cells for regenerative therapy: Optimization of cell preparation protocols. BioMed Research International, 2014, 951512.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeon, B. G., et al. (2011). Characterization and comparison of telomere length, telomerase and reverse transcriptase activity and gene expression in human mesenchymal stem cells and cancer cells of various origins. Cell and Tissue Research, 345(1), 149–161.

    Article  CAS  PubMed  Google Scholar 

  • Karmiol, S. (2000). Development of serum free media. In J. R. W. Master (Ed.), Animal Cell culture (3rd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Kellner, G., et al. (1959). Effects of trypsin treatment on tissue in culture. Experimental Cell Research, 18(1), 168–171.

    Article  CAS  PubMed  Google Scholar 

  • Korolchuk, V. I., et al. (2017). Mitochondria in cell senescence: Is Mitophagy the weakest link? eBioMedicine, 21, 7–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Legzdina, D., et al. (2016). Characterization of senescence of culture-expanded human adipose-derived mesenchymal stem cells. International Journal of Stem Cells, 9(1), 124–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lendeckel, S., et al. (2004). Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: Case report. Journal of Cranio-Maxillo-Facial Surgery, 32(6), 370–373.

    Article  PubMed  Google Scholar 

  • Li, L., et al. (2009). Differentiation potential of bone marrow mesenchymal stem cells in duck. Journal of Genetics and Genomics, 36(3), 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Li, G. C., et al. (2016). Mesenchymal stem cells promote tumor angiogenesis via the action of transforming growth factor beta1. Oncology Letters, 11(2), 1089–1094.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C. S., et al. (2013). Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histology and Histopathology, 28(9), 1109–1116.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linnane, A., et al. (1989). Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. The Lancet, 333(8639), 642–645.

    Article  Google Scholar 

  • Lopez-Otin, C., et al. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch, M. D. (2006). How does cellular senescence prevent cancer? DNA and Cell Biology, 25(2), 69–78.

    Article  CAS  PubMed  Google Scholar 

  • Mangum, L. H., et al. (2017). Tissue source and cell expansion condition influence phenotypic changes of adipose-derived stem cells. Stem Cells International, 2017, 7108458.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maredziak, M., et al. (2016). The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells. Stem Cells International, 2016, 2152435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matheu, A., et al. (2009). Anti-aging activity of the Ink4/Arf locus. Aging Cell, 8(2), 152–161.

    Article  CAS  PubMed  Google Scholar 

  • Melzer, C., Yang, Y., & Hass, R. (2016). Interaction of MSC with tumor cells. Cell Communication and Signaling: CCS, 14(1), 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mildmay-White, A., & Khan, W. (2017). Cell surface markers on adipose-derived stem cells: A systematic review. Current Stem Cell Research & Therapy, 12(6), 484–492.

    Article  CAS  Google Scholar 

  • Miura, M., et al. (2006). Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells, 24(4), 1095–1103.

    Article  PubMed  Google Scholar 

  • Mizuno, H., Tobita, M., & Uysal, A. C. (2012). Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells, 30, 804–810.

    Article  CAS  PubMed  Google Scholar 

  • Mosna, F., Sensebe, L., & Krampera, M. (2010). Human bone marrow and adipose tissue mesenchymal stem cells: A user’s guide. Stem Cells and Development, 19(10), 1449–1470.

    Article  CAS  PubMed  Google Scholar 

  • Muraglia, A., Cancedda, R., & Quarto, R. (2000). Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. Journal of Cell Science, 113(Pt 7), 1161–1166.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, G., et al. (2012). A senescent cell bystander effect: Senescence-induced senescence. Aging Cell, 11(2), 345–349.

    Article  CAS  PubMed  Google Scholar 

  • Oh, J., Lee, Y. D., & Wagers, A. J. (2014). Stem cell aging: Mechanisms, regulators and therapeutic opportunities. Nature Medicine, 20(8), 870–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong, W. K., et al. (2014). Identification of specific cell-surface markers of adipose-derived stem cells from subcutaneous and visceral fat depots. Stem Cell Reports, 2(2), 171–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal, B., & Das, B. (2017). In vitro culture of naive human bone marrow mesenchymal stem cells: A stemness based approach. Frontiers in Cell and Development Biology, 5, 69.

    Article  Google Scholar 

  • Palm, W., & de Lange, T. (2008). How shelterin protects mammalian telomeres. Annual Review of Genetics, 42, 301–334.

    Article  CAS  PubMed  Google Scholar 

  • Passos, J. F., & von Zglinicki, T. (2005). Mitochondria, telomeres and cell senescence. Experimental Gerontology, 40(6), 466–472.

    Article  CAS  PubMed  Google Scholar 

  • Pelicci, P. G. (2004). Do tumor-suppressive mechanisms contribute to organism aging by inducing stem cell senescence? The Journal of Clinical Investigation, 113(1), 4–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez, L. M., et al. (2015). Altered metabolic and stemness capacity of adipose tissue-derived stem cells from obese mouse and human. PLoS One, 10(4), e0123397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plaas, H. A., & Cryer, A. (1980). The isolation and characterization of a proposed adipocyte precursor cell type from bovine subcutaneous white adipose tissue. Journal of Developmental Physiology, 2(5), 275–289.

    CAS  PubMed  Google Scholar 

  • Platas, J., et al. (2016). Paracrine effects of human adipose-derived mesenchymal stem cells in inflammatory stress-induced senescence features of osteoarthritic chondrocytes. Aging (Albany NY), 8(8), 1703–1717.

    Article  CAS  Google Scholar 

  • Rivlin, N., et al. (2011). Mutations in the p53 tumor suppressor gene: Important milestones at the various steps of tumorigenesis. Genes & Cancer, 2(4), 466–474.

    Article  CAS  Google Scholar 

  • Rodriguez, A. M., et al. (2004). Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochemical and Biophysical Research Communications, 315(2), 255–263.

    Article  CAS  PubMed  Google Scholar 

  • Salgado, A. J., et al. (2010). Adipose tissue derived stem cells secretome: Soluble factors and their roles in regenerative medicine. Current Stem Cell Research & Therapy, 5(2), 103–110.

    Article  CAS  Google Scholar 

  • Schafer, M. J., et al. (2016). Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes, 65(6), 1606–1615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sell, S. (2010). On the stem cell origin of cancer. The American Journal of Pathology, 176(6), 2584–2494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano, M., et al. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88(5), 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Sherr, C. J. (2012). Ink4-Arf locus in cancer and aging. Wiley Interdisciplinary Reviews: Developmental Biology, 1(5), 731–741.

    Article  CAS  PubMed  Google Scholar 

  • Signer, R. A., & Morrison, S. J. (2013). Mechanisms that regulate stem cell aging and life span. Cell Stem Cell, 12(2), 152–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strem, B. M., et al. (2005). Multipotential differentiation of adipose tissue-derived stem cells. The Keio Journal of Medicine, 54(3), 132–141.

    Article  CAS  PubMed  Google Scholar 

  • Tamm, C., Pijuan Galito, S., & Anneren, C. (2013). A comparative study of protocols for mouse embryonic stem cell culturing. PLoS One, 8(12), e81156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tofino-Vian, M., et al. (2017). Extracellular vesicles from adipose-derived mesenchymal stem cells downregulate senescence features in osteoarthritic osteoblasts. Oxidative Medicine and Cellular Longevity, 2017, 7197598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ugarte, D. A. D., et al. (2003). Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells, Tissues, Organs, 174, 101–109.

    Article  PubMed  Google Scholar 

  • Wagner, W., et al. (2008). Replicative senescence of mesenchymal stem cells: A continuous and organized process. PLoS One, 3(5), e2213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner, W., et al. (2009). Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One, 4(6), e5846.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner, W., et al. (2010). How to track cellular aging of mesenchymal stromal cells? Aging (Albany NY), 2(4), 224–230.

    Article  CAS  Google Scholar 

  • Wallace, D. C. (2010). Mitochondrial DNA mutations in disease and aging. Environmental and Molecular Mutagenesis, 51(5), 440–450.

    CAS  PubMed  Google Scholar 

  • Wang, Y., et al. (2013). Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death & Disease, 4, e950.

    Article  CAS  Google Scholar 

  • Widder, M., et al. (2016). Multipotent mesenchymal stromal cells promote tumor growth in distinct colorectal cancer cells by a beta1-integrin-dependent mechanism. International Journal of Cancer, 138(4), 964–975.

    Article  CAS  PubMed  Google Scholar 

  • Ye, X., et al. (2016). Age-related changes in the regenerative potential of adipose-derived stem cells isolated from the prominent fat pads in human lower eyelids. PLoS One, 11(11), e0166590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, K. R., & Kang, K. S. (2013). Aging-related genes in mesenchymal stem cells: A mini-review. Gerontology, 59(6), 557–563.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z. X., et al. (2007). Cytogenetic analysis of human bone marrow-derived mesenchymal stem cells passaged in vitro. Cell Biology International, 31(6), 645–648.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., et al. (2009). Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell, 138(3), 463–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, C., et al. (2009). Human multipotent mesenchymal stromal cells from fetal lung expressing pluripotent markers and differentiating into cell types of three germ layers. Cell Transplantation, 18(10), 1093–1109.

    Article  PubMed  Google Scholar 

  • Zhu, Y., et al. (2010). Adipose-derived stem cell: A better stem cell than BMSC. Cell Research, 18(S1), S165–S165.

    Article  Google Scholar 

  • Zhuang, Y., et al. (2015). Comparison of biological properties of umbilical cord-derived mesenchymal stem cells from early and late passages: Immunomodulatory ability is enhanced in aged cells. Molecular Medicine Reports, 11(1), 166–174.

    Article  CAS  PubMed  Google Scholar 

  • Zigler, J. S., Jr., et al. (1985). Analysis of the cytotoxic effects of light-exposed HEPES-containing culture medium. In Vitro Cellular & Developmental Biology, 21(5), 282–287.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by Viet Nam National University Ho Chi Minh City via projects Grant No. C2016-18-18 and TX2017-18-02 and by VNUHCM-University of Science via project Grant No. T2017-43.

Authors’ Contributions

NCT, PVP, and KHTB designed the study and read and corrected the manuscript. NCT wrote the manuscript, proliferated hASC samples, and evaluated gene expression, mitochondrial activity, and beta-galactosidase accumulation. NCT, PVP, and KHTB evaluated mesenchymal characteristics. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc Van Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Truong, N.C., Bui, K.HT., Van Pham, P. (2018). Characterization of Senescence of Human Adipose-Derived Stem Cells After Long-Term Expansion. In: Pham, P. (eds) Tissue Engineering and Regenerative Medicine. Advances in Experimental Medicine and Biology(), vol 1084. Springer, Cham. https://doi.org/10.1007/5584_2018_235

Download citation

Publish with us

Policies and ethics