Skip to main content

Pooled Human Serum Increases Regenerative Potential of In Vitro Expanded Stem Cells from Human Extracted Deciduous Teeth

  • Conference paper
  • First Online:
Stem Cells: Biology and Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((ICRRM,volume 1083))

Abstract

In regenerative therapy, in vitro expansion of stem cells is critical to obtain a significantly higher number of cells for successful engraftment after transplantation. However, stem cells lose its regenerative potential and enter senescence during in vitro expansion. In this study, the influence of foetal bovine serum (FBS) and pooled human serum (pHS) on the proliferation, morphology and migration of stem cells from human extracted deciduous teeth (SHED) was compared. SHED (n = 3) was expanded in KnockOut DMEM supplemented with either pHS (pHS-SM) or FBS (FBS-SM). pHS was prepared using peripheral blood serum of six healthy male adults, aged between 21 and 35 years old. The number of live SHED was significantly higher, from passage 5 to 7, when cultured in pHS-SM compared to those cultured in FBS-SM (p < 0.05). Number of cells having flattened morphology, characteristics of partially differentiated and senescent cells, was significantly lower (p < 0.05) in pHS-SM (3%) compared to those in FBS-SM (7%). Furthermore, migration of SHED in pHS-SM was found to be more directional. The presence of selected ten paracrine factors known for their proliferation and migration potential was detected in all six individual human sera, used to produce pHS, none of which were detected in FBS. Ingenuity Pathway Analysis showed the possible involvement of the ‘ephrin receptor signalling pathway’ to regulate the proliferation and migration of SHED in pHS-SM. In conclusion, pHS-SM showed significantly higher proliferation rate and could maintain significantly lower number of senescent cells and support directional migration of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BM:

bone marrow

EGF:

epidermal growth factor

FBS:

foetal bovine serum

FC:

flattened

FGF-2:

fibroblast growth factor-2

FSS:

flat spindle-shaped

G-CSF:

granulocyte colony-stimulating factor

GM-CSF:

granulocyte macrophage colony-stimulating factor

HGF:

hepatocyte growth factor

LIF:

leukaemia inhibitory factor

MSCs:

mesenchymal stem cells

PDGF-BB:

platelet-derived growth factor BB

pHS:

pooled human serum

RS:

rapidly self-renewing

SCF:

stem cell factor

SDF-1α:

stromal cell-derived factor-1α

SHED:

stem cells from human extracted deciduous teeth

SS:

spindle-shaped

VEGF:

vascular endothelial growth factor

References

  • Ahn, H.-J., Lee, W.-J., Kwack, K., & Kwon, Y. D. (2009). FGF2 stimulates the proliferation of human mesenchymal stem cells through the transient activation of JNK signaling. FEBS Letters, 583(17), 2922–2926.

    Article  CAS  Google Scholar 

  • Arvanitis, D., & Davy, A. (2008). Eph/ephrin signaling: Networks. Genes & Development, 22(4), 416–429.

    Article  CAS  Google Scholar 

  • Bianchi, G., Banfi, A., Mastrogiacomo, M., Notaro, R., Luzzatto, L., Cancedda, R., & Quarto, R. (2003). Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Experimental Cell Research, 287(1), 98–105.

    Article  CAS  Google Scholar 

  • Bieback, K., Hecker, A., Kocaömer, A., Lannert, H., Schallmoser, K., Strunk, D., & Klüter, H. (2009). Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells, 27.

    Article  CAS  Google Scholar 

  • Blázquez-Prunera, A., Díez, J. M., Gajardo, R., & Grancha, S. (2017). Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction. Stem Cell Research & Therapy, 8, 103.

    Article  Google Scholar 

  • Bonab, M. M., Alimoghaddam, K., Talebian, F., Ghaffari, S. H., Ghavamzadeh, A., & Nikbin, B. (2006). Aging of mesenchymal stem cell in vitro. BMC Cell Biology, 7(1), 14.

    Article  Google Scholar 

  • Boyd, A. W., Bartlett, P. F., & Lackmann, M. (2014). Therapeutic targeting of EPH receptors and their ligands. Nature Reviews. Drug Discovery, 13(1), 39–62.

    Article  CAS  Google Scholar 

  • Chase, L. G., Lakshmipathy, U., Solchaga, L. A., Rao, M. S., & Vemuri, M. C. (2010). A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Research & Therapy, 1(8), 1549–1553.

    Google Scholar 

  • Colter, D. C., Sekiya, I., & Prockop, D. J. (2001). Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 7841–7845.

    Article  CAS  Google Scholar 

  • Cristofalo, V. J., Allen, R. G., Pignolo, R. J., Martin, B. G., & Beck, J. C. (1998). Relationship between donor age and the replicative lifespan of human cells in culture: A reevaluation. Proceedings of the National Academy of Sciences of the United States of America, 95(18), 10614–10619.

    Article  CAS  Google Scholar 

  • Díez, J. M., Bauman, E., Gajardo, R., & Jorquera, J. I. (2015). Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools. Stem Cell Research & Therapy, 6, 28.

    Article  Google Scholar 

  • Docheva, D., Padula, D., Popov, C., Mutschler, W., Clausen-Schaumann, H., & Schieker, M. (2008). Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy. Journal of Cellular and Molecular Medicine, 12(2), 537–552.

    Article  Google Scholar 

  • Dolley-Sonneville, P. J., Romeo, L. E., & Melkoumian, Z. K. (2013). Synthetic surface for expansion of human mesenchymal stem cells in xeno-free, chemically defined culture conditions. PloS One, 8(8), e70263.

    Article  CAS  Google Scholar 

  • Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  CAS  Google Scholar 

  • Eggenhofer, E., Luk, F., Dahlke, M. H., & Hoogduijn, M. J. (2014). The life and fate of mesenchymal stem cells. Frontiers in Immunology, 5, 148.

    Article  Google Scholar 

  • Estrada, J. C., Albo, C., Benguria, A., Dopazo, A., Lopez-Romero, P., Carrera-Quintanar, L., Roche, E., Clemente, E. P., Enriquez, J. A., Bernad, A., & Samper, E. (2012). Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death and Differentiation, 19(5), 743–755.

    Article  CAS  Google Scholar 

  • Eubanks, E. J., Tarle, S. A., & Kaigler, D. (2014). Tooth storage, dental pulp stem cell isolation, and clinical scale expansion without animal serum. Journal of Endodontia, 40(5), 652–657.

    Article  Google Scholar 

  • Fierro, F., Illmer, T., Jing, D., Schleyer, E., Ehninger, G., Boxberger, S., & Bornhäuser, M. (2007). Inhibition of platelet-derived growth factor receptorβ by imatinib mesylate suppresses proliferation and alters differentiation of human mesenchymal stem cells in vitro. Cell Proliferation, 40(3), 355–366.

    Article  CAS  Google Scholar 

  • Forte, G., Minieri, M., Cossa, P., Antenucci, D., Sala, M., Gnocchi, V., Fiaccavento, R., Carotenuto, F., De Vito, P., Baldini, P.M., Prat, M., & Di Nardo, P. (2006). Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells, 24(1), 23–33.

    Article  CAS  Google Scholar 

  • Govindasamy, V., Abdullah, A. N., Ronald, V. S., Musa, S., Ab Aziz, Z. A., Zain, R. B., Totey, S., Bhonde, R. R., & Abu Kasim, N. H. (2010). Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. Journal of Endodontia, 36(9), 1504–1515.

    Article  Google Scholar 

  • Haasters, F., Prall, W. C., Anz, D., Bourquin, C., Pautke, C., Endres, S., Mutschler, W., Docheva, D., & Schieker, M. (2009). Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. Journal of Anatomy, 214(5), 759–767.

    Article  Google Scholar 

  • Handorf, A. M., & Li, W. J. (2011). Fibroblast growth factor-2 primes human mesenchymal stem cells for enhanced chondrogenesis. PloS One, 6(7), e22887.

    Article  CAS  Google Scholar 

  • Haque, N., Kasim, N. H., & Rahman, M. T. (2015). Optimization of pre-transplantation conditions to enhance the efficacy of mesenchymal stem cells. International Journal of Biological Sciences, 11(3), 324–334.

    Article  CAS  Google Scholar 

  • He, X., Ma, J., & Jabbari, E. (2010). Migration of marrow stromal cells in response to sustained release of stromal-derived factor-1alpha from poly(lactide ethylene oxide fumarate) hydrogels. International Journal of Pharmaceutics, 390(2), 107–116.

    Article  CAS  Google Scholar 

  • Heiskanen, A., Satomaa, T., Tiitinen, S., Laitinen, A., Mannelin, S., Impola, U., Mikkola, M., Olsson, C., Miller-Podraza, H., Blomqvist, M., Olonen, A., Salo, H., Lehenkari, P., Tuuri, T., Otonkoski, T., Natunen, J., Saarinen, J., & Laine, J. (2007). N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells, 25(1), 197–202.

    Article  CAS  Google Scholar 

  • Honczarenko, M., Le, Y., Swierkowski, M., Ghiran, I., Glodek, A. M., & Silberstein, L. E. (2006). Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells, 24(4), 1030–1041.

    Article  CAS  Google Scholar 

  • Hu, F., Wang, X., Liang, G., Lv, L., Zhu, Y., Sun, B., & Xiao, Z. (2013). Effects of epidermal growth gactor and basic fibroblast growth factor on the proliferation and osteogenic and neural differentiation of adipose-derived stem cells. Cellular Reprogramming, 15(3), 224–232.

    Article  CAS  Google Scholar 

  • Kawada, H., Fujita, J., Kinjo, K., Matsuzaki, Y., Tsuma, M., Miyatake, H., Muguruma, Y., Tsuboi, K., Itabashi, Y., Ikeda, Y., Ogawa, S., Okano, H., Hotta, T., Ando, K., & Fukuda, K. (2004). Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood, 104(12), 3581–3587.

    Article  CAS  Google Scholar 

  • Khanna-Jain, R., Vanhatupa, S., Vuorinen, A., Sandor, G., Suuronen, R., Mannerstrom, B., & Miettinen, S. (2012). Growth and differentiation of human dental pulp stem cells maintained in fetal bovine serum, human serum and serum-free/Xeno-free culture media. Journal of Stem Cell Research & Therapy, 2, 4.

    Article  Google Scholar 

  • Kobayashi, T., Watanabe, H., Yanagawa, T., Tsutsumi, S., Kayakabe, M., Shinozaki, T., Higuchi, H., & Takagishi, K. (2005). Motility and growth of human bone-marrow mesenchymal stem cells during ex vivo expansion in autologous serum. Journal of Bone and Joint Surgery. British Volume (London), 87(10), 1426–1433.

    Article  CAS  Google Scholar 

  • Kolf, C. M., Cho, E., & Tuan, R. S. (2007). Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Research & Therapy, 9(1), 1–10.

    Google Scholar 

  • Komoda, H., Okura, H., Lee, C. M., Sougawa, N., Iwayama, T., Hashikawa, T., Saga, A., Yamamoto-Kakuta, A., Ichinose, A., Murakami, S., Sawa, Y., & Matsuyama, A. (2010). Reduction of N-Glycolylneuraminic acid xenoantigen on human adipose tissue-derived stromal cells/mesenchymal stem cells leads to safer and more useful cell sources for various stem cell therapies. Tissue Engineering – Part A, 16(4), 1143–1155.

    Article  CAS  Google Scholar 

  • Krausgrill, B., Vantler, M., Burst, V., Raths, M., Halbach, M., Frank, K., Schynkowski, S., Schenk, K., Hescheler, J., Rosenkranz, S., & Müller-Ehmsen, J. (2009). Influence of cell treatment with PDGF-BB and reperfusion on cardiac persistence of mononuclear and mesenchymal bone marrow cells after transplantation into acute myocardial infarction in rats. Cell Transplantation, 18(8), 847–853.

    Article  Google Scholar 

  • Lee, R. H., Hsu, S. C., Munoz, J., Jung, J. S., Lee, N. R., Pochampally, R., & Prockop, D. J. (2006). A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice. Blood, 107(5), 2153–2161.

    Article  CAS  Google Scholar 

  • Lennartsson, J., & Rönnstrand, L. (2012). Stem cell factor receptor/c-Kit: From basic science to clinical implications. Physiological Reviews, 92(4), 1619–1649.

    Article  CAS  Google Scholar 

  • Li, X., Hou, J., Wu, B., Chen, T., & Luo, A. (2014). Effects of platelet-rich plasma and cell coculture on angiogenesis in human dental pulp stem cells and endothelial progenitor cells. Journal of Endodontia, 40(11), 1810–1814.

    Article  Google Scholar 

  • Li, C.-Y., Wu, X.-Y., Tong, J.-B., Yang, X.-X., Zhao, J.-L., Zheng, Q.-F., Zhao, G.-B., & Ma, Z.-J. (2015). Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Research & Therapy, 6(1), 1–13.

    Article  Google Scholar 

  • Matsuoka, F., Takeuchi, I., Agata, H., Kagami, H., Shiono, H., Kiyota, Y., Honda, H., & Kato, R. (2013). Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells. PloS One, 8(2), e55082.

    Article  CAS  Google Scholar 

  • Metcalf, D. (2003). The unsolved enigmas of leukemia inhibitory factor. Stem Cells, 21(1), 5–14.

    Article  CAS  Google Scholar 

  • Murakami, M., Horibe, H., Iohara, K., Hayashi, Y., Osako, Y., Takei, Y., Nakata, K., Motoyama, N., Kurita, K., & Nakashima, M. (2013). The use of granulocyte-colony stimulating factor induced mobilization for isolation of dental pulp stem cells with high regenerative potential. Biomaterials, 34(36), 9036–9047.

    Google Scholar 

  • Nakamura, S., Yamada, Y., Katagiri, W., Sugito, T., Ito, K., & Ueda, M. (2009). Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. Journal of Endodontia, 35(11), 1536–1542.

    Article  Google Scholar 

  • Oikonomopoulos, A., van Deen, W. K., Manansala, A. R., Lacey, P. N., Tomakili, T. A., Ziman, A., & Hommes, D. W. (2015). Optimization of human mesenchymal stem cell manufacturing: The effects of animal/xeno-free media. Scientific Reports, 5, 16570.

    Article  Google Scholar 

  • Pan, S., Dangaria, S., Gopinathan, G., Yan, X., Lu, X., Kolokythas, A., Niu, Y., & Luan, X. (2013). SCF promotes dental pulp progenitor migration, neovascularization, and collagen remodeling – potential applications as a homing factor in dental pulp regeneration. Stem Cell Reviews & Reports, 9(5), 655–667.

    Article  CAS  Google Scholar 

  • Paula, A. C. C., Martins, T. M. M., Zonari, A., Frade, S. P. P. J., Angelo, P. C., Gomes, D. A., & Goes, A. M. (2015). Human adipose tissue-derived stem cells cultured in xeno-free culture condition enhance c-MYC expression increasing proliferation but bypassing spontaneous cell transformation. Stem Cell Research & Therapy, 6(1), 76.

    Article  Google Scholar 

  • Phadnis, S. M., Joglekar, M. V., Venkateshan, V., Ghaskadbi, S. M., Hardikar, A. A., & Bhonde, R. R. (2006). Human umbilical cord blood serum promotes growth, proliferation, as well as differentiation of human bone marrow-derived progenitor cells. In Vitro Cellular and Developmental Biology – Animal, 42(10), 283–286.

    PubMed  Google Scholar 

  • Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    Article  CAS  Google Scholar 

  • Poloni, A., Maurizi, G., Rosini, V., Mondini, E., Mancini, S., Discepoli, G., Biasio, S., Battaglini, G., Felicetti, S., Berardinelli, E., Serrani, F., & Leoni, P. (2009). Selection of CD271(+) cells and human AB serum allows a large expansion of mesenchymal stromal cells from human bone marrow. Cytotherapy, 11(2), 153–162.

    Article  CAS  Google Scholar 

  • Pons, J., Huang, Y., Arakawa-Hoyt, J., Washko, D., Takagawa, J., Ye, J., Grossman, W., & Su, H. (2008). VEGF improves survival of mesenchymal stem cells in infarcted hearts. Biochemical and Biophysical Research Communications, 376(2), 419–422.

    Article  CAS  Google Scholar 

  • Prasanna, S. J., Gopalakrishnan, D., Shankar, S. R., & Vasandan, A. B. (2010). Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PloS One, 5(2), e9016.

    Article  Google Scholar 

  • Prockop, D. J., Sekiya, I., & Colter, D. C. (2001). Isolation and characterization of rapidly self-renewing stem cells from cultures of human marrow stromal cells. Cytotherapy, 3(5), 393–396.

    Article  CAS  Google Scholar 

  • Rodrigues, M., Griffith, L., & Wells, A. (2010). Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Research & Therapy, 1(4), 32.

    Article  Google Scholar 

  • Rojas, M., Xu, J., Woods, C. R., Mora, A. L., Spears, W., Roman, J., & Brigham, K. L. (2005). Bone marrow-derived mesenchymal stem cells in repair of the injured lung. American Journal of Respiratory Cell and Molecular Biology, 33(2), 145–152.

    Article  CAS  Google Scholar 

  • Saller, M. M., Prall, W. C., Docheva, D., Schonitzer, V., Popov, T., Anz, D., Clausen-Schaumann, H., Mutschler, W., Volkmer, E., Schieker, M., & Polzer, H. (2012). Increased stemness and migration of human mesenchymal stem cells in hypoxia is associated with altered integrin expression. Biochemical and Biophysical Research Communications, 423(2), 379–385.

    Article  CAS  Google Scholar 

  • Sethe, S., Scutt, A., & Stolzing, A. (2006). Aging of mesenchymal stem cells. Ageing Research Reviews, 5(1), 91–116.

    Article  CAS  Google Scholar 

  • Son, B. R., Marquez-Curtis, L. A., Kucia, M., Wysoczynski, M., Turner, A. R., Ratajczak, J., Ratajczak, M.Z., & Janowska-Wieczorek, A. (2006). Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells, 24(5), 1254–1264.

    Article  CAS  Google Scholar 

  • Strojny, C., Boyle, M., Bartholomew, A., Sundivakkam, P., & Alapati, S. (2015). Interferon gamma-treated dental pulp stem cells promote human mesenchymal stem cell migration in vitro. Journal of Endodontia, 41(8), 1259–1264.

    Article  Google Scholar 

  • Tamama, K., Fan, V. H., Griffith, L. G., Blair, H. C., & Wells, A. (2006). Epidermal growth factor as a candidate for ex vivo expansion of bone marrow–derived mesenchymal stem cells. Stem Cells, 24(3), 686–695.

    Article  CAS  Google Scholar 

  • Tamama, K., Kawasaki, H., & Wells, A. (2010). Epidermal growth factor (EGF) treatment on multipotential stromal cells (mscs). Possible enhancement of therapeutic potential of msc. Journal of Biomedicine and Biotechnology, 2010, 10.

    Google Scholar 

  • Tateishi, K., Ando, W., Higuchi, C., Hart, D. A., Hashimoto, J., Nakata, K., Yoshikawa, H., & Nakamura, N. (2008). Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSC: Potential feasibility for clinical applications. Cell Transplantation, 17(5), 549–557.

    Article  CAS  Google Scholar 

  • Wang, X., Sha, X. J., Li, G. H., Yang, F. S., Ji, K., Wen, L. Y., Liu, S. Y., Chen, L., Ding, Y., & Xuan, K. (2012). Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Archives of Oral Biology, 57(9), 1231–1240.

    Article  CAS  Google Scholar 

  • Werner, S., & Grose, R. (2003). Regulation of wound healing by growth factors and cytokines. Physiological Reviews, 83(3), 835–870.

    Article  CAS  Google Scholar 

  • Yanada, S., Ochi, M., Kojima, K., Sharman, P., Yasunaga, Y., & Hiyama, E. (2006). Possibility of selection of chondrogenic progenitor cells by telomere length in FGF-2-expanded mesenchymal stromal cells. Cell Proliferation, 39(6), 575–584.

    Article  CAS  Google Scholar 

  • Yu, Q., Liu, L., Lin, J., Wang, Y., Xuan, X., Guo, Y., & Hu, S. (2015). SDF-1α/CXCR4 axis mediates the migration of mesenchymal stem cells to the hypoxic-ischemic brain lesion in a rat model. Cell Journal (Yakhteh), 16(4), 440–447.

    Google Scholar 

Download references

Acknowledgement

This work was supported by High Impact Research MOHE Grant UM.C/625/1/HIR/MOHE/DENT/01 from the Ministry of Higher Education Malaysia. The authors thank the staff nurses from Oral and Maxillofacial Sciences Department, Faculty of Dentistry, University of Malaya, for their support in the collection of blood from donors.

Conflicts of Interest

The authors deny any conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Hayaty Abu Kasim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Haque, N., Abu Kasim, N.H. (2017). Pooled Human Serum Increases Regenerative Potential of In Vitro Expanded Stem Cells from Human Extracted Deciduous Teeth. In: Van Pham, P. (eds) Stem Cells: Biology and Engineering. Advances in Experimental Medicine and Biology(), vol 1083. Springer, Cham. https://doi.org/10.1007/5584_2017_74

Download citation

Publish with us

Policies and ethics