Skip to main content

Cancer Stem Cells in Head and Neck Carcinomas: Identification and Possible Therapeutic Implications

  • Conference paper
  • First Online:
Stem Cells: Biology and Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((ICRRM,volume 1083))

Abstract

The recurrence and/or lack of response of certain tumors to radio- and chemotherapy has been attributed to a small subpopulation of cells termed cancer stem cells (CSCs). CSCs have been identified in many tumors (including solid and hematological tumors). CSCs are characterized by their capacity for self-renewal, their ability to introduce heterogeneity within a tumor mass and its metastases, genomic instability, and their insensitivity to both radiation and chemotherapy. The latter highlights the clinical importance of studying this subpopulation since their resistance to traditional treatments may lead to metastatic disease and/or tumor relapse. Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common malignancy worldwide with the highest incidence occurring in East Asia and eastern and southern Africa. Several cellular subpopulations believed to have CSC properties have been isolated from HNSCCs, but at present, identification and characterization of CSCs remains an experimental challenge with no established or standardized protocols in place to confirm their identity. In this review we discuss current approaches to the study of CSCs with a focus on HNSCCs, particularly in the context of what this might mean from a therapeutic perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

AKT:

Protein kinase B

ALCAM:

Activated leukocyte cell adhesion molecule

ALDH:

Aldehyde dehydrogenase

ATP:

Adenosine triphosphate

BCRP:

Breast cancer resistant protein

BMI1:

Moloney murine leukemia virus insertion site 1

CD44:

Cluster of differentiation

CSC:

Cancer stem cell

EMT:

Epithelial-mesenchymal transition

ESCC:

Esophageal squamous cell carcinoma

FACS:

Fluorescence-activated cell sorting

HIF:

Hypoxia-inducible factors

HNC:

Head and neck carcinoma

HNSCC:

Head and neck squamous cell carcinoma

HPV:

Human papillomavirus

HSA:

Heat stable antigen

ICAM1:

Intercellular adhesion molecule 1

MAPK:

Mitogen-activated protein kinases

NOD:

Nonobese diabetic

Oct3/4:

Octamer-binding transcription factor 3/4

OSCC:

Oral squamous cell carcinoma

P-gp:

P-glycoprotein

PI3K:

Phosphatidylinositol-3-kinase

POU:

Pit-Oct-Unc

SCC:

Squamous cell carcinoma

SCID:

Severe combined immunodeficiency

SOX2:

Sex-determining region Y-box2

SP:

Side population

References

  • Albrecht, C., & Viturro, E. (2007). The ABCA subfamily--gene and protein structures, functions and associated hereditary diseases. Pflügers Archiv, 453(5), 581–589.

    Article  CAS  PubMed  Google Scholar 

  • Allegra, E., & Trapasso, S. (2012). Cancer stem cells in head and neck cancer. Oncotargets and Therapy, 5, 375–583.

    Article  PubMed  PubMed Central  Google Scholar 

  • Borst, P., Evers, R., Kool, M., et al. (1999). The multidrug resistance protein family. Biochimica et Biophysica Acta, 1461, 347–357.

    Article  CAS  PubMed  Google Scholar 

  • Bourguignon, L. Y., Wong, G., Earie, C., et al. (2012). Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. The Journal of Biological Chemistry, 287(39), 32800–32824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruni, L., Barrionuevo-Rosas, L., Albero, G. et al. (2017). Human papillomavirus and related diseases in South Africa. Summary Report.

    Google Scholar 

  • Chen, Y. C., Chen, Y. W., Hsu, H. S., et al. (2009). Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochemical and Biophysical Research Communications, 385(3), 307–313.

    Article  CAS  PubMed  Google Scholar 

  • Chen, D., Wu, M., Li, Y., et al. (2017). Targeting BMI1 + cancer stem cells overcomes Chemoresistance and inhibits metastases in squamous cell carcinoma. Cell Stem Cell, 20(5), 621–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou, S. H., CC, Y., Huang, C. Y., et al. (2008). Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clinical Cancer Research, 14(13), 4085–4095.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, M., & Fuller, M. (2006). Stem cells and cancer: Two faces of eve. Cell, 124(6), 111–1115.

    Article  CAS  Google Scholar 

  • Clay, M. R., Tabor, M., Owen, J. H., et al. (2010). Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head & Neck, 23(9), 1195–1201.

    Article  Google Scholar 

  • Dean, M. (2009). ABC transporters, drug resistance, and cancer stem cells. Journal of Mammary Gland Biology and Neoplasia, 14(1), 3–9.

    Article  PubMed  Google Scholar 

  • Dean, M., Hamon, Y., & Chimini, G. (2001). The human ATP-binding cassette (ABC) transporter superfamily. Journal of Lipid Research, 42(7), 1007–1017.

    CAS  PubMed  Google Scholar 

  • Ding, X., Wu, J., & Jiang, C. (2010). ABCG2: A potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sciences, 86(17–18), 631–637.

    Article  CAS  PubMed  Google Scholar 

  • El-Naggar, A., Chan, J., & Grandis, J. (Eds). (2017). Tumours of the oropharynx (base of tongue, tonsils, adenoids). In WHO Classification of Head and Nect Tumours. IARC.

    Google Scholar 

  • Erdei, Z., Lőrincz, R., Szebényi, K., et al. (2014). Expression pattern of the human ABC transporters in pluripotent embryonic stem cells and in their derivatives. Cytometry Part B, Clinical Cytometry, 86(5), 299–310.

    Article  PubMed  Google Scholar 

  • Eun, K., Ham, S. W., & Kim, H. (2017). Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting. BMB Reports, 50(3), 117–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eyler, C., & Rich, J. (2008). Survival of the fittest: Cancer stem cells in therapeutic resistance and angiogenesis. Journal of Clinical Oncology, 26(17), 2839–2845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fábián, Á., Vereb, G., & Szöllosi, J. (2013). The hitchhikers guide to cancer stem cell theory: Markers, pathways and therapy. Cytometry. Part A, 83(1), 62–71.

    Article  CAS  Google Scholar 

  • Falasca, M., & Linton, K. J. (2012). Investigational ABC transporter inhibitors. Expert Opinion on Investigational Drugs, 21(5), 657–666.

    Article  CAS  PubMed  Google Scholar 

  • Fan, Z., Li, M., Chen, X., et al. (2017). Prognostic value of cancer stem cell markers in head and neck squamous cell carcinoma: A meta-analysis. Scientific Reports, 7, 1–8.

    Article  CAS  Google Scholar 

  • Gil, J., Stembalska, A., Pesz, K. A., et al. (2008). Cancer stem cells: The theory and perspectives in cancer therapy. Journal of Applied Genetics, 49(2), 193–199.

    Article  PubMed  Google Scholar 

  • Golebiewska, A., Brons, N. H., Bjerkvig, R., et al. (2011). Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell, 8(2), 136–147.

    Article  CAS  PubMed  Google Scholar 

  • González-Moles, M. A., Scully, C., Ruiz-Ávila, I., et al. (2013). The cancer stem cell hypothesis applied to oral carcinoma. Oral Oncology, 49(8), 738–746.

    Article  CAS  PubMed  Google Scholar 

  • Goodell, M. A., Brose, K., Paradis, G., et al. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. The Journal of Experimental Medicine, 183, 1797–1806.

    Article  CAS  PubMed  Google Scholar 

  • Grimm, M., Krimmel, M., Polligkeit, J., et al. (2012). ABCB5 expression and cancer stem cell hypothesis in oral squamous cell carcinoma. European Journal of Cancer, 48(17), 3186–3197.

    Article  CAS  PubMed  Google Scholar 

  • Han, J., Fujisawa, T., Husain, S. R., et al. (2014). Identification and characterization of cancer stem cells in human head and neck squamous cell carcinoma. BMC Cancer, 14(1), 173–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hang, D., Dong, H. C., Ning, T., et al. (2012). Prognostic value of the stem cell markers CD133 and ABCG2 expression in esophageal squamous cell carcinoma. Diseases of the Esophagus, 25(7), 638–644.

    Article  CAS  PubMed  Google Scholar 

  • Harper, L. J., Piper, K., Common, J., et al. (2007). Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. Journal of Oral Pathology & Medicine, 36(10), 594–603.

    Article  Google Scholar 

  • Heddleston, J. M., Li, Z., Lathia, J. D., et al. (2010). Hypoxia inducible factors in cancer stem cells. British Journal of Cancer, 102(5), 789–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huls, M., Russel, F. G., & Masereeuw, R. (2009). The role of ATP binding cassette transporters in tissue defense and organ regeneration. The Journal of Pharmacology and Experimental Therapeutics, 328(1), 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Jamal-Hanjani, M., Quezada, S. A., Larkin, J., et al. (2015). Translational implications of tumor heterogeneity. Clinical Cancer Research, 21(6), 1258–1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jemal, A., Bray, F., Center, M. M., et al. (2011). Global cancer statistics. CA: a Cancer Journal for Clinicians, 61(2), 69–90.

    Google Scholar 

  • Karimnejad, K., Lindquist, N., & Lin, R. (2016). The role of cancer stem cells in head and neck squamous cell carcinoma and its clinical implications. In New aspects in molecular and cellular mechanisms of human carcinogenesis (pp. 97–113).

    Google Scholar 

  • Kaseb, H. O., Fohrer-Ting, H., Lewis, D. W., et al. (2016). Identification, expansion and characterization of cancer cells with stem cell properties from head and neck squamous cell carcinomas. Experimental Cell Research, 348(1), 75–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koukourakis, M. I., Giatromanolaki, A., Tsakmaki, V., et al. (2012). Cancer stem cell phenotype relates to radio-chemotherapy outcome in locally advanced squamous cell head–neck cancer. British Journal of Cancer, 106(5), 846–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard, G. D., Fojo, T., & Bates, S. E. (2003). The role of ABC transporters in clinical practice. The Oncologist, 8(5), 411–424.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Gao, Q., Guo, L., et al. (2011). The PTEN/PI3K/Akt pathway regulates stem-like cells in primary esophageal carcinoma cells. Cancer Biology & Therapy, 11(11), 950–958.

    Article  CAS  Google Scholar 

  • Liang, S. B., & Fu, L. W. (2017). Application of single-cell technology in cancer research. Biotechnology Advances, 35(4), 443–449.

    Article  CAS  PubMed  Google Scholar 

  • Lin, T., Islam, O., & Heese, K. (2006). ABC transporters, neural stem cells and neurogenesis – a different perspective. Cell Research, 16, 857–871.

    Article  CAS  PubMed  Google Scholar 

  • Mao, Q., & Unadkat, J. D. (2015). Role of the Breast Cancer Resistance Protein (BCRP/ABCG2) in drug transport—An update. The AAPS Journal, 17(1), 65–82.

    Article  CAS  PubMed  Google Scholar 

  • Mǎrgǎritescu, C., Pirici, D., Simionescu, C., et al. (2012). The utility of CD44, CD117 and CD133 in identification of cancer stem cells (CSC) in oral squamous cell carcinomas (OSCC). Romanian Journal of Morphology and Embryology, 52, 985–993.

    Google Scholar 

  • Méry, B., Guy, J. B., Espenel, S., et al. (2016). Targeting head and neck tumoral stem cells: From biological aspects to therapeutic perspectives. World J Stem Cells, 8(1), 13–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Misra, S., Toole, B. P., & Ghatak, S. (2006). Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. The Journal of Biological Chemistry, 281(46), 34936–34941.

    Article  CAS  PubMed  Google Scholar 

  • Modur, V., Joshi, P., Nie, D., et al. (2016). CD24 expression may play a role as a predictive indicator and a modulator of cisplatin treatment response in head and neck squamous cellular carcinoma. PLoS One. https://doi.org/10.1371/journal.pone.0156651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noto, Z., Yoshida, T., Okabe, M., et al. (2013). CD44 and SSEA-4 positive cells in an oral cancer cell line HSC-4 possess cancer stem-like cell characteristics. Oral Oncology, 49(8), 787–795.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto, H., Fujishima, F., Nakamura, Y., et al. (2013). Significance of CD133 expression in esophageal squamous cell carcinoma. World Journal of Surgical Oncology, 11(1), 51–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prince, M. E., Sivanandan, R., Kaczorowski, A., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 973–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian, X., Tan, C., Wang, F., et al. (2016). Esophageal cancer stem cells and implications for future therapeutics. OncoTargets Ther, 9, 2247–2254.

    CAS  Google Scholar 

  • Ren, Z. H., Zhang, C. P., & Ji, T. (2016). Expression of SOX2 in oral squamous cell carcinoma and the association with lymph node metastasis. Oncology Letters, 11(3), 1973–1979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saliba, A. E., Westermann, A. J., Gorski, S. A., et al. (2014). Single-cell RNA-seq: Advances and future challenges. Nucleic Acids Research, 42, 8845–8860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato, N., Meijer, L., Skaltsounis, L., et al. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Medicine, 10(1), 55–63.

    Article  CAS  PubMed  Google Scholar 

  • Satpute, P. S., Hazarey, V., Ahmed, R., et al. (2013). Cancer stem cells in head and neck squamous cell carcinoma: A review. Asian Pacific Journal of Cancer Prevention, 14(10), 5579–5587.

    Article  PubMed  Google Scholar 

  • Spiegelberg, D., Kuku, G., Selvaraju, R., et al. (2014). Characterization of CD44 variant expression in head and neck squamous cell carcinomas. Tumor Biology, 35(3), 2053–2062.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi-Yanaga, F., & Kahn, M. (2010). Targeting Wnt signaling: Can we safely eradicate cancer stem cells? Clinical Cancer Research, 16(12), 3153–3162.

    Article  CAS  PubMed  Google Scholar 

  • Toledano, I., Graff, P., Serre, A., et al. (2012). Intensity-modulated radiotherapy in head and neck cancer: Results of the prospective study GORTEC 2004-03. Radiotherapy and Oncology, 103(1), 57–62.

    Article  PubMed  Google Scholar 

  • Torre, L. A., Bray, F., Siegel, R. L., et al. (2015). Global cancer statistics, 2012. CA: a Cancer Journal for Clinicians, 65(2), 87–108.

    Google Scholar 

  • Tsai, L. L., CC, Y., Chang, Y. C., et al. (2011). Markedly increased Oct4 and Nanog expression correlates with cisplatin resistance in oral squamous cell carcinoma. Journal of Oral Pathology & Medicine, 40(8), 621–628.

    Article  CAS  Google Scholar 

  • Tsai, S. T., Wang, P. J., Liou, N. J., et al. (2015). ICAM1 is a potential cancer stem cell marker of esophageal squamous cell carcinoma. PLoS One. https://doi.org/10.1371/journal.pone.0142834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valent, P., Bonnet, D., De Maria, R., et al. (2012). Cancer stem cell definitions and terminology : The devil is in the details. Nature Review Cancer, 12, 767–775.

    Article  CAS  Google Scholar 

  • Vallard, A., Espenel, S., & Guy, J. B. (2016). Targeting stem cells by radiation: From the biological angle to clinical aspects. World Journal Stem Cells, 8(8), 243–250.

    Article  Google Scholar 

  • Vasiliou, V., Vasiliou, K., & Nebert, D. W. (2009). Human ATP-binding cassette (ABC) transporter family. Human Genomics, 3(3), 281–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigneswaran, N., & Williams, D. M. (2014). Epidemiological trends in head and neck cancer and aids in diagnosis. Oral and Maxillofacial Surgery Clinics of North America, 26(2), 123–141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vissink, A., Mitchell, J. B., Baum, B. J., et al. (2010). Clinical management of salivary gland hypofunction and xerostomia in head and neck cancer patients: Successes and barriers. International Journal of Radiation Oncology, Biology, Physics, 78(4), 983–991.

    Article  PubMed  PubMed Central  Google Scholar 

  • Visvader, J. E., & Lindeman, G. J. (2012). Perspective cancer stem Cells : Current status and evolving complexities. Cell Stem Cell, 10(6), 717–728.

    Article  CAS  PubMed  Google Scholar 

  • Vlashi, E., McBride, W., & Pajonk, F. (2009). Radiation responses of cancer stem cells. Journal of Cellular Biochemistry, 108(2), 339–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, E., Casciano, C. N., Clement, R. P., et al. (2000). In vitro flow cytometry method to quantitatively assess inhibitors of P-glycoprotein. Drug Metabolism and Disposition, 28(5), 522–528.

    CAS  PubMed  Google Scholar 

  • Wang, J., Guo, L. P., Chen, L. Z., et al. (2007). Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Research, 67(8), 3716–3724.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Wong, G., & de Heer, A. (2009). CD44 variant isoforms in head and neck squamous cell carcinoma progression. Laryngoscope, 119(8), 1518–1530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Zhe, H., Zhang, N., et al. (2012). Cancer stem cell marker ALDH1 expression is associated with lymph node metastasis and poor survival in esophageal squamous cell carcinoma: a study from high incidence area of northern China. Diseases of the Esophagus, 25, 560–565.

    Article  PubMed  Google Scholar 

  • Wicha, M., Liu, S., & Dontu, G. (2006). Cancer stem cells: An old idea – a paradigm shift. Cancer Research, 66(4), 1883–1890.

    Article  CAS  PubMed  Google Scholar 

  • Yan, M., Yang, X., Wang, L., et al. (2013). Plasma membrane proteomics of tumor spheres identify CD166 as a novel marker for cancer stem-like cells in head and neck squamous cell carcinoma. Molecular & Cellular Proteomics, 12(11), 3271–3284.

    Article  CAS  Google Scholar 

  • Yang, M. H., Hsu, D. S., Wang, H. W., et al. (2010). Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nature Cell Biology, 12(10), 982–992.

    Article  CAS  PubMed  Google Scholar 

  • Yaromina, A., Krause, M., Thames, H., et al. (2007). Pre-treatment number of clonogenic cells and their radiosensitivity are major determinants of local tumour control after fractionated irradiation. Radiotherapy and Oncology, 83(3), 304–310.

    Article  CAS  PubMed  Google Scholar 

  • Yata, K., Beder, L., Tamagawa, S., et al. (2015). MicroRNA expression profiles of cancer stem cells in head and neck squamous cell carcinoma. International Journal of Oncology, 47(4), 1249–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, C., Lo, W., Chen, Y., et al. (2010). Bmi-1 regulates snail expression and promotes metastasis ability in head and neck squamous cancer-derived ALDH1 positive cells. Journal of Oncology, 2011, 1–16.

    Article  CAS  Google Scholar 

  • Zechner, D., Fuijita, Y., Hulsken, J., et al. (2003). Beta-catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Developmental Biology, 258(2), 406–418.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, P., Zhang, Y., Mao, L., et al. (2009). Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Letters, 277(2), 227–234.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Shi, S., Yen, Y., et al. (2010). A subpopulation of CD133+ cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Letters, 289(2), 151–160.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G., Ma, L., Xie, Y., et al. (2012a). Esophageal cancer tumorspheres involve cancer stem-like populations with elevated aldehyde dehydrogenase enzymatic activity. Molecular Medicine Reports, 6(3), 519–524.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Filho, M. S. A., & Nor, J. E. (2012b). The biology of head and neck cancer stem cells. Oral Oncology, 49(1), 1–9.

    Article  Google Scholar 

  • Zhu, L., Yuan, L., Wang, H., et al. (2015). A meta-analysis of concurrent chemoradiotherapy for advanced esophageal cancer. PLoS One. https://doi.org/10.1371/journal.pone.0128616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerer, R., Ludwig, N., Kampmann, A., et al. (2017). CD24+ tumor-initiating cells from oral squamous cell carcinoma induce initial angiogenesis in vivo. Microvascular Research, 112, 101–108.

    Article  CAS  PubMed  Google Scholar 

  • Zscheppang, K., Kurth, I., Wachtel, N., et al. (2016). Efficacy of beta1 integrin and EGFR targeting in sphere-forming human head and neck cancer cells. Journal of Cancer, 7(6), 736–745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the South African Medical Research Council in terms of the SAMRC's Flagship Award Project SAMRC-RFA-UFSP-01-2013/STEM CELLS, the SAMRC Extramural Unit for Stem Cell Research and Therapy and the Institute for Cellular and Molecular Medicine of the University of Pretoria.

Conflicts of Interest

The authors have no conflicts of interest to declare.

Author Contribution

MSP conceived the project, EW drafted the first version of the manuscript, and EW, SB, SN, AEM, and MSP provided intellectual input and contributed to the writing of the manuscript. All authors vetted and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sean Pepper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wolmarans, E., Boy, S.C., Nel, S., Mercier, A.E., Pepper, M.S. (2017). Cancer Stem Cells in Head and Neck Carcinomas: Identification and Possible Therapeutic Implications. In: Van Pham, P. (eds) Stem Cells: Biology and Engineering. Advances in Experimental Medicine and Biology(), vol 1083. Springer, Cham. https://doi.org/10.1007/5584_2017_116

Download citation

Publish with us

Policies and ethics