Skip to main content

Hyaluronidase and Chondroitinase

  • Chapter
  • First Online:
Protein Reviews

Part of the book series: Advances in Experimental Medicine and Biology ((PROTRE,volume 925))

Abstract

Glycosaminoglycans (GAGs) are important constituents of the extracellular matrix that make significant contributions to biological processes and have been implicated in a wide variety of diseases. GAG-degrading enzymes with different activities have been found in various animals and microorganisms, and they play an irreplaceable role in the structure and function studies of GAGs. As two kind of important GAG-degrading enzymes, hyaluronidase (HAase) and chondroitinase (CSase) have been widely studied and increasing evidence has shown that, in most cases, their substrate specificities overlap and thus the “HAase” or “CSase” terms may be improper or even misnomers. Different from previous reviews, this article combines HAase and CSase together to discuss the traditional classification, substrate specificity, degradation pattern, new resources and naming of these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GAG:

glycosaminoglycan

CS:

chondroitin sulfate

DS:

dermatan sulfate

HA:

hyaluronic acid

Hep:

heparin

HS:

heparan sulfate

GlcUA:

D-glucuronic acid

IdoUA:

L-iduronic acid

HexUA:

hexuronic acid

CSase:

chondroitinase

HAase:

hyaluronidase

GalNAc:

N-acetyl-D-galactosamine

GlcNAc:

N-acetyl-D-glucosamine

HexUA:

hexuronic acid

HexN:

hexosamine

References

  • Bergefall K, Trybala E, Johansson M, Uyama T, Naito S, Yamada S, Kitagawa H, Sugahara K, Bergström T (2005) Chondroitin sulfate characterized by the E-disaccharide unit is a potent inhibitor of herpes simplex virus infectivity and provides the virus binding sites on gro2C cells. J Biol Chem 280(37):32193–32199

    Article  CAS  PubMed  Google Scholar 

  • Boneu B (1995) Glycosaminoglycans: clinical use. In: Seminars in thrombosis and hemostasis, 1995. vol 2. p 209–212

    Google Scholar 

  • Bülow HE, Hobert O (2006) The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 22:375–407

    Article  PubMed  Google Scholar 

  • Capila I, Linhardt RJ (2002) Heparin–protein interactions. Angew Chem Int Ed Engl 41(3):390–412

    Article  CAS  Google Scholar 

  • Cheng F, Heinegård D, Malmström A, Schmidtchen A, Yoshida K, Fransson L-A (1994) Patterns of uronosyl epimerization and 4-/6–0-sulphation in chondroitin/dermatan sulphate from decorin and biglycan of various bovine tissues. Glycobiology 4(5):685–696

    Article  CAS  PubMed  Google Scholar 

  • Cherr GN, Yudin AI, Overstreet JW (2001) The dual functions of GPI-anchored PH-20: hyaluronidase and intracellular signaling. Matrix Biol 20(8):515–525

    Article  CAS  PubMed  Google Scholar 

  • Clement AM, Nadanaka S, Masayama K, Mandl C, Sugahara K, Faissner A (1998) The DSD-1 carbohydrate epitope depends on sulfation, correlates with chondroitin sulfate D motifs, and is sufficient to promote neurite outgrowth. J Biol Chem 273(43):28444–28453

    Article  CAS  PubMed  Google Scholar 

  • Csoka AB, Frost GI, Stern R (2001) The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol 20(8):499–508

    Article  CAS  PubMed  Google Scholar 

  • Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71(1):435–471

    Article  CAS  PubMed  Google Scholar 

  • Faissner A, Clement A, Lochter A, Streit A, Mandl C, Schachner M (1994) Isolation of a neural chondroitin sulfate proteoglycan with neurite outgrowth promoting properties. J Cell Biol 126(3):783–799

    Article  CAS  PubMed  Google Scholar 

  • Franzmann EJ, Schroeder GL, Goodwin WJ, Weed DT, Fisher P, Lokeshwar VB (2003) Expression of tumor markers hyaluronic acid and hyaluronidase (HYAL1) in head and neck tumors. Int J Cancer 106(3):438–445

    Article  CAS  PubMed  Google Scholar 

  • Fraser J, Laurent T, Laurent U (1997) Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Garg A, Anderson R, Zaneveld L, Garg S (2005a) Biological activity assessment of a novel contraceptive antimicrobial agent. J Androl 26(3):414–421

    Article  CAS  PubMed  Google Scholar 

  • Garg S, Vermani K, Garg A, Anderson RA, Rencher WB, Zaneveld LJ (2005b) Development and characterization of bioadhesive vaginal films of sodium polystyrene sulfonate (PSS), a novel contraceptive antimicrobial agent. Pharm Res 22(4):584–595

    Article  CAS  PubMed  Google Scholar 

  • Garron M-L, Cygler M (2010) Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology 20(12):1547–1573

    Article  CAS  PubMed  Google Scholar 

  • Gu K, Linhardt R, Laliberte M, Zimmermann J (1995) Purification, characterization and specificity of chondroitin lyases and glycuronidase from Flavobacterium heparinum. Biochem J 312(2):569–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Shi Y, Sheng J, Wang F (2014) A novel hyaluronidase produced by Bacillus sp. A50. PLoS One 9(4):e94156

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamai A, Hashimoto N, Mochizuki H, Kato F, Makiguchi Y, Horie K, Suzuki S (1997) Two distinct chondroitin sulfate ABC lyases an endoeliminase yielding tetrasaccharides and an exoeliminase preferentially acting on oligosaccharides. J Biol Chem 272(14):9123–9130

    Article  CAS  PubMed  Google Scholar 

  • Han W, Wang W, Zhao M, Sugahara K, Li F (2014) A novel eliminase from a marine bacterium that degrades hyaluronan and chondroitin sulfate. J Biol Chem 289(40):27886–27898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handel T, Johnson Z, Crown S, Lau E, Sweeney M, Proudfoot A (2005) Regulation of protein function by glycosaminoglycans-as exemplified by chemokines. Annu Rev Biochem 74:385–410

    Article  CAS  PubMed  Google Scholar 

  • Hardy CM, Clydesdale G, Mobbs KJ, Pekin J, Lloyd ML, Sweet C, Shellam GR, Lawson MA (2004) Assessment of contraceptive vaccines based on recombinant mouse sperm protein PH20. Reproduction 127(3):325–334

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280(2):309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiyama K, Okada S (1975) Crystallization and some properties of chondroitinase from Arthrobacter aurescens. J Biol Chem 250(5):1824–1828

    CAS  PubMed  Google Scholar 

  • Hoffman P, Meyer K, Linker A (1956) Transglycosylation during the mixed digestion of hyaluronic acid and chondroitin sulfate by testicular hyaluronidase. J Biol Chem 219(2):653–663

    CAS  PubMed  Google Scholar 

  • Hovingh P, Linker A (1999) Hyaluronidase activity in leeches (Hirudinea). Comp Biochem Physiol B Biochem Mol Biol 124(3):319–326

    Article  CAS  PubMed  Google Scholar 

  • Hsiao J-C, Chung C-S, Chang W (1999) Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J Virol 73(10):8750–8761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang H-Y, Olson SK, Esko JD, Horvitz HR (2003) Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis. Nature 423(6938):439–443

    Article  CAS  PubMed  Google Scholar 

  • Hynes WL, Walton SL (2000) Hyaluronidases of Gram-positive bacteria. FEMS Microbiol Lett 183(2):201–207

    Article  CAS  PubMed  Google Scholar 

  • Izumikawa T, Kitagawa H, Mizuguchi S, Nomura KH, Nomura K, J-i T, Gengyo-Ando K, Mitani S, Sugahara K (2004) Nematode chondroitin polymerizing factor showing cell-/organ-specific expression is indispensable for chondroitin synthesis and embryonic cell division. J Biol Chem 279(51):53755–53761

    Article  CAS  PubMed  Google Scholar 

  • Jackson RL, Busch SJ, Cardin AD (1991) Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev 71(2):481–539

    CAS  PubMed  Google Scholar 

  • Jedrzejas MJ, Stern R (2005) Structures of vertebrate hyaluronidases and their unique enzymatic mechanism of hydrolysis. Proteins 61(2):227–238

    Article  CAS  PubMed  Google Scholar 

  • Jedrzejas MJ, Mello LV, de Groot BL, Li S (2002) Mechanism of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase STRUCTURES OF COMPLEXES WITH THE SUBSTRATE. J Biol Chem 277(31):28287–28297

    Article  CAS  PubMed  Google Scholar 

  • Kale V, Friðjónsson Ó, Jónsson JÓ, Kristinsson HG, Ómarsdóttir S, Hreggviðsson GÓ (2015) Chondroitin lyase from a marine Arthrobacter sp. MAT3885 for the production of chondroitin sulfate disaccharides. Mar Biotechnol (NY) 17(4):479–492

    Article  CAS  Google Scholar 

  • Kamhi E, Joo EJ, Dordick JS, Linhardt RJ (2013) Glycosaminoglycans in infectious disease. Biol Rev Camb Philo Soc 88(4):928–943

    Article  Google Scholar 

  • Kaneiwa T, Mizumoto S, Sugahara K, Yamada S (2010) Identification of human hyaluronidase-4 as a novel chondroitin sulfate hydrolase that preferentially cleaves the galactosaminidic linkage in the trisulfated tetrasaccharide sequence. Glycobiology 20(3):300–309

    Article  CAS  PubMed  Google Scholar 

  • Karlstam B, Vincent J, Johansson B, Brynö C (1991) A simple purification method of squeezed krill for obtaining high levels of hydrolytic enzymes. Prep Biochem 21(4):237–256

    CAS  PubMed  Google Scholar 

  • Kelly SJ, Taylor KB, Li S, Jedrzejas MJ (2001) Kinetic properties of Streptococcus pneumoniae hyaluronate lyase. Glycobiology 11(4):297–304

    Article  CAS  PubMed  Google Scholar 

  • Klüppel M, Wight TN, Chan C, Hinek A, Wrana JL (2005) Maintenance of chondroitin sulfation balance by chondroitin-4-sulfotransferase 1 is required for chondrocyte development and growth factor signaling during cartilage morphogenesis. Development 132(17):3989–4003

    Article  PubMed  Google Scholar 

  • Kreil G (1995) Hyaluronidases—a group of neglected enzymes. Protein Sci 4(9):1666–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurata A, Matsumoto M, Kobayashi T, Deguchi S, Kishimoto N (2015) Hyaluronate lyase of a deep-sea Bacillus niacini. Mar Biotechnol (NY) 17(3):277–284

    Article  CAS  Google Scholar 

  • Kusche-Gullberg M, Kjellén L (2003) Sulfotransferases in glycosaminoglycan biosynthesis. Curr Opin Struct Biol 13(5):605–611

    Article  CAS  PubMed  Google Scholar 

  • Li S, Jedrzejas MJ (2001) Hyaluronan binding and degradation by Streptococcus agalactiae hyaluronate lyase. J Biol Chem 276(44):41407–41416

    Article  CAS  PubMed  Google Scholar 

  • Li F, Shetty AK, Sugahara K (2007) Neuritogenic activity of chondroitin/dermatan sulfate hybrid chains of embryonic pig brain and their mimicry from shark liver INVOLVEMENT OF THE PLEIOTROPHIN AND HEPATOCYTE GROWTH FACTOR SIGNALING PATHWAYS. J Biol Chem 282(5):2956–2966

    Article  CAS  PubMed  Google Scholar 

  • Li F, Nandini CD, Hattori T, Bao X, Murayama D, Nakamura T, Fukushima N, Sugahara K (2010) Structure of pleiotrophin-and hepatocyte growth factor-binding sulfated hexasaccharide determined by biochemical and computational approaches. J Biol Chem 285(36):27673–27685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linhardt RJ, Toida T (2004) Role of glycosaminoglycans in cellular communication. Acc Chem Res 37(7):431–438

    Article  CAS  PubMed  Google Scholar 

  • Linhardt R, Galliher P, Cooney C (1987) Polysaccharide lyases. Appl Biochem Biotechnol 12(2):135–176

    Article  Google Scholar 

  • Linhardt RJ, Avci FY, Toida T, Kim YS, Cygler M (2006) CS lyases: structure, activity, and applications in analysis and the treatment of diseases. Adv Pharmacol 53:187–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linker A, Hoffman P, Meyer K (1957) The hyaluronidase of the leech: an endoglucuronidase. Nature 180(4590):810–811

    Article  CAS  PubMed  Google Scholar 

  • Linker A, Meyer K, Hoffman P (1960) The production of hyaluronate oligosaccharides by leech hyaluronidase and alkali. J Biol Chem 235(4):924–927

    CAS  PubMed  Google Scholar 

  • Linn S, Chan T, Lipeski L, Salyers AA (1983) Isolation and characterization of two chondroitin lyases from Bacteroides thetaiotaomicron. J Bacteriol 156(2):859–866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lokeshwar VB, Rubinowicz D, Schroeder GL, Forgacs E, Minna JD, Block NL, Nadji M, Lokeshwar BL (2001) Stromal and epithelial expression of tumor markers hyaluronic acid and HYAL1 hyaluronidase in prostate cancer. J Biol Chem 276(15):11922–11932

    Article  CAS  PubMed  Google Scholar 

  • Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho PM, Henrissat B (2010) A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 432(3):437–444

    Article  CAS  PubMed  Google Scholar 

  • Lunin VV, Li Y, Linhardt RJ, Miyazono H, Kyogashima M, Kaneko T, Bell AW, Cygler M (2004) High-resolution crystal structure of Arthrobacter aurescens chondroitin AC lyase: an enzyme–substrate complex defines the catalytic mechanism. J Mol Biol 337(2):367–386

    Article  CAS  PubMed  Google Scholar 

  • Maccarana M, Olander B, Malmström J, Tiedemann K, Aebersold R, Lindahl U, J-p L, Malmström A (2006) Biosynthesis of dermatan sulfate CHONDROITIN-GLUCURONATE C5-EPIMERASE IS IDENTICAL TO SART2. J Biol Chem 281(17):11560–11568

    Article  CAS  PubMed  Google Scholar 

  • Meyer K, Palmer JW (1934) The polysaccharide of the vitreous humor. J Biol Chem 107(3):629–634

    CAS  Google Scholar 

  • Mizuguchi S, Uyama T, Kitagawa H, Nomura KH, Dejima K, Gengyo-Ando K, Mitani S, Sugahara K, Nomura K (2003) Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans. Nature 423(6938):443–448

    Article  CAS  PubMed  Google Scholar 

  • Mizumoto S, Sugahara K (2013) Glycosaminoglycans are functional ligands for receptor for advanced glycation end-products in tumors. FEBS J 280(10):2462–2470

    Article  CAS  PubMed  Google Scholar 

  • Monzon ME, Fregien N, Schmid N, Falcon NS, Campos M, Casalino-Matsuda SM, Forteza RM (2010) Reactive oxygen species and hyaluronidase 2 regulate airway epithelial hyaluronan fragmentation. J Biol Chem 285(34):26126–26134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadanaka S, Clement A, Masayama K, Faissner A, Sugahara K (1998) Characteristic hexasaccharide sequences in octasaccharides derived from shark cartilage chondroitin sulfate D with a neurite outgrowth promoting activity. J Biol Chem 273(6):3296–3307

    Article  CAS  PubMed  Google Scholar 

  • Nandi S, Akhter MP, Seifert MF, Dai X-M, Stanley ER (2006) Developmental and functional significance of the CSF-1 proteoglycan chondroitin sulfate chain. Blood 107(2):786–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reese KL, Aravindan RG, Griffiths GS, Shao M, Wang Y, Galileo DS, Atmuri V, Triggs-Raine BL, Martin-DeLeon PA (2010) Acidic hyaluronidase activity is present in mouse sperm and is reduced in the absence of SPAM1: evidence for a role for hyaluronidase 3 in mouse and human sperm. Mol Reprod Dev 77(9):759–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silbert JE, Sugumaran G (2002) Biosynthesis of chondroitin/dermatan sulfate. IUBMB life 54(4):177–186

    Article  CAS  PubMed  Google Scholar 

  • Smirnou D, Krčmář M, Kulhánek J, Hermannová M, Bobková L, Franke L, Pepeliaev S, Velebný V (2015) Characterization of hyaluronan-degrading enzymes from yeasts. Appl Biochem Biotechnol 177(3):700–712

    Article  CAS  PubMed  Google Scholar 

  • Stern R (2003) Devising a pathway for hyaluronan catabolism: are we there yet? Glycobiology 13(12):105R–115R

    Article  CAS  PubMed  Google Scholar 

  • Stern R, Jedrzejas MJ (2006) Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev 106(3):818–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugahara K, Mikami T (2007) Chondroitin/dermatan sulfate in the central nervous system. Curr Opin Struct Biol 17(5):536–545

    Article  CAS  PubMed  Google Scholar 

  • Sugahara K, Mikami T, Uyama T, Mizuguchi S, Nomura K, Kitagawa H (2003) Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol 13(5):612–620

    Article  CAS  PubMed  Google Scholar 

  • Sugiura N, Setoyama Y, Chiba M, Kimata K, Watanabe H (2011) Baculovirus envelope protein ODV-E66 is a novel chondroitinase with distinct substrate specificity. J Biol Chem 286(33):29026–29034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiura N, Ikeda M, Shioiri T, Yoshimura M, Kobayashi M, Watanabe H (2013) Chondroitinase from baculovirus Bombyx mori nucleopolyhedrovirus and chondroitin sulfate from silkworm Bombyx mori. Glycobiology 23(12):1520–1530. cwt082

    Article  CAS  PubMed  Google Scholar 

  • Suri A (2004) Sperm specific proteins-potential candidate molecules for fertility control. Reprod Biol Endocrinol 2(10)

    Google Scholar 

  • Taylor KR, Gallo RL (2006) Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J 20(1):9–22

    Article  CAS  PubMed  Google Scholar 

  • Tkalec AL, Fink D, Blain F, Zhang-Sun G, Laliberte M, Bennett DC, Gu K, Zimmermann JJ, Su H (2000) Isolation and expression in Escherichia coli ofcslA and cslB, genes coding for the chondroitin sulfate-degrading enzymes Chondroitinase AC and Chondroitinase B, respectively, from Flavobacterium heparinum. Appl Environ Microbiol 66(1):29–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams RK, Straus SE (1997) Specificity and affinity of binding of herpes simplex virus type 2 glycoprotein B to glycosaminoglycans. J Virol 71(2):1375–1380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada S (2015) Role of hyaluronidases in the catabolism of chondroitin sulfate. In: Biochemical roles of eukaryotic cell surface macromolecules. Springer, Heidelberg, pp 185–197

    Chapter  Google Scholar 

  • Yamada S, Van Die I, Van den Eijnden DH, Yokota A, Kitagawa H, Sugahara K (1999) Demonstration of glycosaminoglycans in Caenorhabditis elegans. FEBS Lett 459(3):327–331

    Article  CAS  PubMed  Google Scholar 

  • Yamagata T, Saito H, Habuchi O, Suzuki S (1968) Purification and properties of bacterial chondroitinases and chondrosulfatases. J Biol Chem 243(7):1523–1535

    CAS  PubMed  Google Scholar 

  • Yin F-X, Wang F-S, Sheng J-Z (2016) Uncovering the catalytic direction of chondroitin AC exolyase: from the reducing end towards the non-reducing end. J Biol Chem 291(9):4399–4406

    Article  CAS  PubMed  Google Scholar 

  • Yuki H, Fishman WH (1963) Purification and characterization of leech hyaluronic acid-endo-β-glucuronidase. J Biol Chem 238(5):1877–1879

    CAS  PubMed  Google Scholar 

  • Zechel DL, Withers SG (2000) Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc Chem Res 33(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Park Y, Kemp MM, Zhao W, Im A, Shaya D, Cygler M, Kim YS, Linhardt RJ (2008) Liquid chromatography–mass spectrometry to study chondroitin lyase action pattern. Anal Biochem 385:57–64

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (No. 31570071), the Major State Basic Research Development Program of China (No. 2012CB822102), and the Shenzhen strategic emerging industry development special funds (JCYJ20140418115815063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuchuan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, W., Wang, J., Li, F. (2016). Hyaluronidase and Chondroitinase. In: Atassi, M. (eds) Protein Reviews. Advances in Experimental Medicine and Biology(), vol 925. Springer, Singapore. https://doi.org/10.1007/5584_2016_54

Download citation

Publish with us

Policies and ethics