Skip to main content

Clostridium difficile in Food and Animals: A Comprehensive Review

  • Chapter
  • First Online:
Advances in Microbiology, Infectious Diseases and Public Health

Part of the book series: Advances in Experimental Medicine and Biology ((AMIDPH,volume 932))

Abstract

Zoonoses are infections or diseases that can be transmitted between animals and humans through direct contact, close proximity or the environment. Clostridium difficile is ubiquitous in the environment, and the bacterium is able to colonise the intestinal tract of both animals and humans. Since domestic and food animals frequently test positive for toxigenic C. difficile, even without showing any signs of disease, it seems plausible that C. difficile could be zoonotic. Therefore, animals could play an essential role as carriers of the bacterium. In addition, the presence of the spores in different meats, fish, fruits and vegetables suggests a risk of foodborne transmission. This review summarises the current available data on C. difficile in animals and foods, from when the bacterium was first described up to the present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Saif N, Brazier JS (1996) The distribution of Clostridium difficile in the environment of South Wales. J Med Microbiol 45:133–137

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Perez S, Blanco JL, Bouza E, Alba P, Gibert X, Maldonado J, Garcia ME (2009) Prevalence of Clostridium difficile in diarrhoeic and non-fdiarrhoeic piglets. Vet Microbiol 137:302–305

    Google Scholar 

  • Álvarez-Pérez S, Blanco JL, Peláez T et al (2013) High prevalence of the epidemic Clostridium difficile PCR ribotype 078 in Iberian free-range pigs. Res Vet Sci 95:358–361

    Article  PubMed  CAS  Google Scholar 

  • Álvarez-Pérez S, Blanco JL, Martínez-Nevado E et al (2014) Shedding of Clostridium difficile PCR ribotype 078 by zoo animals, and report of an unstable metronidazole-resistant isolate from a zebra foal (Equus quagga burchellii). Vet Microbiol 169:218–222

    Article  PubMed  CAS  Google Scholar 

  • Álvarez-Pérez S, Blanco JL, Peláez T et al (2015) Faecal shedding of antimicrobial-resistant Clostridium difficile strains by dogs. J Small Anim Pract 56:190–195

    Article  PubMed  Google Scholar 

  • Arroyo LG, Kruth SA, Willey BM et al (2005) PCR ribotyping of Clostridium difficile isolates originating from human and animal sources. J Med Microbiol 54O:163–166

    Article  CAS  Google Scholar 

  • Arroyo LG, Stämpfli HR, Weese JS (2006) Potential role of Clostridium difficile as a cause of duodenitis-proximal jejunitis in horses. J Med Microbiol 55:605–608

    Article  PubMed  Google Scholar 

  • Asai T, Usui M, Hiki M et al (2013) Clostridium difficile isolated from the fecal contents of swine in Japan. J Vet Med Sci 75:539–541

    Article  PubMed  Google Scholar 

  • Avbersek J, Janezic S, Pate M et al (2009) Diversity of Clostridium difficile in pigs and other animals in Slovenia. Anaerobe 15:252–255

    Article  CAS  PubMed  Google Scholar 

  • Avberšek J, Pirš T, Pate M et al (2014) Clostridium difficile in goats and sheep in Slovenia: characterisation of strains and evidence of age-related shedding. Anaerobe 28:163–167

    Article  PubMed  Google Scholar 

  • Baker AA, Davis E, Rehberger T et al (2010) Prevalence and diversity of toxigenic Clostridium perfringens and Clostridium difficile among Swine Herds in the Midwest. Appl Environ Microbiol 76:2961–2967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandelj P, Trilar T, Racnik J et al (2011) Zero prevalence of Clostridium difficile in wild passerine birds in Europe. FEMS Microbiol Lett 321:183–185

    Article  CAS  PubMed  Google Scholar 

  • Bandelj P, Trilar T, Blagus R et al (2014) Prevalence and molecular characterization of Clostridium difficile isolated from European Barn Swallows (Hirundo rustica) during migration. BMC Vet Res 10:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bauer MP, Kuijper EJ (2015) Potential sources of Clostridium difficile in human infection. Infect Dis Clin North Am 29:29–35

    Article  PubMed  Google Scholar 

  • Båverud V (2004) Clostridium difficile diarrhea: infection control in horses. Vet Clin North Am Equine Prac 20:615–630

    Article  Google Scholar 

  • Båverud V, Gustafsson A, Franklin A et al (2003) Clostridium difficile: prevalence in horses and environment, and antimicrobial susceptibility. Equine Vet J 35:465–471

    Article  PubMed  Google Scholar 

  • Berry AP, Levett PN (1986) Chronic diarrhoea in dogs associated with Clostridium difficile infection. Vet Rec 118:102–103

    Article  CAS  PubMed  Google Scholar 

  • Bojesen AM, Olsen KEP, Bertelsen MF (2006) Fatal enterocolitis in Asian elephants (Elephas maximus) caused by Clostridium difficile. Vet Microbiol 116:329–335

    Article  PubMed  Google Scholar 

  • Borriello SP, Honour P, Turner T et al (1983) Household pets as a potential reservoir for Clostridium difficile infection. J Clin Pathol 36:84–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouttier S, Barc MC, Felix B et al (2010) Clostridium difficile in ground meat, France. Emerg Infec Dis 16:733–735

    Article  Google Scholar 

  • Broda DM, DeLacy KM, Bell RG et al (1996) Psychrotrophic Clostridium spp. associated with “blown pack” spoilage of chilled vacuum-packed red meats and dog rolls in gas-impermeable plastic casings. Int J Food Micro 29:335–352

    Article  CAS  Google Scholar 

  • Burt SA, Siemeling L, Kuijper EJ et al (2012) Vermin on pig farms are vectors for Clostridium difficile PCR ribotypes 078 and 045. Vet Microbiol 160:256–258

    Article  CAS  PubMed  Google Scholar 

  • Busch K, Suchodolski JS, Kühner KA et al (2014) Clostridium perfringens enterotoxin and Clostridium difficile toxin A/B do not play a role in acute haemorrhagic diarrhoea syndrome in dogs. Vet Rec 176:253

    Article  PubMed  Google Scholar 

  • Carman RJ, Evans RH (1984) Experimental and spontaneous clostridial enteropathies of laboratory and free living lagomorphs. Lab Anim Sci 34:443–452

    CAS  PubMed  Google Scholar 

  • Clooten JS, Kruth S, Arroyo L et al (2008) Prevalence and risk factors for Clostridium difficile colonization in dogs and cats hospitalized in an intensive care unit. Vet Microbiol 129:209–214

    Article  PubMed  Google Scholar 

  • Cooper KK, Songer JG, Uzal FA (2013) Diagnosing clostridial enteric disease in poultry. J Vet Diagn Invest 25:314–327

    Article  PubMed  Google Scholar 

  • Costa MC, Stämpfli HR, Arroyo LG (2011) Epidemiology of Clostridium difficile on a veal farm: prevalence, molecular characterization and tetracycline resistance. Vet Microbiol 152:379–384

    Article  CAS  PubMed  Google Scholar 

  • Costa MC, Reid-Smith R, Gow S et al (2012) Prevalence and molecular characterization of Clostridium difficile isolated from feedlot beef cattle upon arrival and mid-feeding period. BMC Vet Res 8:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Curry SR, Marsh JW, Schlackman JL et al (2012) Prevalence of Clostridium difficile in uncooked ground meat products from Pittsburgh, Pennsylvania. Appl Environ Microbiol 78:4183–4186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabard J, Dubos F, Martinet L et al (1979) Experimental reproduction of neonatal diarrhea in young gnotobiotic hares simultaneously associated with Clostridium difficile and other Clostridium strains. Infect Immun 24:7–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Boer E, Zwartkruis-Nahuis A, Heuvelink AE et al (2011) Prevalence of Clostridium difficile in retailed meat in the Netherlands. Int J Food Microbiol 144:561–564

    Article  PubMed  Google Scholar 

  • Debast SB, van Leengoed LAMG, Goorhuis A et al (2009) Clostridium difficile PCR ribotype 078 toxinotype V found in diarrhoeal pigs identical to isolates from affected humans. Environ Microbiol 11:505–511

    Article  CAS  PubMed  Google Scholar 

  • del Mar Gamboa M, Rodríguez E, Vargas P (2005) Diversity of mesophilic clostridia in Costa Rican soils. Anaerobe 11:322–326

    Article  PubMed  Google Scholar 

  • Diab SS, Rodriguez-Bertos A, Uzal FA (2013a) Pathology and diagnostic criteria of Clostridium difficile enteric infection in horses. Vet Pathol 50:1028–1036

    Article  CAS  PubMed  Google Scholar 

  • Diab SS, Songer G, Uzal FA (2013b) Clostridium difficile infection in horses: a review. Vet Microbiol 167:42–49

    Article  CAS  PubMed  Google Scholar 

  • Donaldson MT, Palmer JE (1999) Prevalence of Clostridium perfringens enterotoxin and Clostridium difficile toxin A in feces of horses with diarrhea and colic. J Am Vet Med Assoc 215:358–361

    CAS  PubMed  Google Scholar 

  • Doosti A, Mokhtari-Farsani A (2014) Study of the frequency of Clostridium difficile tcdA, tcdB, cdtA and cdtB genes in feces of Calves in south west of Iran. Ann Clin Microbiol Antimicrob 13:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eckert C, Burghoffer B, Barbut F (2013) Contamination of ready-to-eat raw vegetables with Clostridium difficile in France. J Med Microbiol 62:1435–1438

    Article  CAS  PubMed  Google Scholar 

  • Ehrich M, Perry BD, Troutt HF et al (1984) Acute diarrhea in horses of the Potomac River area: examination for clostridial toxins. J Am Vet Med Assoc 185:433–435

    CAS  PubMed  Google Scholar 

  • Esfandiari Z, Jalali M, Ezzatpanah H et al (2014a) Prevalence and characterization of Clostridium difficile in beef and mutton meats of Isfahan region, Iran. Jundishapur J Microbiol 7, e16771

    Article  PubMed  PubMed Central  Google Scholar 

  • Esfandiari Z, Weese S, Ezzatpanah H et al (2014b) Occurrence of Clostridium difficile in seasoned hamburgers and seven processing plants in Iran. BMC Microbiol 14:283

    Article  PubMed  PubMed Central  Google Scholar 

  • Firth C, Bhat M, Firth MA, Williams SH et al (2014) Detection of zoonotic pathogens and characterization of novel viruses carried by commensal Rattus norvegicus in New York City. MBio 5:e01933-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frazier KS, Herron AJ, Hines ME et al (1993) Diagnosis of enteritis and enterotoxemia due to Clostridium difficile in captive ostriches (Struthio camelus). J Vet Diagn Invest 5:623–625

    Article  CAS  PubMed  Google Scholar 

  • Freeman LM, Janecko N, Weese JS (2013) Nutritional and microbial analysis of bully sticks and survey of opinions about pet treats. Can Vet J 54:50–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • French E, Rodriguez-Palacios A, LeJeune JT (2010) Enteric bacterial pathogens with zoonotic potential isolated from farm-raised deer. Foodborne Pathog Dis 7:1031–1037

    Article  PubMed  Google Scholar 

  • Goorhuis A, Debast SB, van Leengoed LAMG et al (2008) Clostridium difficile PCR ribotype 078: an emerging strain in humans and in pigs? J Clin Microbiol 46:1157, author reply 1158

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths D, Fawley W, Kachrimanidou M et al (2010) Multilocus sequence typing of Clostridium difficile. J Clin Microbiol 48:770–778

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Khanna S (2014) Community-acquired Clostridium difficile infection: an increasing public health threat. Infect Drug Resist 7:63–72

    PubMed  PubMed Central  Google Scholar 

  • Hafiz S (1974) Clostridium difficile and its toxins. (Thesis Ph.D) Department of Microbiology, University of Leeds.

    Google Scholar 

  • Hammitt MC, Bueschel DM, Keel MK et al (2008) A possible role for Clostridium difficile in the etiology of calf enteritis. Vet Microbiol 127:343–352

    Article  CAS  PubMed  Google Scholar 

  • Harvey RB, Norman KN, Andrews K et al (2011a) Clostridium difficile in poultry and poultry meat. Foodborne Pathog Dis 8:1321–1323

    Article  CAS  PubMed  Google Scholar 

  • Harvey RB, Norman KN, Andrews K et al (2011b) Clostridium difficile in retail meat and processing plants in Texas. J Vet Diagn Invest 23:807–811

    Article  PubMed  Google Scholar 

  • Hawken P, Weese JS, Friendship R (2013) Longitudinal Study of Clostridium difficile and Methicillin-Resistant Staphylococcus Associated with Pigs from Weaning through to the End of Processing. J Food Prot 76:624–630

    Article  PubMed  Google Scholar 

  • Himsworth CG, Patrick DM, Mak S et al (2014) Carriage of Clostridium difficile by wild urban Norway rats (Rattus norvegicus) and black rats (Rattus rattus). Appl Environ Microbiol 80:1299–1305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoffer E, Haechler H, Frei R et al (2010) Low occurrence of Clostridium difficile in fecal samples of healthy calves and pigs at slaughter and in minced meat in Switzerland. J Food Prot 73:973–975

    Article  CAS  PubMed  Google Scholar 

  • Hoover DG, Rodriguez-Palacios A (2013) Transmission of Clostridium difficile in foods. Infect Dis Clin North Am 27:675–685

    Article  PubMed  Google Scholar 

  • Hopman NEM, Keessen EC, Harmanus C et al (2011a) Acquisition of Clostridium difficile by piglets. Vet Microbiol 149:186–192

    Article  CAS  PubMed  Google Scholar 

  • Hopman NEM, Oorburg D, Sanders I et al (2011b) High occurrence of various Clostridium difficile PCR ribotypes in pigs arriving at the slaughterhouse. Vet Q 31:179–181

    Article  CAS  PubMed  Google Scholar 

  • Houser BA, Soehnlen MK, Wolfgang DR et al (2012) Prevalence of Clostridium difficile toxin genes in the feces of veal calves and incidence of ground veal contamination. Foodborne Pathog Dis 9:32–36

    Article  CAS  PubMed  Google Scholar 

  • Hunter D, Bellhouse R, Baker K (1981) Clostridium difficile isolated from a goat. Vet Rec 109:291–292

    Article  CAS  PubMed  Google Scholar 

  • Indra A, Lassnig H, Baliko N et al (2009) Clostridium difficile: a new zoonotic agent? Wien Klin Wochensr 121:91–95

    Article  Google Scholar 

  • Indra A, Schmid D, Huhulescu S et al (2015) Clostridium difficile ribotypes in Austria: a multicenter, hospital-based survey. Wien Klin Wochensr 127:587–593

    Article  CAS  Google Scholar 

  • Janezic S, Rupnik M (2015) Genomic diversity of Clostridium difficile strains. Res in Microbiol 166:353–360

    Article  CAS  Google Scholar 

  • Janezic S, Zidaric V, Pardon B et al (2014) International Clostridium difficile animal strain collection and large diversity of animal associated strains. BMC Microbiol 14:173

    Article  PubMed  PubMed Central  Google Scholar 

  • Jardine CM, Reid-Smith RJ, Rousseau J et al (2013) Detection of Clostridium difficile in small and medium-sized wild Mammals in Southern Ontario, Canada. J Wildl Dis 49:418–421

    Article  PubMed  Google Scholar 

  • Jhung MA, Thompson AD, Killgore GE et al (2008) Toxinotype V Clostridium difficile in humans and food animals. Emerg Infect Dis 14:1039–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jöbstl M, Heuberger S, Indra A et al (2010) Clostridium difficile in raw products of animal origin. Int J Food Microbiol 138:172–175

    Article  PubMed  CAS  Google Scholar 

  • Jones RL (1989) Diagnostic Procedures for Isolation and Characterization of Clostridium difficile Associated with Enterocolitis in Foals. J Vet Diagn Invest 1:84–86

    Article  CAS  PubMed  Google Scholar 

  • Jones MA, Hunter D (1983) Isolation of Clostridium difficile from pigs. Vet Rec 112:253

    Article  CAS  PubMed  Google Scholar 

  • Jones RL, Adney WS, Shideler RK (1987) Isolation of Clostridium difficile and detection of cytotoxin in the feces of diarrheic foals in the absence of antimicrobial treatment. J Clin Microbiol 25:1225–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalchayanand N, Arthur TM, Bosilevac DM et al (2013) Isolation and characterization of Clostridium difficile associated with beef cattle and commercially produced ground beef. J Food Prot 76:256–264

    Article  PubMed  Google Scholar 

  • Keessen EC, Donswijk CJ, Hol SP et al (2011a) Aerial dissemination of Clostridium difficile on a pig farm and its environment. Environ Res 111:1027–1032

    Article  CAS  PubMed  Google Scholar 

  • Keessen EC, van den Berkt AJ, Haasjes NH et al (2011b) The relation between farm specific factors and prevalence of Clostridium difficile in slaughter pigs. Vet Microbiol 154:130–134

    Article  CAS  PubMed  Google Scholar 

  • Kiss D, Bilkei G (2005) A new periparturient disease in Eastern Europe, Clostridium difficile causes postparturient sow losses. Theriogenology 63:17–23

    Article  CAS  PubMed  Google Scholar 

  • Knetsch CW, Connor TR, Mutreja A et al (2014) Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Euro Surveill 19:20954

    Article  CAS  PubMed  Google Scholar 

  • Knight DR, Riley TV (2013) Prevalence of gastrointestinal Clostridium difficile carriage in Australian sheep and lambs. Appl Environ Microbiol 79:5689–5692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight DR, Thean S, Putsathit P et al (2013) Cross-sectional study reveals high prevalence of Clostridium difficile non-PCR ribotype 078 strains in Australian veal calves at slaughter. Appl Environ Microbiol 79:2630–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight DR, Elliott B, Chang BJ et al (2015a) Diversity and Evolution in the Genome of Clostridium difficile. Clin Microbiol Rev 28:721–741

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight DR, Squire MM, Riley TV (2015b) Nationwide surveillance study of Clostridium difficile in Australian neonatal pigs shows high prevalence and heterogeneity of PCR ribotypes. Appl Environ Microbiol 81:119–123

    Article  PubMed  CAS  Google Scholar 

  • Koene MGJ, Mevius D, Wagenaar JA et al (2012) Clostridium difficile in Dutch animals: their presence, characteristics and similarities with human isolates. Clin Microbiol Infect 18:778–784

    Article  CAS  PubMed  Google Scholar 

  • Kouassi KA, Dadie AT, N’Guessan KF et al (2014) Clostridium perfringens and Clostridium difficile in cooked beef sold in Côte d’Ivoire and their antimicrobial susceptibility. Anaerobe 28:90–94

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre SL, Weese JS (2009) Contamination of pet therapy dogs with MRSA and Clostridium difficile. J Hosp Infect 72:268–269

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre SL, Arroyo LG, Weese JS (2006a) Epidemic Clostridium difficile strain in hospital visitation dog. Emerg Infect Dis 12:1036–1037

    Article  PubMed  PubMed Central  Google Scholar 

  • Lefebvre SL, Waltner-Toews D, Peregrine AS et al (2006b) Prevalence of zoonotic agents in dogs visiting hospitalized people in Ontario: implications for infection control. J Hosp Infect 62:458–466

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre SL, Weese JS (2009) Contamination of pet therapy dogs with MRS and Clostridium difficile. J Hosp Infect 72:268–269

    Google Scholar 

  • Lemée L, Pons JL (2010) Multilocus sequence typing for Clostridium difficile. Methods Mol Biol 646:77–90

    Article  PubMed  CAS  Google Scholar 

  • Lemée L, Dhalluin A, Pestel-Caron M et al (2004) Multilocus Sequence Typing Analysis of Human and Animal Clostridium difficile Isolates of Various Toxigenic Types. J Clin Microbiol 42:2609–2617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lemée L, Bourgeois I, Ruffin E et al (2005) Multilocus sequence analysis and comparative evolution of virulence-associated genes and housekeeping genes of Clostridium difficile. Microbiology 151:3171–3180

    Article  PubMed  CAS  Google Scholar 

  • Limbago B, Thompson AD, Greene SA et al (2012) Development of a consensus method for culture of Clostridium difficile from meat and its use in a survey of U.S. retail meats. Food Microbiol 32:448–451

    Article  PubMed  PubMed Central  Google Scholar 

  • Lizer J (2010) Development of a conventional pig model for Clostridium difficile infection and associated disease in neonatal pigs. Iowa State University, Graduate Theses and Dissertations

    Book  Google Scholar 

  • Lund BM, Peck MW (2015) A possible route for foodborne transmission of Clostridium difficile? Foodborne Pathog Dis 12:177–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Madewell BR, Bea JK, Kraegel SA et al (1999) Clostridium difficile: a survey of fecal carriage in cats in a veterinary medical teaching hospital. J Vet Diagn Invest 11:50–54

    Article  CAS  PubMed  Google Scholar 

  • Magdesian KG, Leutenegger CM (2011) Real-time PCR and typing of Clostridium difficile isolates colonizing mare-foal pairs. Vet J 190:119–123

    Article  CAS  PubMed  Google Scholar 

  • Marks SL, Rankin SC, Byrne BA et al (2011) Enteropathogenic Bacteria in Dogs and Cats: Diagnosis, Epidemiology, Treatment, and Control. J Vet Intern Med 25:1195–1208

    Article  CAS  PubMed  Google Scholar 

  • Marsh JW, O’Leary MM, Shutt KA et al (2010) Multilocus variable-number tandem-repeat analysis and multilocus sequence typing reveal genetic relationships among Clostridium difficile isolates genotyped by restriction endonuclease analysis. J Clin Microbiol 48:412–418

    Article  CAS  PubMed  Google Scholar 

  • Martirossian G, Sokół-Leszczyńska B, Mierzejewski J et al (1992) Occurrence of Clostridium difficile in the digestive system of dogs. Med Dosw Mikrobiol 44:49–54

    CAS  PubMed  Google Scholar 

  • McBee RH (1960) Intestinal flora of some antarctic birds and mammals. J Bacteriol 79:311–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNamara SE, Abdujamilova N, Somsel P et al (2011) Carriage of Clostridium difficile and other enteric pathogens among a 4-H avocational cohort. Zoonoses Public Health 58:192–199

    Article  CAS  PubMed  Google Scholar 

  • Medina-Torres CE, Weese JS, Staempfli HR (2011) Prevalence of Clostridium difficile in horses. Vet Microbiol 152:212–215

    Article  PubMed  Google Scholar 

  • Metcalf D, Reid-Smith RJ, Avery BP, Weese JS (2010a) Prevalence of Clostridium difficile in retail pork. Can Vet J 51:873–876

    PubMed  PubMed Central  Google Scholar 

  • Metcalf D, Costa MC, Dew WMV et al (2010b) Clostridium difficile in vegetables, Canada. Lett Appl Microbiol 51:600–602

    Article  CAS  PubMed  Google Scholar 

  • Metcalf D, Avery BP, Janecko N et al (2011) Clostridium difficile in seafood and fish. Anaerobe 17:85–86

    Article  PubMed  Google Scholar 

  • Miller MA, Byrne BA, Jang SS et al (2010) Enteric bacterial pathogen detection in southern sea otters (Enhydra lutris nereis) is associated with coastal urbanization and freshwater runoff. Vet Res 41:1

    Article  PubMed  Google Scholar 

  • Mooyottu S, Flock G, Kollanoor-Johny A et al (2015) Characterization of a multidrug resistant C. difficile meat isolate. Int J Food Microbiol 192:111–116

    Article  CAS  PubMed  Google Scholar 

  • Murphy CP, Reid-Smith RJ, Boerlin P et al (2010) Escherichia coli and selected veterinary and zoonotic pathogens isolated from environmental sites in companion animal veterinary hospitals in southern Ontario. Can Vet J 51:963–972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy J, Bilkei G (2003) Neonatal piglet losses associated with Escherichia coli and Clostridium difficile infection in a Slovakian outdoor production unit. Vet J 166:98–100

    Article  CAS  PubMed  Google Scholar 

  • Norén T, Johansson K, Unemo M (2014) Clostridium difficile PCR ribotype 046 is common among neonatal pigs and humans in Sweden. Clin Microbiol Infect 20:O2–O6

    Article  PubMed  Google Scholar 

  • Norman KN, Harvey RB, Scott HM et al (2009) Varied prevalence of Clostridium difficile in an integrated swine operation. Anaerobe 15:256–260

    Article  CAS  PubMed  Google Scholar 

  • Norman KN, Scott HM, Harvey RB et al (2011) Prevalence and genotypic characteristics of Clostridium difficile in a closed and integrated human and swine population. Appl Environ Microbiol 77:5755–5760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norman KN, Harvey RB, Andrews K et al (2014) Survey of Clostridium difficile in retail seafood in College Station, Texas. Food Addit Contam Part A Chem Anal Control Exp Risk Assess 31:1127–1129

    Article  CAS  Google Scholar 

  • Orchard JL, Fekety R, Smith JR (1983) Antibiotic-associated colitis due to Clostridium difficile in a Kodiak bear. Am J Vet Res 44:1547–1548

    CAS  PubMed  Google Scholar 

  • Ozaki E, Kato H, Kita H et al (2004) Clostridium difficile colonization in healthy adults: transient colonization and correlation with enterococcal colonization. J Med Microbiol 53:167–172

    Article  PubMed  Google Scholar 

  • Pasquale V, Romano VJ, Rupnik M et al (2011) Isolation and characterization of Clostridium difficile from shellfish and marine environments. Folia Microbiol 56:431–437

    Article  CAS  Google Scholar 

  • Pasquale V, Romano V, Rupnik M et al (2012) Occurrence of toxigenic Clostridium difficile in edible bivalve molluscs. Food Microbiol 31:309–312

    Article  CAS  PubMed  Google Scholar 

  • Perkins SE, Fox JG, Taylor NS (1995) Detection of Clostridium difficile toxins from the small intestine and cecum of rabbits with naturally acquired enterotoxemia. Lab Anim Sci 45:379–384

    CAS  PubMed  Google Scholar 

  • Perrin J, Buogo C, Gallusser A et al (1993) Intestinal carriage of Clostridium difficile in neonate dogs. Zentralbl Veterinarmed B 40:222–226

    CAS  PubMed  Google Scholar 

  • Pirs T, Ocepek M, Rupnik M (2008) Isolation of Clostridium difficile from food animals in Slovenia. J Med Microbiol 57:790–792

    Article  CAS  PubMed  Google Scholar 

  • Pons JL (2004) Clostridium difficile, nosocomial enteropathogen: phylogeny and virulence. Ann Pharm Fr 62:304–309

    Article  CAS  PubMed  Google Scholar 

  • Princewell TJT, Agba MI (1982) Examination of bovine faeces for the isolation and identification of Clostridium species. J Appl Bacteriol 52:97–102

    Article  CAS  PubMed  Google Scholar 

  • Quesada-Gómez C, Mulvey MR, Vargas P et al (2013) Isolation of a toxigenic and clinical genotype of Clostridium difficile in retail meats in Costa Rica. J Food Prot 76:348–351

    Article  PubMed  Google Scholar 

  • Rahimi E, Jalali M, Weese JS (2014) Prevalence of Clostridium difficile in raw beef, cow, sheep, goat, camel and buffalo meat in Iran. BMC Public Health 14:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Rieu-Lesme F, Fonty G (1999) Isolation of Clostridium difficile from the ruminal reservoir of newborn lambs. Vet Rec 145:501

    Article  CAS  PubMed  Google Scholar 

  • Riley TV, Adams JE, O’Neill G et al (1991) Gastrointestinal carriage of Clostridium difficile in cats and dogs attending veterinary clinics. Epidemiol Infect 107:659–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez C, Taminiau B, Van Broeck J et al (2012) Clostridium difficile in young farm animals and slaughter animals in Belgium. Anaerobe 18:621–625

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez C, Avesani V, Van Broeck J et al (2013) Presence of Clostridium difficile in pigs and cattle intestinal contents and carcass contamination at the slaughterhouse in Belgium. Int J Food Microbiol 166:256–262

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez C, Taminiau B, Brévers B et al (2014a) Carriage and acquisition rates of Clostridium difficile in hospitalized horses, including molecular characterization, multilocus sequence typing and antimicrobial susceptibility of bacterial isolates. Vet Microbiol 172:309–317

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez C, Taminiau B, Avesani V et al (2014b) Multilocus sequence typing analysis and antibiotic resistance of Clostridium difficile strains isolated from retail meat and humans in Belgium. Food Microbiol 42:166–171

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez C, Korsak N, Taminiau B et al (2015) Clostridium difficile from food and surface samples in a Belgian nursing home: An unlikely source of contamination. Anaerobe 32:87–89

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Palacios A, Lejeune JT (2011) Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile. Appl Environ Microbiol 77:3085–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Palacios A, Stämpfli HR, Duffield T et al (2006) Clostridium difficile PCR ribotypes in calves, Canada. Emerg Infect Dis 12:1730–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Palacios A, Stämpfli HR, Duffield T et al (2007a) Clostridium difficile in retail ground meat, Canada. Emerg Infect Dis 13:485–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Palacios A, Stämpfli HR, Stalker M et al (2007b) Natural and experimental infection of neonatal calves with Clostridium difficile. Vet Microbiol 124:166–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Palacios A, Reid-Smith RJ, Staempfli HR et al (2009) Possible seasonality of Clostridium difficile in retail meat, Canada. Emerg Infect Dis 15:802–805

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Palacios A, Koohmaraie M, LeJeune JT (2011a) Prevalence, enumeration, and antimicrobial agent resistance of Clostridium difficile in cattle at harvest in the United States. J Food Prot 74:1618–1624

    Article  PubMed  Google Scholar 

  • Rodriguez-Palacios A, Pickworth C, Loerch S et al (2011b) Transient fecal shedding and limited animal-to-animal transmission of Clostridium difficile by naturally infected finishing feedlot cattle. Appl Environ Microbiol 77:3391–3397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Palacios A, Borgmann S, Kline TR et al (2013) Clostridium difficile in foods and animals: history and measures to reduce exposure. Anim Health Res Rev 14:11–29

    Article  PubMed  Google Scholar 

  • Rodriguez-Palacios A, Barman T, LeJeune JT (2014) Three-week summer period prevalence of Clostridium difficile in farm animals in a temperate region of the United States (Ohio). Can Vet J 55:786–789

    PubMed  PubMed Central  Google Scholar 

  • Romano V, Albanese F, Dumontet S, Krovacek K et al (2012) Prevalence and genotypic characterization of Clostridium difficile from ruminants in Switzerland. Zoonoses Public Health 59:545–548

    Article  CAS  PubMed  Google Scholar 

  • Rupnik M, Songer JG (2010) Clostridium difficile: its potential as a source of foodborne disease. Adv Food Nutr Res 60:53–66

    Article  PubMed  Google Scholar 

  • Rupnik M, Widmer A, Zimmermann O et al (2008) Clostridium difficile toxinotype V, ribotype 078, in animals and humans. J Clin Microbiol 46:2146

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmid A, Messelhäusser U, Hörmansdorfer S et al (2013) Occurrence of zoonotic Clostridia and Yersinia in healthy cattle. J Food Prot 76:1697–1703

    Article  CAS  PubMed  Google Scholar 

  • Schneeberg A, Rupnik M, Neubauer H et al (2012) Prevalence and distribution of Clostridium difficile PCR ribotypes in cats and dogs from animal shelters in Thuringia, Germany. Anaerobe 18:484–488

    Article  PubMed  Google Scholar 

  • Schneeberg A, Neubauer H, Schomoock G et al (2013a) Clostridium difficile genotypes in piglet populations in Germany. J Clin Microbiol 51:3796–3803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneeberg A, Neubauer H, Schomoock G et al (2013b) Presence of Clostridium difficile PCR ribotype clusters related to 033, 078 and 045 in diarrhoeic calves in Germany. J Med Microbiol 62:1190–1198

    Article  PubMed  Google Scholar 

  • Schoster A, Arroyo LG, Staempfli HR et al (2012) Presence and molecular characterization of Clostridium difficile and Clostridium perfringens in intestinal compartments of healthy horses. BMC Vet Res 8:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoster A, Kokotovic B, Permin A et al (2013) In vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains. Anaerobe 20:36–41

    Article  CAS  PubMed  Google Scholar 

  • Schoster A, Staempfli HR, Abrahams M et al (2015) Effect of a probiotic on prevention of diarrhea and Clostridium difficile and Clostridium perfringens shedding in foals. J Vet Intern Med 29:925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva ROS, D’elia ML, de Magalhães Soares DF et al (2013a) Clostridium difficile-associated diarrhea in an ocelot (Leopardus pardalis). Anaerobe 20:82–84

    Article  PubMed  Google Scholar 

  • Silva ROS, Santos RLR, Pires PS et al (2013b) Detection of toxins A/B and isolation of Clostridium difficile and Clostridium perfringens from dogs in Minas Gerais, Brazil. Braz J Microbiol 44:133–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva ROS, Ribeiro de Almeida L, Oliveira Junior CA et al (2014) Carriage of Clostridium difficile in free-living South American coati (Nasua nasua) in Brazil. Anaerobe 30:99–101

    Article  PubMed  Google Scholar 

  • Simango C (2006) Prevalence of Clostridium difficile in the environment in a rural community in Zimbabwe. Trans R Soc Trop Med Hyg 100:1146–1150

    Article  PubMed  Google Scholar 

  • Simango C, Mwakurudza S (2008) Clostridium difficile in broiler chickens sold at market places in Zimbabwe and their antimicrobial susceptibility. Int J Food Microbiol 124:268–270

    Article  CAS  PubMed  Google Scholar 

  • Snook SS, Canfield DR, Sehgal PK et al (1989) Focal ulcerative ileocolitis with terminal thrombocytopenic purpura in juvenile cotton top tamarins (Saguinus oedipus). Lab Anim Sci 39:109–114

    CAS  PubMed  Google Scholar 

  • Songer JG (2000) Infection of neonatal swine with Clostridium difficile. J Swine Health Prod 4:185–189

    Google Scholar 

  • Songer JG, Anderson MA (2006) Clostridium difficile: an important pathogen of food animals. Anaerobe 12:1–4

    Article  CAS  PubMed  Google Scholar 

  • Songer JG, Uzal FA (2005) Clostridial enteric infections in pigs. J Vet Diagn Invest 17:528–536

    Article  PubMed  Google Scholar 

  • Songer JG, Trinh HT, Killgore GE et al (2009) Clostridium difficile in retail meat products, USA, 2007. Emerg Infect Dis 15:819–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spigaglia P, Drigo I, Barbanti F et al (2015) Antibiotic resistance patterns and PCR-ribotyping of Clostridium difficile strains isolated from swine and dogs in Italy. Anaerobe 31:42–46

    Article  CAS  PubMed  Google Scholar 

  • Squire MM, Riley TV (2013) Clostridium difficile infection in humans and piglets: a “One Health” opportunity. Curr Top Microbiol Immunol 365:299–314

    PubMed  Google Scholar 

  • Squire MM, Carter GP, Mackin KE et al (2013) Novel Molecular Type of Clostridium difficile in Neonatal Pigs, Western Australia. Emerg Infect Dis 19:790–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steele J, Sponseller J, Schmidt D et al (2013) Hyperimmune bovine colostrum for treatment of GI infections: a review and update on Clostridium difficile. Hum Vaccin Immunother 9:1565–1568

    Article  CAS  PubMed  Google Scholar 

  • Stull JW, Peregrine AS, Sargeant JM et al (2013) Pet husbandry and infection control practices related to zoonotic disease risks in Ontario, Canada. BMC Public Health 13:520

    Article  PubMed  PubMed Central  Google Scholar 

  • Susick EK, Putnam M, Bermudez DM et al (2012) Longitudinal study comparing the dynamics of Clostridium difficile in conventional and antimicrobial free pigs at farm and slaughter. Vet Microbiol 157:172–178

    Article  CAS  PubMed  Google Scholar 

  • Thakur S, Putnam M, Fry PR et al (2010) Prevalence of antimicrobial resistance and association with toxin genes in Clostridium difficile in commercial swine. Am J Vet Res 71:1189–1194

    Article  PubMed  Google Scholar 

  • Thakur S, Sandfoss M, Kennedy-Stoskopf S et al (2011) Detection of Clostridium difficile and Salmonella in feral swine population in North Carolina. J Wildl Dis 47:774–776

    Article  PubMed  Google Scholar 

  • Thitaram SN, Frank JF, Lyon SA et al (2011) Clostridium difficile from healthy food animals: optimized isolation and prevalence. J Food Prot 74:130–133

    Article  CAS  PubMed  Google Scholar 

  • Uzal FA, Diab SS, Blanchard P et al (2012) Clostridium perfringens type C and Clostridium difficile co-infection in foals. Vet Microbiol 156:395–402

    Article  CAS  PubMed  Google Scholar 

  • Varshney JB, Very KJ, Williams JL et al (2014) Characterization of Clostridium difficile isolates from human fecal samples and retail meat from Pennsylvania. Foodborne Pathog Dis 11:822–829

    Article  CAS  PubMed  Google Scholar 

  • Visser M, Sephri S, Sepehrim S et al (2012) Detection of Clostridium difficile in retail ground meat products in Manitoba. Can J Infect Dis 23:28–30

    Google Scholar 

  • Von Abercron SMM, Karlsson F, Wigh GT et al (2009) Low occurrence of Clostridium difficile in retail ground meat in Sweden. J Food Prot 72:1732–1734

    Article  Google Scholar 

  • Waters EH, Orr JP, Clark EG et al (1998) Typhlocolitis caused by Clostridium difficile in suckling piglets. J Vet Diagn Invest 10:104–108

    Article  CAS  PubMed  Google Scholar 

  • Weber A, Kroth P, Heil G (1988) Domestic animals as excreters of Clostridium difficile. Deutsch Med Wochenschr 113:1617–1618

    CAS  Google Scholar 

  • Weber A, Kroth P, Heil G (1989) The occurrence of Clostridium difficile in fecal samples of dogs and cats. Zentralbl Veterinarmed B 36:568–576

    CAS  PubMed  Google Scholar 

  • Weese JS (2011) Bacterial enteritis in dogs and cats: diagnosis, therapy, and zoonotic potential. Vet Clin North Am Small Anim Pract 41:287–309

    Article  PubMed  Google Scholar 

  • Weese JS, Armstrong J (2003) Outbreak of Clostridium difficile-associated disease in a small animal veterinary teaching hospital. J Vet Intern Med 17:813–816

    CAS  PubMed  Google Scholar 

  • Weese JS, Fulford BM (2011) Companion animal zoonoses. In: Weese JS, Fulford MB (eds) Companion Animal Zoonoses. Wiley-Blackwell, Oxford, UK, pp 234–295

    Chapter  Google Scholar 

  • Weese JS, Staempfli HR, Prescott JF et al (2001a) The roles of Clostridium difficile and enterotoxigenic Clostridium perfringens in diarrhea in dogs. J Vet Intern Med 15:374–378

    Article  CAS  PubMed  Google Scholar 

  • Weese JS, Weese HE, Bourdeau TL et al (2001b) Suspected Clostridium difficile-associated diarrhea in two cats. J Am Vet Med Assoc 218:1436–1439

    Article  CAS  PubMed  Google Scholar 

  • Weese JS, Peregrine AS, Armstrong J (2002) Occupational health and safety in small animal veterinary practice: Part I--nonparasitic zoonotic diseases. Can Vet J 43:631–636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weese JS, Rousseau J, Arroyo L (2005) Bacteriological evaluation of commercial canine and feline raw diets. Can Vet J 46:513–516

    PubMed  PubMed Central  Google Scholar 

  • Weese JS, Toxopeus L, Arroyo L (2006) Clostridium difficile associated diarrhoea in horses within the community: predictors, clinical presentation and outcome. Equine Vet J 38:185–188

    Article  CAS  PubMed  Google Scholar 

  • Weese JS, Finley R, Reid-Smith RR et al (2010a) Evaluation of Clostridium difficile in dogs and the household environment. Epidemiol Infect 138:1100–1114

    Article  CAS  PubMed  Google Scholar 

  • Weese JS, Reid-Smith RJ, Avery BP et al (2010b) Detection and characterization of Clostridium difficile in retail chicken. Lett Appl Microbiol 50:362–365

    Article  CAS  PubMed  Google Scholar 

  • Weese JS, Wakeford T, Reid-Smith R et al (2010c) Longitudinal investigation of Clostridium difficile shedding in piglets. Anaerobe 16:501–504

    Article  PubMed  Google Scholar 

  • Weese JS, Rousseau J, Deckert A et al (2011) Clostridium difficile and methicillin-resistant Staphylococcus aureus shedding by slaughter-age pigs. BMC Vet Res 7:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Wetterwik KJ, Trowald-Wigh G, Fernström LL et al (2013) Clostridium difficile in faeces from healthy dogs and dogs with diarrhea. Acta Vet Scand 55:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Yaeger MJ, Kinyon JM, Songer J (2007) A prospective, case control study evaluating the association between Clostridium difficile toxins in the colon of neonatal swine and gross and microscopic lesions. J Vet Diagn Invest 19:52–59

    Article  PubMed  Google Scholar 

  • Zidaric V, Zemljic M, Janezic S et al (2008) High diversity of Clostridium difficile genotypes isolated from a single poultry farm producing replacement laying hens. Anaerobe 14:325–327

    Article  CAS  PubMed  Google Scholar 

  • Zidaric V, Beigot S, Lapajne S et al (2010) The occurrence and high diversity of Clostridium difficile genotypes in rivers. Anaerobe 16:371–375

    Article  PubMed  Google Scholar 

  • Zidaric V, Pardon B, Dos Vultos T et al (2012) Different antibiotic resistance and sporulation properties within multiclonal Clostridium difficile PCR ribotypes 078, 126, and 033 in a single calf farm. Appl Environ Microbiol 78:8515–8522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our most sincere thanks go to Cate Chapman and Josh Jones for their support in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodriguez, C., Taminiau, B., Van Broeck, J., Delmée, M., Daube, G. (2016). Clostridium difficile in Food and Animals: A Comprehensive Review. In: Donelli, G. (eds) Advances in Microbiology, Infectious Diseases and Public Health. Advances in Experimental Medicine and Biology(), vol 932. Springer, Cham. https://doi.org/10.1007/5584_2016_27

Download citation

Publish with us

Policies and ethics