Skip to main content

Stress Response, Brain Noradrenergic System and Cognition

  • Chapter
  • First Online:
Respiratory System Diseases

Abstract

Locus coeruleus is a critical component of the brain noradrenergic system. The brain noradrenergic system provides the neural substrate for the architecture supporting the interaction with, and navigation through, an external world complexity. Changes in locus coeruleus tonic and phasic activity and the interplay between norepinephrine and α1- and α2-adrenoceptors in the prefrontal cortex are the key elements of this sophisticated architecture. In this narrative review we discuss how the brain noradrenergic system is affected by increased exposure to corticotropin-releasing hormone triggered by stress response. In particular, we present the mechanisms responsible for thinking inflexibility often observed under highly stressful conditions. Finally, the main directions for future research are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accorsi-Mendonca D, Machado BH (2013) Synaptic transmission of baro- and chemoreceptors afferents in the NTS second order neurons. Auton Neurosci 175:3–8

    Article  CAS  PubMed  Google Scholar 

  • Alves FH, Crestani CC, Resstel LB, Corrêa FM (2014) Both α1- and α2-adrenoceptors in the insular cortex are involved in the cardiovascular responses to acute restraint stress in rats. PLoS One 9(1):e83900

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrews GD, Lavin A (2006) Methylphenidate increases cortical excitability via activation of alpha-2 noradrenergic receptors. Neuropsychopharmacology 31:594–601

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AF (2000) Through the looking glass: differential noradenergic modulation of prefrontal cortical function. Neural Plast 7:133–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnsten AF, Dudley AG (2005) Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav Brain Funct 1(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnsten AF, Steere JC, Hunt RD (1996) The contribution of alpha 2-noradrenergic mechanisms of prefrontal cortical cognitive function. Potential significance for attention-deficit hyperactivity disorder. Arch Gen Psychiatry 53:448–455

    Article  CAS  PubMed  Google Scholar 

  • Aston-Jones G, Bloom FE (1981a) Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci 1:887–900

    CAS  PubMed  Google Scholar 

  • Aston-Jones G, Bloom FE (1981b) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886

    CAS  PubMed  Google Scholar 

  • Aston-Jones G, Cohen JD (2005) Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol 493:99–110

    Article  CAS  PubMed  Google Scholar 

  • Aston-Jones G, Waterhouse B (2016) Locus coeruleus: from global projection system to adaptive regulation of behavior. Brain Res 1645:75–78

    Article  CAS  PubMed  Google Scholar 

  • Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T (1994) Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J Neurosci 14:4467–4480

    CAS  PubMed  Google Scholar 

  • Aston-Jones G, Rajkowski J, Kubiak P (1997) Conditioned responses of monkey locus coeruleus neurons anticipate acquisition of discriminative behavior in a vigilance task. Neuroscience 80:697–715

    Article  CAS  PubMed  Google Scholar 

  • Barsegyan A, Mackenzie SM, Kurose BD, McGaugh JL, Roozendaal B (2010) Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism. Proc Natl Acad Sci 107:16655–16660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge CW, Spencer RC (2016) Differential cognitive actions of norepinephrine a2 and a1 receptor signaling in the prefrontal cortex. Brain Res 1641:189–196

    Article  CAS  PubMed  Google Scholar 

  • Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev 42:33–84

    Article  PubMed  Google Scholar 

  • Berridge CW, Shumsky JS, Andrzejewski ME, McGaughy JA, Spencer RC, Devilbiss DM, Waterhouse BD (2012) Differential sensitivity to psychostimulants across prefrontal cognitive tasks: differential involvement of noradrenergic α1- and α2-receptors. Biol Psychiatry 71:467–473

    Article  CAS  PubMed  Google Scholar 

  • Charmandari E, Kino T, Souvatzoglou E, Chrousos GP (2003) Pediatric stress: hormonal mediators and human development. Horm Res 59:161–179

    CAS  PubMed  Google Scholar 

  • Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5:374–381

    Article  CAS  PubMed  Google Scholar 

  • Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis. JAMA 267:1244–1252

    Article  CAS  PubMed  Google Scholar 

  • Coccurello R, Bielawski A, Zelek-Molik A, Vetulani J, Kowalska M, D’Amato FR, Nalepa I (2014) Brief maternal separation affects brain α1-adrenoceptors and apoptotic signaling in adult mice. Prog Neuro-Psychopharmacol Biol Psychiatry 48:161–169

    Article  CAS  Google Scholar 

  • Curtis AL, Lechner SM, Pavcovich LA, Valentino RJ (1997) Activation of the locus coeruleus noradrenergic system by intracoerulear microinfusion of corticotropin-releasing factor: effects on discharge rate, cortical norepinephrine levels and cortical electroencephalographic activity. J Pharmacol Exp Ther 281:163–172

    CAS  PubMed  Google Scholar 

  • Dayas CV, Buller KM, Crane JW, Xu Y, Day TA (2001) Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. Eur J Neurosci 14:1143–1152

    Article  CAS  PubMed  Google Scholar 

  • Devilbiss DM, Waterhouse BD, Berridge CW, Valentino R (2012) Corticotropin-releasing factor acting at the locus coeruleus disrupts thalamic and cortical sensory-evoked responses. Neuropsychopharmacology 37:2020–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devilbiss DM, Spencer RC, Berridge CW (2016) Stress degrades prefrontal cortex neuronal coding of goal-directed behavior. Cereb Cortex pii:bhw140

    Article  Google Scholar 

  • Foote SL, Freedman R, Oliver AP (1975) Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex. Brain Res 86:229–242

    Article  CAS  PubMed  Google Scholar 

  • Foote SL, Aston-Jones G, Bloom FE (1980) Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Natl Acad Sci U S A 77:3033–3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamo NJ, Wang M, Arnsten AF (2010) Methylphenidate and atomoxetine enhance prefrontal function through alpha2-adrenergic and dopamine D1 receptors. J Am Acad Child Adolesc Psychiatry 49:1011–1023

    Article  PubMed  PubMed Central  Google Scholar 

  • Gold PW, Chrousos GP (2002) Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry 7:254–275

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. TINS 20:78–83

    CAS  PubMed  Google Scholar 

  • Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24:151–180

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, Scheimann J, Myers B (2016) regulation of the hypothalamic-pituitary-adrenocortical stress response. Commun Physiol 6:603–621

    Article  Google Scholar 

  • Jacobson L (2005) Hypothalamic-pituitary-adrenocortical axis regulation. Endocrinol Metab Clin N Am 34:271–292

    Article  CAS  Google Scholar 

  • Jones BE (2005) From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci 26:578–586

    Article  CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS (1992) Regional norepinephrine response to amphetamine using dialysis: comparison with caudate dopamine. Synapse 11:164–169

    Article  CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS, Cho AK, Melega W (1995) Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci 15:1308–1317

    CAS  PubMed  Google Scholar 

  • McCall JG, Al-Hasani R, Siuda ER, Hong DY, Norris AJ, Ford CP, Bruchas MR (2015) CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron 87:605–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolaides NC, Kyratzi E, Lamprokostopoulou A, Chrousos GP, Charmandari E (2015) Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation 22:6–19

    Article  CAS  PubMed  Google Scholar 

  • Page ME, Abercrombie ED (1999) Discrete local application of corticotropin-releasing factor increases locus coeruleus discharge and extracellular norepinephrine in rat hippocampus. Synapse 33:304–313

    Article  CAS  PubMed  Google Scholar 

  • Piao C, Deng X, Wang X, Yuan Y, Liu Z, Liang J (2016) Altered function in medial prefrontal cortex and nucleus accumbens links to stress-induced behavioral inflexibility. Behav Brain Res 317:16–26

    Article  PubMed  Google Scholar 

  • Radley JJ, Sawchenko PE (2011) A common substrate for prefrontal and hippocampal inhibition of the neuroendocrine stress response. J Neurosci 31:9683–9695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajbhandari AK, Baldo BA, Bakshi VP (2015) Predator stress-induced CRF release causes enduring sensitization of basolateral amygdala norepinephrine systems that promote PTSD-like startle abnormalities. J Neurosci 35:14270–14285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkowski J, Kubiak P, Aston-Jones G (1994) Locus coeruleus activity in monkey: phasic and tonic changes are associated with altered vigilance. Brain Res Bull 35:607–616

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Arnsten AF (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 32:267–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert L, Labat-Robert J (2015) Stress in biology and medicine, role in aging. Pathol Biol 63:230–234

    Article  CAS  PubMed  Google Scholar 

  • Samuels ER, Szabadi E (2008) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol 6:235–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawchenko PE, Li HY, Ericsson A (2000) Circuits and mechanisms governing hypothalamic responses to stress: a tale of two paradigms. Prog Brain Res 122:61–78

    Article  CAS  PubMed  Google Scholar 

  • Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:132

    Article  Google Scholar 

  • Servan-Schreiber D, Printz H, Cohen JD (1990) A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 249:892–895

    Article  CAS  PubMed  Google Scholar 

  • Spencer RC, Klein RM, Berridge CW (2012) Psychostimulants act within the prefrontal cortex to improve cognitive function. Biol Psychiatry 72:221–227

    Article  CAS  PubMed  Google Scholar 

  • Spencer RC, Devilbiss DM, Berridge CW (2015) The cognition-enhancing effects of psychostimulants involve direct action in the prefrontal cortex. Biol Psychiatry 77:940–950

    Article  CAS  PubMed  Google Scholar 

  • Szabo S, Tache Y, Somogyi A (2012) The legacy of Hans Selye and the origins of stress research: a retrospective 75 years after his landmark brief ‘letter’ to the editor of nature. Stress 15(5):472–478

    Google Scholar 

  • Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10:397–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentino RJ, Foote SL (1988) Corticotropin-releasing hormone increases tonic but not sensory-evoked activity of noradrenergic locus coeruleus neurons in unanesthetized rats. J Neurosci 8:1016–1025

    CAS  PubMed  Google Scholar 

  • Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10:376–384

    Article  CAS  PubMed  Google Scholar 

  • Woodward DJ, Moises HC, Waterhouse BD, Yeh HH, Cheun JE (1991) Modulatory actions of norepinephrine on neural circuits. Adv Exp Med Biol 287:193–208

    Article  CAS  PubMed  Google Scholar 

  • Yang LJ, Liu X, Liu DX, Jiang H, Mao XQ, Wang C, Pan F (2012) Effects of different adrenergic blockades on the stress resistance of Wistar rats. Neurosci Lett 511:95–100

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Asai M, Mahoney CE, Joachim M, Shen Y, Gunner G, Majzoub JA (2016) Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice. Mol Psychiatry. doi:10.1038/mp.2016.136

    Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel J. Winklewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Winklewski, P.J., Radkowski, M., Wszedybyl-Winklewska, M., Demkow, U. (2017). Stress Response, Brain Noradrenergic System and Cognition. In: Pokorski, M. (eds) Respiratory System Diseases. Advances in Experimental Medicine and Biology(), vol 980. Springer, Cham. https://doi.org/10.1007/5584_2016_204

Download citation

Publish with us

Policies and ethics