Skip to main content

Processing, degradation, and polyadenylation of chloroplast transcripts

  • Chapter
  • First Online:
Cell and Molecular Biology of Plastids

Part of the book series: Topics in Current Genetics ((TCG,volume 19))

Abstract

In this chapter, we describe the major enzymes and characteristics of transcript 5′ and3′ end maturation, and polyadenylation-stimulated degradation. The picture which emerges isthat maturation and degradation share many prokaryotic features, vestiges of the chloroplast endosymbiontancestor. The major exoribonucleases are well-defined, being polynucleotide phosphorylase and RNaseII/R. The endonucleases include CSP41, with largely informatic evidence for homologs of prokaryoticRNases E, J, and III. The polyadenylation-stimulated degradation pathway, which occurs in most livingsystems, is a major player in chloroplast RNA degradation. We discuss known or potential rolesfor polynucleotide phosphorylase and a prokaryotic-type poly(A) polymerase. Finally, we discussnuclear mutations that affect RNA maturation and degradation, defining genes that are likely or knownto encode regulatory factors. Major questions for future research include how the ribonucleases,which are inherently nonspecific, interact with these specificity factors, and whether newly-discoverednoncoding RNAs in the chloroplast play any role in RNA metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloy P, Ciccarelli FD, Leutwein C, Gavin AC, Superti-Furga G, Bork P, Bottcher B, Russell RB (2002) A complex prediction: three-dimensional model of the yeast exosome. EMBO Rep 3:628–635

    PubMed  CAS  Google Scholar 

  2. Baginsky S, Shteiman-Kotler A, Liveanu V, Yehudai-Resheff S, Bellaoui M, Settlage RE, Shabanowitz J, Hunt DF, Schuster G, Gruissem W (2001) Chloroplast PNPase exists as a homo-multimer enzyme complex that is distinct from the Escherichia coli degradosome. RNA 7:1464–1475

    PubMed  CAS  Google Scholar 

  3. Baker ME, Grundy WN, Elkan CP (1998) Spinach CSP41, an mRNA-binding protein and ribonuclease, is homologous to nucleotide-sugar epimerases and hydroxysteriod dehydrogenases. Biochem Biophys Res Comm 248:250–254

    PubMed  CAS  Google Scholar 

  4. Barkan A (1988) Proteins encoded by a complex chloroplast transcription unit are each translated from both monocistronic and polycistronic RNAs. EMBO J 7:2637–2644

    PubMed  CAS  Google Scholar 

  5. Barkan A (1998) Approaches to investigating nuclear genes that function in chloroplast biogenesis in land plants. Meths Enzymol 297:38–57

    CAS  Google Scholar 

  6. Barkan A, Goldschmidt-Clermont M (2000) Participation of nuclear genes in chloroplast gene expression. Biochimie 82:559–572

    PubMed  CAS  Google Scholar 

  7. Barkan A, Walker M, Nolasco M, Johnson D (1994) A nuclear mutation in maize blocks the processing and translation of several chloroplast mRNAs and provides evidence for the differential translation of alternative mRNA forms. EMBO J 13:3170–3181

    PubMed  CAS  Google Scholar 

  8. Barneche F, Winter V, Crevecoeur M, Rochaix JD (2006) ATAB2 is a novel factor in the signalling pathway of light-controlled synthesis of photosystem proteins. EMBO J 25:5907–5918

    PubMed  CAS  Google Scholar 

  9. Bellaoui M, Gruissem W (2004) Altered expression of the Arabidopsis ortholog of DCL affects normal plant development. Planta 219:819–826

    PubMed  CAS  Google Scholar 

  10. Bellaoui M, Keddie JS, Gruissem W (2003) DCL is a plant-specific protein required for plastid ribosomal RNA processing and embryo development. Plant Mol Biol 53:531–543

    PubMed  CAS  Google Scholar 

  11. Bennett DC, Rogers SA, Chen LJ, Orozco M (1990) A primary transcript in spinach chloroplasts that completely lacks a 5' untranslated leader region. Plant Mol Biol 15:111–120

    PubMed  CAS  Google Scholar 

  12. Bennoun P, Béal D (1997) Screening algal mutant colonies with altered thylakoid electrochemical gradient through fluorescence and delayed luminescence digital imaging. Photosynthesis Res 51:161–165

    CAS  Google Scholar 

  13. Bisanz C, Begot L, Carol P, Perez P, Bligny M, Pesey H, Gallois JL, Lerbs-Mache S, Mache R (2003) The Arabidopsis nuclear DAL gene encodes a chloroplast protein which is required for the maturation of the plastid ribosomal RNAs and is essential for chloroplast differentiation. Plant Mol Biol 51:651–663

    PubMed  CAS  Google Scholar 

  14. Blowers AD, Klein U, Ellmore GS, Bogorad L (1993) Functional in vivo analyses of the 3' flanking sequences of the Chlamydomonas chloroplast rbcL and psaB genes. Mol Gen Genet 238:339–349

    PubMed  CAS  Google Scholar 

  15. Blum E, Carpousis AJ, Higgins CF (1999) Polyadenylation promotes degradation of 3'-structured RNA by the Escherichia coli mRNA degradosome in vitro. J Biol Chem 274:4009–4016

    PubMed  CAS  Google Scholar 

  16. Bollenbach TJ, Lange H, Gutierrez R, Erhardt M, Stern DB, Gagliardi D (2005) RNR1, a 3'-5' exoribonuclease belonging to the RNR superfamily, catalyzes 3' maturation of chloroplast ribosomal RNAs in Arabidopsis thaliana. Nucleic Acids Res 33:2751–2763

    PubMed  CAS  Google Scholar 

  17. Bollenbach TJ, Schuster G, Stern DB (2004) Cooperation of endo- and exoribonucleases in chloroplast mRNA turnover. Prog Nucleic Acid Res Mol Biol 78:305–337

    PubMed  CAS  Google Scholar 

  18. Bollenbach TJ, Stern DB (2003a) Divalent metal-dependent catalysis and cleavage specificity of CSP41, a chloroplast endoribonuclease belonging to the short chain dehydrogenase/reductase superfamily. Nucleic Acids Res 31:4317–4325

    PubMed  CAS  Google Scholar 

  19. Bollenbach TJ, Stern DB (2003b) Secondary structures common to chloroplast mRNA 3'-untranslated regions direct cleavage by CSP41, an endoribonuclease belonging to the short chain dehydrogenase/reductase superfamily. J Biol Chem 278:25832–25838

    PubMed  CAS  Google Scholar 

  20. Bollenbach TJ, Tatman DA, Stern DB (2003) CSP41a, a multifunctional RNA-binding protein, initiates mRNA turnover in tobacco chloroplasts. Plant J 36:842–852

    PubMed  CAS  Google Scholar 

  21. Boudreau E, Nickelsen J, Lemaire SD, Ossenbuhl F, Rochaix J-D (2000) The Nac2 gene of Chlamydomonas reinhardtii encodes a chloroplast TPR protein involved in psbD mRNA stability, processing and/or translation. EMBO J 19:3366–3376

    PubMed  CAS  Google Scholar 

  22. Bralley P, Jones GH (2002) cDNA cloning confirms the polyadenylation of RNA decay intermediates in Streptomyces coelicolor. Microbiology 148:1421–1425

    PubMed  CAS  Google Scholar 

  23. Britton RA, Wen T, Schaefer L, Pellegrini O, Uicker WC, Mathy N, Tobin C, Daou R, Szyk J, Condon C (2007) Maturation of the 5' end of Bacillus subtilis 16S rRNA by the essential ribonuclease YkqC/RNase J1. Mol Microbiol 63:127–138

    PubMed  CAS  Google Scholar 

  24. Bruick RK, Mayfield SP (1998) Processing of the psbA 5' untranslated region in Chlamydomonas reinhardtii depends upon factors mediating ribosome association. J Cell Biol 143:1145–1153

    PubMed  CAS  Google Scholar 

  25. Buttner K, Wenig K, Hopfner KP (2005) Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol Cell 20:461–471

    PubMed  Google Scholar 

  26. Callaghan AJ, Marcaida MJ, Stead JA, McDowall KJ, Scott WG, Luisi BF (2005) Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover. Nature 437:1187–1191

    PubMed  CAS  Google Scholar 

  27. Campos-Guillen J, Bralley P, Jones GH, Bechhofer DH, Olmedo-Alvarez G (2005) Addition of poly(A) and heteropolymeric 3' ends in Bacillus subtilis wild-type and polynucleotide phosphorylase-deficient strains. J Bacteriol 187:4698–4706

    PubMed  CAS  Google Scholar 

  28. Chen H, Stern DB (1991) Specific ribonuclease activities in spinach chloroplasts promote mRNA maturation and degradation. J Biol Chem 266:24205–24211

    PubMed  CAS  Google Scholar 

  29. Chen HW, Rainey RN, Balatoni CE, Dawson DW, Troke JJ, Wasiak S, Hong J, McBride H, Koehler CM, Teitell MA, French SW (2006) Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol Cell Biol 26:8475–8487

    PubMed  CAS  Google Scholar 

  30. Cheng ZF, Deutscher MP (2002) Purification and characterization of the Escherichia coli exoribonuclease RNase R. Comparison with RNase II. J Biol Chem 277:21624–21629

    PubMed  CAS  Google Scholar 

  31. Cheng ZF, Deutscher MP (2005) An important role for RNase R in mRNA decay. Mol Cell 17:313–318

    PubMed  CAS  Google Scholar 

  32. Clements MO, Eriksson S, Thompson A, Lucchini S, Hinton JC, Normark S, Rhen M (2002) Polynucleotide phosphorylase is a global regulator of virulence and persistency in Salmonella enterica. Proc Natl Acad Sci USA 99:8784–8789

    PubMed  CAS  Google Scholar 

  33. Coburn GA, Mackie GA (1999) Degradation of mRNA in Escherichia coli: an old problem with some new twists. Prog Nucleic Acid Res Mol Biol 62:55–108

    PubMed  CAS  Google Scholar 

  34. Coburn GA, Miao X, Briant DJ, Mackie GA (1999) Reconstitution of a minimal RNA degradosome demonstrates functional coordination between a 3' exonuclease and a DEAD-box RNA helicase. Genes Dev 13:2594–2603

    PubMed  CAS  Google Scholar 

  35. Cohen SN, McDowall KJ (1997) RNase E: still a wonderfully mysterious enzyme. Mol Microbiol 23:1099–1106

    PubMed  CAS  Google Scholar 

  36. Condon C (2003) RNA processing and degradation in Bacillus subtilis. Microbiol Mol Biol Rev 67:157–174

    PubMed  CAS  Google Scholar 

  37. Dauvillee D, Stampacchia O, Girard-Bascou J, Rochaix JD (2003) Tab2 is a novel conserved RNA binding protein required for translation of the chloroplast psaB mRNA. EMBO J 22:6378–6388

    PubMed  CAS  Google Scholar 

  38. de la Sierra-Gallay IL, Pellegrini O, Condon C (2005) Structural basis for substrate binding, cleavage and allostery in the tRNA maturase RNase Z. Nature 433:657–661

    Google Scholar 

  39. del Campo EM, Sabater B, Martin M (2006) Characterization of the 5'- and 3'-ends of mRNAs of ndhH, ndhA and ndhI genes of the plastid ndhH-D operon. Biochimie 88:347–357

    Google Scholar 

  40. del Campo EM, Sabater B, Martin M (2002) Post-transcriptional control of chloroplast gene expression. Accumulation of stable psaC mRNA is due to downstream RNA cleavages in the ndhD gene. J Biol Chem 277:36457–36464

    PubMed  CAS  Google Scholar 

  41. Deng XW, Gruissem W (1987) Control of plastid gene expression during development: the limited role of transcriptional regulation. Cell 49:379–387

    PubMed  CAS  Google Scholar 

  42. Deutscher MP (2006) Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 34:659–666

    PubMed  CAS  Google Scholar 

  43. Deutscher MP, Li Z (2001) Exoribonucleases and their multiple roles in RNA metabolism. Prog Nucleic Acid Res Mol Biol 66:67–105

    PubMed  CAS  Google Scholar 

  44. Dhingra A, Bies DH, Lehner KR, Folta KM (2006) Green light adjusts the plastid transcriptome during early photomorphogenic development. Plant Physiol 142:1256–1266

    PubMed  CAS  Google Scholar 

  45. Donovan WP, Kushner SR (1986) Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc Natl Acad Sci USA 83:120–124

    PubMed  CAS  Google Scholar 

  46. Douglas SE (1998) Plastid evolution: origins, diversity, trends. Curr Opin Genet Dev 8:655–661

    PubMed  CAS  Google Scholar 

  47. Douglas SE (1999) Evolutionary history of plastids. Biol Bull 196:397–399

    PubMed  CAS  Google Scholar 

  48. Drager RG, Girard-Bascou J, Choquet Y, Kindle KL, Stern DB (1998) In vivo evidence for 5'-3' exoribonuclease degradation of an unstable chloroplast mRNA. Plant J 13:85–96

    PubMed  CAS  Google Scholar 

  49. Drager RG, Higgs DC, Kindle KL, Stern DB (1999) 5' to 3' exoribonucleolytic activity is a normal component of chloroplast mRNA decay pathways. Plant J 19:521–532

    PubMed  CAS  Google Scholar 

  50. Dreyfus M, Regnier P (2002a) The poly(A) tail of mRNAs: bodyguard in eukaryotes, scavenger in bacteria. Cell 111:611–613

    PubMed  CAS  Google Scholar 

  51. Dreyfus M, Regnier P (2002b) The poly(A) tail of mRNAs. Bodyguard in eukaryotes, scavenger in bacteria. Cell 111:611–613

    PubMed  CAS  Google Scholar 

  52. Duhring U, Axmann IM, Hess WR, Wilde A (2006) An internal antisense RNA regulates expression of the photosynthesis gene isiA. Proc Natl Acad Sci USA 103:7054–7058

    PubMed  Google Scholar 

  53. Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257

    PubMed  CAS  Google Scholar 

  54. Dziembowski A, Malewicz M, Minczuk M, Golik P, Dmochowska A, Stepien PP (1998) The yeast nuclear gene DSS1, which codes for a putative RNase II, is necessary for the function of the mitochondrial degradosome in processing and turnover of RNA. Mol Gen Genet 260:108–114

    PubMed  CAS  Google Scholar 

  55. Dziembowski A, Piwowarski J, Hoser R, Minczuk M, Dmochowska A, Siep M, van der Spek H, Grivell L, Stepien PP (2003) The yeast mitochondrial degradosome. Its composition, interplay between RNA helicase and RNase activities and the role in mitochondrial RNA metabolism. J Biol Chem 278:1603–1611

    PubMed  CAS  Google Scholar 

  56. Eberhard S, Drapier D, Wollman FA (2002) Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant J 31:149–160

    PubMed  CAS  Google Scholar 

  57. Edmonds M (2002) A history of poly A sequences: from formation to factors to function. Prog Nucleic Acid Res Mol Biol 71:285–389

    PubMed  CAS  Google Scholar 

  58. Erickson B, Stern DB, Higgs DC (2005) Microarray analysis confirms the specificity of a Chlamydomonas reinhardtii chloroplast RNA stability mutant. Plant Physiol 137:534–544

    PubMed  CAS  Google Scholar 

  59. Eriksson M, Villand P, Gardestrom P, Samuelsson G (1998) Induction and regulation of expression of a low-CO2-induced mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 116:637–641

    PubMed  CAS  Google Scholar 

  60. Even S, Pellegrini O, Zig L, Labas V, Vinh J, Brechemmier-Baey D, Putzer H (2005) Ribonucleases J1 and J2: two novel endoribonucleases in B. subtilis with functional homology to E. coli RNase E. Nucleic Acids Res 33:2141–2152

    PubMed  CAS  Google Scholar 

  61. Evguenieva-Hackenberg E, Schiltz E, Klug G (2002) Dehydrogenases from all three domains of life cleave RNA. J Biol Chem 277:46145–46150

    PubMed  CAS  Google Scholar 

  62. Felder S, Meierhoff K, Sane AP, Meurer J, Driemel C, Plucken H, Klaff P, Stein B, Bechtold N, Westhoff P (2001) The nucleus-encoded HCF107 gene of Arabidopsis provides a link between intercistronic RNA processing and the accumulation of translation-competent psbH transcripts in chloroplasts. Plant Cell 13:2127–2141

    PubMed  CAS  Google Scholar 

  63. Fisk DG, Walker MB, Barkan A (1999) Molecular cloning of the maize gene crp1 reveals similarity between regulators of mitochondrial and chloroplast gene expression. EMBO J 18:2621–2630

    PubMed  CAS  Google Scholar 

  64. Folichon M, Allemand F, Regnier P, Hajnsdorf E (2005) Stimulation of poly(A) synthesis by Escherichia coli poly(A)polymerase I is correlated with Hfq binding to poly(A) tails. FEBS J 272:454–463

    PubMed  CAS  Google Scholar 

  65. Frazao C, McVey CE, Amblar M, Barbas A, Vonrhein C, Arraiano CM, Carrondo MA (2006) Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature 443:110–114

    PubMed  CAS  Google Scholar 

  66. French SW, Dawson DW, Chen HW, Rainey RN, Sievers SA, Balatoni CE, Wong L, Troke JJ, Nguyen MT, Koehler CM, Teitell MA (2006) The TCL1 oncoprotein binds the RNase PH domains of the PNPase exoribonuclease without affecting its RNA degrading activity. Cancer Lett 248:198–210

    PubMed  Google Scholar 

  67. Gamble PE, Mullet JE (1989) Blue light regulates the accumulation of two psbD-psbC transcripts in barley chloroplasts. EMBO J 8:2785–2794

    PubMed  CAS  Google Scholar 

  68. Gottesman S (2004) The small RNA regulators of Escherichia coli: roles and mechanisms*. Annu Rev Microbiol 58:303–328

    PubMed  CAS  Google Scholar 

  69. Gregory ST, O'Connor M, Dahlberg AE (1996) Functional Escherichia coli 23S rRNAs containing processed and unprocessed intervening sequences from Salmonella typhimurium. Nucleic Acids Res 24:4918–4923

    PubMed  CAS  Google Scholar 

  70. Gruissem W (1989) Chloroplast gene expression: How plants turn their plastids on. Cell 56:161–170

    PubMed  CAS  Google Scholar 

  71. Grunberg-Manago M (1999) Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet 33:193–227

    PubMed  CAS  Google Scholar 

  72. Grunberg-Manago M, Ochoa S (1955) Enzymatic synthesis and breakdown of polynucleotides; Polynucleotide phosphorylase. J Am Chem Soc 77:3165 - 3166

    CAS  Google Scholar 

  73. Haff LA, Bogorad L (1976) Poly(adenylic acid)-containing RNA from plastids of maize. Biochemistry 15:4110–4115

    PubMed  CAS  Google Scholar 

  74. Harlow LS, Kadziola A, Jensen KF, Larsen S (2004) Crystal structure of the phosphorolytic exoribonuclease RNase PH from Bacillus subtilis and implications for its quaternary structure and tRNA binding. Protein Sci 13:668–677

    PubMed  CAS  Google Scholar 

  75. Harris EH (1989) The Chlamydomonas Sourcebook: A comprehensive guide to biology and laboratory use. San Diego: Academic Press

    Google Scholar 

  76. Hattori M, Miyake H, Sugita M (2007) A pentatricopeptide repeat protein is required for RNA processing of clpP pre-mRNA in moss chloroplasts. J Biol Chem 282:10773–10782

    PubMed  CAS  Google Scholar 

  77. Hayes R, Kudla J, Gruissem W (1999) Degrading chloroplast mRNA: the role of polyadenylation. Trends Biochem Sci 24:199–202

    PubMed  CAS  Google Scholar 

  78. Hayes R, Kudla J, Schuster G, Gabay L, Maliga P, Gruissem W (1996) Chloroplast mRNA 3'-end processing by a high molecular weight protein complex is regulated by nuclear encoded RNA binding proteins. EMBO J 15:1132–1141

    PubMed  CAS  Google Scholar 

  79. Hegeman CE, Halter CP, Owens TG, Hanson MR (2005) Expression of complementary RNA from chloroplast transgenes affects editing efficiency of transgene and endogenous chloroplast transcripts. Nucleic Acids Res 33:1454–1464

    PubMed  CAS  Google Scholar 

  80. Hernandez H, Dziembowski A, Taverner T, Seraphin B, Robinson CV (2006) Subunit architecture of multimeric complexes isolated directly from cells. EMBO Rep 7:605–610

    PubMed  CAS  Google Scholar 

  81. Hicks A, Drager RG, Higgs DC, Stern DB (2002) An mRNA 3' processing site targets downstream sequences for rapid degradation in Chlamydomonas chloroplasts. J Biol Chem 277:3325–3333

    PubMed  CAS  Google Scholar 

  82. Higgs DC, Shapiro RS, Kindle KL, Stern DB (1999) Small cis-acting sequences that specify secondary structures in a chloroplast mRNA are essential for RNA stability and translation. Mol Cell Biol 19:8479–8491

    PubMed  CAS  Google Scholar 

  83. Hirose T, Sugiura M (1997) Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast ndhD mRNA: a possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes. EMBO J 16:6804–6811

    PubMed  CAS  Google Scholar 

  84. Hoffmeister M, Martin W (2003) Interspecific evolution: microbial symbiosis, endosymbiosis and gene transfer. Environ Microbiol 5:641–649

    PubMed  CAS  Google Scholar 

  85. Holloway SP, Herrin DL (1998) Processing of a composite large subunit rRNA. Studies with Chlamydomonas mutants deficient in maturation of the 23S-like rRNA. Plant Cell 10:1193–1206

    PubMed  CAS  Google Scholar 

  86. Horlitz M, Klaff P (2000) Gene-specific trans-regulatory functions of magnesium for chloroplast mRNA stability in higher plants. J Biol Chem 275:35638–35645

    PubMed  CAS  Google Scholar 

  87. Houseley J, LaCava J, Tollervey D (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7:529–539

    PubMed  CAS  Google Scholar 

  88. Ishii R, Nureki O, Yokoyama S (2003) Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus. J Biol Chem 278:32397–32404

    PubMed  CAS  Google Scholar 

  89. Ishijima S, Uchibori A, Takagi H, Maki R, Ohnishi M (2003) Light-induced increase in free Mg(2+) concentration in spinach chloroplasts: Measurement of free Mg(2+) by using a fluorescent probe and necessity of stromal alkalinization. Arch Biochem Biophys 412:126–132

    PubMed  CAS  Google Scholar 

  90. Jarrige A, Brechemier-Baey D, Mathy N, Duche O, Portier C (2002) Mutational analysis of polynucleotide phosphorylase from Escherichia coli. J Mol Biol 321:397–409

    PubMed  CAS  Google Scholar 

  91. Jenkins BD, Kulhanek DJ, Barkan A (1997) Nuclear mutations that block group II RNA splicing in maize chloroplasts reveal several intron classes with distinct requirements for splicing factors. Plant Cell 9:283–296

    PubMed  CAS  Google Scholar 

  92. Jiao HS, Hicks A, Simpson C, Stern DB (2004) Short dispersed repeats in the Chlamydomonas chloroplast genome are collocated with sites for mRNA 3' end formation. Curr Genet 45:311–322

    PubMed  CAS  Google Scholar 

  93. Kallberg Y, Oppermann U, Jornvall H, Persson B (2002) Short-chain dehydrogenase/reductase (SDR) relationships: A large family with eight clusters common to human, animal, and plant genomes. Protein Sci 11:636–641

    PubMed  CAS  Google Scholar 

  94. Kapoor S, Suzuki JY, Sugiura M (1997) Identification and functional significance of a new class of non-consensus-type plastid promoters. Plant J 11:327–337

    PubMed  CAS  Google Scholar 

  95. Kastenmayer JP, Green PJ (2000) Novel features of the XRN-family in Arabidopsis: evidence that AtXRN4, one of several orthologs of nuclear Xrn2p/Rat1p, functions in the cytoplasm. Proc Natl Acad Sci USA 97:13985–13990

    PubMed  CAS  Google Scholar 

  96. Kim M, Thum KE, Morishige DT, Mullet JE (1999) Detailed architecture of the barley chloroplast psbD-psbC blue light-responsive promoter. J Biol Chem 274:4684–4692

    PubMed  CAS  Google Scholar 

  97. Kishine M, Takabayashi A, Munekage Y, Shikanai T, Endo T, Sato F (2004) Ribosomal RNA processing and an RNase R family member in chloroplasts of Arabidopsis. Plant Mol Biol 55:595–606

    PubMed  CAS  Google Scholar 

  98. Komine Y, Kikis E, Schuster G, Stern D (2002) Evidence for in vivo modulation of chloroplast RNA stability by 3'-UTR homopolymeric tails in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 99:4085–4090

    PubMed  CAS  Google Scholar 

  99. Komine Y, Kwong L, Anguera MC, Schuster G, Stern DB (2000) Polyadenylation of three classes of chloroplast RNA in Chlamydomonas reinhardtii. RNA 6:598–607

    PubMed  CAS  Google Scholar 

  100. Kordes E, Jock S, Fritsch J, Bosch F, Klug G (1994) Cloning of a gene involved in rRNA precursor processing and 23S rRNA cleavage in Rhodobacter capsulatus. J Bacteriol 176:1121–1127

    PubMed  CAS  Google Scholar 

  101. Kramzar L, Mueller T, Erickson B, Higgs D (2006) Regulatory sequences of orthologous petD chloroplast mRNAs are highly specific among Chlamydomonas species. Plant Mol Biol 60:405–422

    PubMed  CAS  Google Scholar 

  102. Kudla J, Hayes R, Gruissem W (1996) Polyadenylation accelerates degradation of chloroplast mRNA. EMBO J 15:7137–7146

    PubMed  CAS  Google Scholar 

  103. Kushner SR (2002) mRNA decay in Escherichia coli comes of age. J Bacteriol 184:4658–4665

    PubMed  CAS  Google Scholar 

  104. Kushner SR (2004) mRNA decay in prokaryotes and eukaryotes: different approaches to a similar problem. IUBMB Life 56:585–594

    PubMed  CAS  Google Scholar 

  105. Lacava J, Houseley J, Saveanu C, Petfalski E, Thompson E, Jacquier A, Tollervey D (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121:713–724

    PubMed  CAS  Google Scholar 

  106. Lahmy S, Barneche F, Derancourt J, Filipowicz W, Delseny M, Echeverria M (2000) A chloroplastic RNA-binding protein is a new member of the PPR family. FEBS Lett 480:255–260

    PubMed  CAS  Google Scholar 

  107. Leaver CJ (1973) Molecular integrity of chloroplast ribosomal ribonucleic acid. Biochem J 135:237–240

    PubMed  CAS  Google Scholar 

  108. Leszczyniecka M, Kang DC, Sarkar D, Su ZZ, Holmes M, Valerie K, Fisher PB (2002) Identification and cloning of human polynucleotide phosphorylase, hPNPase old-35, in the context of terminal differentiation and cellular senescence. Proc Natl Acad Sci USA 99:16636–16641

    PubMed  CAS  Google Scholar 

  109. Levy H, Kindle KL, Stern DB (1997) A nuclear mutation that affects the 3' processing of several mRNAs in Chlamydomonas chloroplasts. Plant Cell 9:825–836

    PubMed  CAS  Google Scholar 

  110. Levy H, Kindle KL, Stern DB (1999) Target and specificity of a nuclear gene product that participates in mRNA 3'-end formation in Chlamydomonas chloroplasts. J Biol Chem 274:35955–35962

    PubMed  CAS  Google Scholar 

  111. Li Z, Pandit S, Deutscher MP (1998) Polyadenylation of stable RNA precursors in vivo. Proc Natl Acad Sci USA 95:12158–12162

    PubMed  CAS  Google Scholar 

  112. Liere K, Link G (1997) Chloroplast endoribonuclease p54 involved in RNA3'-end processing is regulated by phosphorylation and redox state. Nucleic Acids Res 25:2403–2438

    PubMed  CAS  Google Scholar 

  113. Lisitsky I, Klaff P, Schuster G (1996) Addition of poly(A)-rich sequences to endonucleolytic cleavage sites in the degradation of spinach chloroplast mRNA. Proc Natl Acad Sci USA 93:13398–13403

    PubMed  CAS  Google Scholar 

  114. Littauer UZ, Grunberg-Manago M (1999) Polynucleotide Phosphorylase. John Wiley and Sons Inc., New York

    Google Scholar 

  115. Littauer UZ, Soreq H (1982) Polynucleotide Phosphorylase. In: Boyer PD (ed) The Enzymes, 3rd edn. Academic Press Inc, New York, pp 517–553

    Google Scholar 

  116. Liu Q, Greimann JC, Lima CD (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127:1223–1237

    PubMed  CAS  Google Scholar 

  117. Lorentzen E, Walter P, Fribourg S, Evguenieva-Hackenberg E, Klug G, Conti E (2005) The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol 12:575–581

    PubMed  CAS  Google Scholar 

  118. Lown FJ, Watson AT, Purton S (2001) Chlamydomonas nuclear mutants that fail to assemble respiratory or photosynthetic electron transfer complexes. Biochem Soc Trans 29:452–455

    PubMed  CAS  Google Scholar 

  119. Lung B, Zemann A, Madej MJ, Schuelke M, Techritz S, Ruf S, Bock R, Huttenhofer A (2006) Identification of small non-coding RNAs from mitochondria and chloroplasts. Nucleic Acids Res 34:3842–3852

    PubMed  CAS  Google Scholar 

  120. Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103

    PubMed  CAS  Google Scholar 

  121. Mackie GA (1998) Ribonuclease E is a 5'-end-dependent endonuclease. Nature 395:720–723

    PubMed  CAS  Google Scholar 

  122. Marcaida MJ, DePristo MA, Chandran V, Carpousis AJ, Luisi BF (2006) The RNA degradosome: life in the fast lane of adaptive molecular evolution. Trends Biochem Sci 31:359–365

    PubMed  CAS  Google Scholar 

  123. Martin G, Keller W (2004) Sequence motifs that distinguish ATP(CTP):tRNA nucleotidyl transferases from eubacterial poly(A) polymerases. RNA 10:899–906

    PubMed  CAS  Google Scholar 

  124. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    PubMed  CAS  Google Scholar 

  125. Marujo PE, Hajnsdorf E, Le Derout J, Andrade R, Arraiano CM, Regnier P (2000) RNase II removes the oligo(A) tails that destabilize the rpsO mRNA of Escherichia coli. RNA 6:1185–1193

    PubMed  CAS  Google Scholar 

  126. Mattatall NR, Sanderson KE (1998) RNase III deficient Salmonella typhimurium LT2 contains intervening sequences (IVSs) in its 23S rRNA. FEMS Microbiol Lett 159:179–185

    PubMed  CAS  Google Scholar 

  127. Meierhoff K, Felder S, Nakamura T, Bechtold N, Schuster G (2003) HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. Plant Cell 15:1480–1495

    PubMed  CAS  Google Scholar 

  128. Meurer J, Berger A, Westhoff P (1996) A nuclear mutant of Arabidopsis with impaired stability on distinct transcripts of the plastid psbB, psbD/C, ndhH, and ndhC operons. Plant Cell 8:1193–1207

    PubMed  CAS  Google Scholar 

  129. Miyagi T, Kapoor S, Sugita M, Sugiura M (1998) Transcript analysis of the tobacco plastid operon rps2/atpI/H/F/A reveals the existence of a non-consensus type II (NCII) promoter upstream of the atpI coding sequence. Mol Gen Genet 257:299–307

    PubMed  CAS  Google Scholar 

  130. Mohanty BK, Kushner SR (2000a) Polynucleotide phosphorylase functions both as a 3' to 5' exonuclease and a poly(A) polymerase in Escherichia coli. Proc Natl Acad Sci USA 97:11966–11971

    PubMed  CAS  Google Scholar 

  131. Mohanty BK, Kushner SR (2000b) Polynucleotide phosphorylase functions both as a 3' to 5' exonuclease and a poly(A) polymerase in Escherichia coli. Proc Natl Acad Sci USA 97:11966–11971

    PubMed  CAS  Google Scholar 

  132. Mohanty BK, Maples VF, Kushner SR (2004) The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol Microbiol 54:905–920

    PubMed  CAS  Google Scholar 

  133. Monde RA, Greene JC, Stern DB (2000a) Disruption of the petB-petD intergenic region in tobacco chloroplasts affects petD RNA accumulation and translation. Mol Gen Genet 263:610–618

    PubMed  CAS  Google Scholar 

  134. Monde RA, Schuster G, Stern DB (2000b) Processing and degradation of chloroplast mRNA. Biochimie 82:573–582

    PubMed  CAS  Google Scholar 

  135. Mullet JE (1993) Dynamic regulation of chloroplast transcription. Plant Physiol 103:309–313

    PubMed  CAS  Google Scholar 

  136. Mullet JE, Klein RR (1987) Transcription and RNA stability are important determinants of higher plant chloroplast RNA levels. EMBO J 6:1571–1579

    PubMed  CAS  Google Scholar 

  137. Murakami S, Kuehnle K, Stern DB (2005) A spontaneous tRNA suppressor of a mutation in the Chlamydomonas reinhardtii nuclear MCD1 gene required for stability of the chloroplast petD mRNA. Nucleic Acids Res 33:3372–3380

    PubMed  CAS  Google Scholar 

  138. Nakamura T, Meierhoff K, Westhoff P, Schuster G (2003) RNA-binding properties of HCF152, an Arabidopsis PPR protein involved in the processing of chloroplast RNA. Eur J Biochem 270:4070–4081

    PubMed  CAS  Google Scholar 

  139. Neuhaus H, Scholz A, Link G (1989) Structure and expression of a split chloroplast gene from mustard (Sinapis alba): ribosomal protein gene rps16 reveals unusual transcriptional features and complex RNA maturation. Curr Genet 15:63–70

    PubMed  CAS  Google Scholar 

  140. Newbury SF, Muhlemann O, Stoecklin G (2006) Turnover in the Alps: an mRNA perspective. Workshops on mechanisms and regulation of mRNA turnover. EMBO Rep 7:143–148

    PubMed  CAS  Google Scholar 

  141. Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung K-H, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci USA 97:12176–12181

    PubMed  CAS  Google Scholar 

  142. Nickelsen J (2000) Mutations at three different nuclear loci of Chlamydomonas suppress a defect in chloroplast psbD mRNA accumulation. Curr Genet 37:136–142

    PubMed  CAS  Google Scholar 

  143. Nickelsen J (2003) Chloroplast RNA-binding proteins. Curr Genet 43:392–399

    PubMed  CAS  Google Scholar 

  144. Nickelsen J, Fleischmann M, Boudreau E, Rahire M, Rochaix J-D (1999) Identification of cis-acting RNA leader elements required for chloroplast psbD gene expression in Chlamydomonas. Plant Cell 11:957–970

    PubMed  CAS  Google Scholar 

  145. Nickelsen J, Link G (1989) Interaction of a 3' RNA region of the mustard trnK gene with chloroplast proteins. Nucleic Acids Res 17:9637–9648

    PubMed  CAS  Google Scholar 

  146. Nickelsen J, Link G (1991) RNA-protein interactions at transcript 3' ends and evidence for trnK-psbA cotranscription in mustard chloroplasts. Mol Gen Genet 228:89–96

    PubMed  CAS  Google Scholar 

  147. Nishimura Y, Kikis EA, Zimmer SL, Komine Y, Stern DB (2004) Antisense transcript and RNA processing alterations suppress instability of polyadenylated mRNA in Chlamydomonas chloroplasts. Plant Cell 16:2849–2869

    PubMed  CAS  Google Scholar 

  148. Orozco EM Jr, Chen LJ, Eilers RJ (1990) The divergently transcribed rbcL and atpB genes of tobacco plastid DNA are separated by nineteen base pairs. Curr Genet 17:65–71

    PubMed  CAS  Google Scholar 

  149. Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol Cell Proteomics 5:114–133

    PubMed  CAS  Google Scholar 

  150. Perrin R, Meyer EH, Zaepfel M, Kim YJ, Mache R, Grienenberger JM, Gualberto JM, Gagliardi D (2004) Two exoribonucleases act sequentially to process mature 3'-ends of atp9 mRNAs in Arabidopsis mitochondria. J Biol Chem 279:25440–25446

    PubMed  CAS  Google Scholar 

  151. Pfannschmidt T, Ogrzewalla K, Baginsky S, Sickmann A, Meyer HE, Link G (2000) The multisubunit chloroplast RNA polymerase A from mustard (Sinapis alba L.). Integration of a prokaryotic core into a larger complex with organelle-specific functions. Eur J Biochem 267:253–261

    PubMed  CAS  Google Scholar 

  152. Phinney BS, Thelen JJ (2005) Proteomic characterization of a triton-insoluble fraction from chloroplasts defines a novel group of proteins associated with macromolecular structures. J Proteome Res 4:497–506

    PubMed  CAS  Google Scholar 

  153. Portnoy V, Evguenieva-Hackenberg E, Klein F, Walter P, Lorentzen E, Klug G, Schuster G (2005) RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus. EMBO Rep 6:1188–1193

    PubMed  CAS  Google Scholar 

  154. Portnoy V, Schuster G (2006) RNA polyadenylation and degradation in different Archaea; roles of the exosome and RNase R. Nucleic Acids Res 34:5923–5931

    PubMed  CAS  Google Scholar 

  155. Raijmakers R, Noordman YE, van Venrooij WJ, Pruijn GJ (2002) Protein-protein interactions of hCsl4p with other human exosome subunits. J Mol Biol 315:809–818

    PubMed  CAS  Google Scholar 

  156. Rainey RN, Glavin JD, Chen HW, French SW, Teitell MA, Koehler CM (2006) A new function in translocation for the mitochondrial i-AAA protease Yme1: import of polynucleotide phosphorylase into the intermembrane space. Mol Cell Biol 26:8488–8497

    PubMed  CAS  Google Scholar 

  157. Rapp JC, Baumgartner BJ, Mullet J (1992) Quantitative analysis of transcription and RNA levels of 15 barley chloroplast genes. Transcription rates and mRNA levels vary over 300-fold; predicted mRNA stabilities vary 30-fold. J Biol Chem 267:21404–21411

    PubMed  CAS  Google Scholar 

  158. Raynal LC, Krisch HM, Carpousis AJ (1998) The Bacillus subtilis nucleotidyltransferase is a tRNA CCA-adding enzyme. J Bacteriol 180:6276–6282

    PubMed  CAS  Google Scholar 

  159. Rochaix JD (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 29:209–230

    PubMed  CAS  Google Scholar 

  160. Rott R, Drager RG, Stern DB, Schuster G (1996) The 3' untranslated regions of chloroplast genes in Chlamydomonas reinhardtii do not serve as efficient transcriptional terminators. Mol Gen Genet 252:676–683

    PubMed  CAS  Google Scholar 

  161. Rott R, Zipor G, Portnoy V, Liveanu V, Schuster G (2003) RNA polyadenylation and degradation in cyanobacteria are similar to the chloroplast but different from Escherichia coli. J Biol Chem 278:15771–15777

    PubMed  CAS  Google Scholar 

  162. Rymarquis LA, Higgs DC, Stern DB (2006a) Nuclear suppressors define three factors that participate in both 5' and 3' end processing of mRNAs in Chlamydomonas chloroplasts. Plant J 46:448–461

    PubMed  CAS  Google Scholar 

  163. Rymarquis LA, Webster BR, Stern DB (2006b) The nucleus-encoded factor MCD4 participates in degradation of nonfunctional 3' UTR sequences generated by cleavage of pre-mRNA in Chlamydomonas chloroplasts. Mol Genet Genomics 277:329–340

    PubMed  Google Scholar 

  164. Sane AP, Stein B, Westhoff P (2005) The nuclear gene HCF107 encodes a membrane-associated R-TPR (RNA tetratricopeptide repeat)-containing protein involved in expression of the plastidial psbH gene in Arabidopsis. Plant J 42:720–730

    PubMed  CAS  Google Scholar 

  165. Sarkar D, Leszczyniecka M, Kang DC, Lebedeva IV, Valerie K, Dhar S, Pandita TK, Fisher PB (2003) Down-regulation of Myc as a potential target for growth arrest induced by human polynucleotide phosphorylase (hPNPaseold-35) in human melanoma cells. J Biol Chem 278:24542–24551

    PubMed  CAS  Google Scholar 

  166. Sarkar N (1997) Polyadenylation of mRNA in prokaryotes. Annu Rev Biochem 66:173–197

    PubMed  CAS  Google Scholar 

  167. Sauret-Gueto S, Botella-Pavia P, Flores-Perez U, Martinez-Garcia JF, San Roman C, Leon P, Boronat A, Rodriguez-Concepcion M (2006) Plastid cues posttranscriptionally regulate the accumulation of key enzymes of the methylerythritol phosphate pathway in Arabidopsis. Plant Physiol 141:75–84

    PubMed  CAS  Google Scholar 

  168. Schiffer S, Rosch S, Marchfelder A (2002) Assigning a function to a conserved group of proteins: the tRNA 3'-processing enzymes. EMBO J 21:2769–2777

    PubMed  CAS  Google Scholar 

  169. Schuster G, Lisitsky I, Klaff P (1999) Update on chloroplast molecular biology: Polyadenylation and degradation of mRNA in the chloroplast. Plant Physiol 120:937–944

    PubMed  CAS  Google Scholar 

  170. Serino G, Maliga P (1998) RNA polymerase subunits encoded by the plastid rpo genes are not shared with the nucleus-encoded plastid enzyme. Plant Physiol 117:1165–1170

    PubMed  CAS  Google Scholar 

  171. Slomovic S, Laufer D, Geiger D, Schuster G (2005) Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark. Mol Cell Biol 25:6427–6435

    PubMed  CAS  Google Scholar 

  172. Slomovic S, Portnoy V, Liveanu V, Schuster G (2006a) RNA polyadenylation in prokaryotes and organelles; Different tails tell different tales. Crit Rev Plant Sci 25:65–77

    CAS  Google Scholar 

  173. Slomovic S, Portnoy V, Liveanu V, Schuster G (2006b) RNA Polyadenylation in prokaryotes and organelles; Different tails tell different tales. Crit Rev Plant Sci 25:65–77

    CAS  Google Scholar 

  174. Sohlberg B, Huang J, Cohen SN (2003) The Streptomyces coelicolor polynucleotide phosphorylase homologue, and not the putative poly(A) polymerase, can polyadenylate RNA. J Bacteriol 185:7273–7278

    PubMed  CAS  Google Scholar 

  175. Souret FF, Kastenmayer JP, Green PJ (2004) AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol Cell 15:173–183

    PubMed  CAS  Google Scholar 

  176. Stern DB, Gruissem W (1987) Control of plastid gene expression: 3' inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell 51:1145–1157

    PubMed  CAS  Google Scholar 

  177. Stern DB, Gruissem W (1989) Chloroplast mRNA 3' end maturation is biochemically distinct from prokaryotic mRNA processing. Plant Mol Biol 13:615–625

    PubMed  CAS  Google Scholar 

  178. Stern DB, Hanson MR, Barkan A (2004) Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci 9:293–301

    PubMed  CAS  Google Scholar 

  179. Stern DB, Kindle KL (1993) 3' end maturation of the Chlamydomonas reinhardtii chloroplast atpB mRNA is a two-step process. Mol Cell Biol 13:2277–2285

    PubMed  CAS  Google Scholar 

  180. Storz G, Altuvia S, Wassarman KM (2005) An abundance of RNA regulators. Annu Rev Biochem 74:199–217

    PubMed  CAS  Google Scholar 

  181. Sugita M, Svab Z, Maliga P, Sugiura M (1997) Targeted deletion of sprA from the tobacco plastid genome indicates that the encoded small RNA is not essential for pre-16S rRNA maturation in plastids. Mol Gen Genet 257:23–27

    PubMed  CAS  Google Scholar 

  182. Suzuki JY, Ytterberg AJ, Beardslee TA, Allison LA, Wijk KJ, Maliga P (2004) Affinity purification of the tobacco plastid RNA polymerase and in vitro reconstitution of the holoenzyme. Plant J 40:164–172

    PubMed  CAS  Google Scholar 

  183. Symmons MF, Jones GH, Luisi BF (2000a) A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure 8:1215–1226

    PubMed  CAS  Google Scholar 

  184. Symmons MF, Jones GH, Luisi BF (2000b) A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure Fold Des 8:1215–1226

    PubMed  CAS  Google Scholar 

  185. Symmons MF, Williams MG, Luisi BF, Jones GH, Carpousis AJ (2002) Running rings around RNA: a superfamily of phosphate-dependent RNases. Trends Biochem Sci 27:11–18

    PubMed  CAS  Google Scholar 

  186. Tanaka M, Obokata J, Chunwongse J, Shinozaki K, Sugiura M (1987) Rapid splicing and stepwise processing of a transcript from the psbB operon in tobacco chloroplasts: Determination of the intron sites in petB and petD. MGG 209:427–431

    PubMed  CAS  Google Scholar 

  187. Thum KE, Kim M, Christopher DA, Mullet JE (2001) Cryptochrome 1, cryptochrome 2, and phytochrome a co-activate the chloroplast psbD blue light-responsive promoter. Plant Cell 13:2747–2760

    PubMed  CAS  Google Scholar 

  188. Vaistij FE, Boudreau E, Lemaire SD, Goldschmidt-Clermont M, Rochaix JD (2000) Characterization of Mbb1, a nucleus-encoded tetratricopeptide-like repeat protein required for expression of the chloroplast psbB/psbT/psbH gene cluster in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 97:14813–14818

    PubMed  CAS  Google Scholar 

  189. Vanacova S, Wolf J, Martin G, Blank D, Dettwiler S, Friedlein A, Langen H, Keith G, Keller W (2005) A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 3:e189

    PubMed  Google Scholar 

  190. Vanzo NF, Li YS, Py B, Blum E, Higgins CF, Raynal LC, Krisch HM, Carpousis AJ (1998) Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Dev 12:2770–2781

    PubMed  CAS  Google Scholar 

  191. Vera A, Sugiura M (1994) A novel RNA gene in the tobacco plastid genome: its possible role in the maturation of 16S rRNA. EMBO J 13:2211–2217

    PubMed  CAS  Google Scholar 

  192. Walter M, Kilian J, Kudla J (2002) PNPase activity determines the efficiency of mRNA 3'-end processing, the degradation of tRNA and the extent of polyadenylation in chloroplasts. EMBO J 21:6905–6914

    PubMed  CAS  Google Scholar 

  193. Wang MJ, Davis NW, Gegenheimer P (1988) Novel mechanisms for maturation of chloroplast transfer RNA precursors. EMBO J 7:1567–1574

    PubMed  CAS  Google Scholar 

  194. Weiner AM (2005) E Pluribus Unum: 3' end formation of polyadenylated mRNAs, Histone mRNAs, and U snRNAs. Mol Cell 20:168–170

    PubMed  CAS  Google Scholar 

  195. Westhoff P, Herrmann RG (1988) Complex RNA maturation in chloroplasts: the psbB operon from spinach. Eur J Biochem 171:551–564

    PubMed  CAS  Google Scholar 

  196. Wickens M, Anderson P, Jackson RJ (1997) Life and death in the cytoplasm: messages from the 3' end. Curr Opin Genet Dev 7:220–232

    PubMed  CAS  Google Scholar 

  197. Wyers F, Rougemaille M, Badis G, Rousselle JC, Dufour ME, Boulay J, Regnault B, Devaux F, Namane A, Seraphin B, Libri D, Jacquier A (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121:725–737

    PubMed  CAS  Google Scholar 

  198. Yamaguchi K, Beligni MV, Prieto S, Haynes PA, McDonald WH, Yates JR 3rd, Mayfield SP (2003) Proteomic characterization of the Chlamydomonas reinhardtii chloroplast ribosome. Identification of proteins unique to the 70S ribosome. J Biol Chem 278:33774–33785

    PubMed  CAS  Google Scholar 

  199. Yamamoto YY, Puente P, Deng XW (2000) An Arabidopsis cotyledon-specific albino locus: a possible role in 16S rRNA maturation. Plant Cell Physiol 41:68–76

    PubMed  CAS  Google Scholar 

  200. Yang J, Schuster G, Stern DB (1996) CSP41, a sequence-specific chloroplast mRNA binding protein, is an endoribonuclease. Plant Cell 8:1409–1420

    PubMed  CAS  Google Scholar 

  201. Yang J, Stern DB (1997) The spinach chloroplast endoribonuclease CSP41 cleaves the 3' untranslated region of petD mRNA primarily within its terminal stem-loop structure. J Biol Chem 272:12784–12880

    Google Scholar 

  202. Yehudai-Resheff S, Hirsh M, Schuster G (2001) Polynucleotide phosphorylase functions as both an exonuclease and a poly(A) polymerase in spinach chloroplasts. Mol Cell Biol 21:5408–5416

    PubMed  CAS  Google Scholar 

  203. Yehudai-Resheff S, Portnoy V, Yogev S, Adir N, Schuster G (2003) Domain analysis of the chloroplast polynucleotide phosphorylase reveals discrete functions in RNA degradation, polyadenylation, and sequence homology with exosome proteins. Plant Cell 15:2003–2019

    PubMed  CAS  Google Scholar 

  204. Yehudai-Resheff S, Zimmer SL, Komine Y, Stern DB (2007) Integration of chloroplast nucleic acid metabolism into the phosphate deprivation response in Chlamydomonas reinhardtii. Plant Cell 19:1023–1038

    PubMed  CAS  Google Scholar 

  205. Yosef I, Irihimovitch V, Knopf JA, Cohen I, Orr-Dahan I, Nahum E, Keasar C, Shapira M (2004) RNA binding activity of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit from Chlamydomonas reinhardtii. J Biol Chem 279:10148–10156

    PubMed  CAS  Google Scholar 

  206. Yue D, Maizels N, Weiner AM (1996) CCA-adding enzymes and poly(A) polymerases are all members of the same nucleotidyltransferase superfamily: characterization of the CCA-adding enzyme from the archaeal hyperthermophile Sulfolobus shibatae. RNA 2:895–908

    PubMed  CAS  Google Scholar 

  207. Yukawa M, Kuroda H, Sugiura M (2006) A new in vitro translation system for non-radioactive assay from tobacco chloroplasts: effect of pre-mRNA processing on translation in vitro. Plant J 49:367–376

    PubMed  Google Scholar 

  208. Zoschke R, Liere K, Borner T (2007) From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J 50:710–722

    PubMed  CAS  Google Scholar 

  209. Zuo Y, Deutscher MP (2001) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 29:1017–1026

    PubMed  CAS  Google Scholar 

  210. Zuo Y, Vincent HA, Zhang J, Wang Y, Deutscher MP, Malhotra A (2006) Structural basis for processivity and single-strand specificity of RNase II. Mol Cell 24:149–156

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Stern .

Editor information

Ralph Bock

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bollenbach, T.J., Schuster, G., Portnoy, V., Stern, D.B. (2007). Processing, degradation, and polyadenylation of chloroplast transcripts. In: Bock, R. (eds) Cell and Molecular Biology of Plastids. Topics in Current Genetics, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_2007_0235

Download citation

Publish with us

Policies and ethics