Skip to main content

DNA replication, recombination, and repair in plastids

  • Chapter
  • First Online:
Cell and Molecular Biology of Plastids

Part of the book series: Topics in Current Genetics ((TCG,volume 19))

Abstract

Plastid DNA is conserved, highly polyploid and uniform within a plant reflecting efficientplastid DNA replication/recombination/repair (DNA-RRR) pathways. We will review the current understandingof the DNA sequences, proteins, and mechanisms involved in plastid genome maintenance. This includesanalysis of the topological forms of plastid DNA, models of plastid DNA replication, homologous recombination,replication slippage, DNA repair, and plastid DNA-RRR-proteins. We will focus on flowering plantsbut include information from algae when relevant. Plastid DNA is comprised of a multimeric seriesof circular, linear, and branched forms. Variant plastid DNA molecules include small linear palindromeswith hairpin ends. Plastid transformation has demonstrated an efficient homologous recombinationpathway, acting on short ∼200  bp sequences, that is active throughout shoot development.These functional studies involving plastid transformation to manipulate DNA sequences, combined withgenomics and reverse genetics to isolate mutants in plastid DNA-RRR proteins, will be particularlyimportant for making progress in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asai T, Bates DB, Kogoma T (1994) DNA replication triggered by double stranded breaks in Escherichia coli: dependence on homologous recombination functions. Cell 78:1051–1061

    PubMed  CAS  Google Scholar 

  2. Backert S, Dorfel P, Börner T (1995) Investigation of plant organellar DNAs by pulsed-field gel-electrophoresis. Curr Genet 28:390–399

    PubMed  CAS  Google Scholar 

  3. Bailey JC, Heinhorst S, Cannon GC (1995) Accuracy of deoxynucleotide incorporation by soybean chloroplast DNA polymerases is independent of the presence of a 3′ to 5′ exonuclease. Plant Physiol 107:1277–1284

    PubMed  CAS  Google Scholar 

  4. Baumgartner BJ, Rapp JC, Mullet JE (1989) Plastid transcription activity and DNA copy number increase early in barley chloroplast development. Plant Physiol 89:1011–1018

    PubMed  CAS  Google Scholar 

  5. Belkina GG, Pogul'skaya EV, Yurina NP (2004) Isolation and partial characterization of DNA topoisomerase I from the nucleoids of white mustard chloroplasts. Appl Biochem Microbiol 40:231–235

    CAS  Google Scholar 

  6. Bendich AJ (1987) Why do chloroplasts and mitochondria contain so many copies of their genome? Bioessays 6:279–282

    PubMed  CAS  Google Scholar 

  7. Bendich AJ (2004) Circular chloroplast chromosomes: the grand illusion. Plant Cell 16:1661–1666

    PubMed  CAS  Google Scholar 

  8. Bendich AJ, Smith SB (1990) Moving-pictures and pulsed-field gel-electrophoresis show linear DNA-molecules from chloroplasts and mitochondria. Curr Genet 17:421–425

    CAS  Google Scholar 

  9. Bensen RJ, Warner HR (1987) Partial purification and characterization of uracil-DNA glycosylase activity from chloroplasts of Zea mays Seedlings. Plant Physiol 84:1102–1106

    PubMed  CAS  Google Scholar 

  10. Bi X, Liu LF (1996) Replicational model for DNA recombination between direct repeats. J Mol Biol 256:849–858

    PubMed  CAS  Google Scholar 

  11. Birky CW (1994) Relaxed and stringent genomes: why cytoplasmic genes don't obey Mendel's Laws. J Heredity 85:355–365

    Google Scholar 

  12. Birky CW (2001) The inheritance of genes in mitochondria and chloroplasts: Laws, mechanisms, and models. Ann Rev Genet 35:125–148

    PubMed  CAS  Google Scholar 

  13. Birky CW, Walsh JB (1992) Biased gene conversion, copy number, and apparent mutation rate differences within chloroplast and bacterial genomes. Genetics 130:677–683

    PubMed  Google Scholar 

  14. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    PubMed  CAS  Google Scholar 

  15. Cahoon AB, Cunningham KA, Bollenbach TJ, Stern DB (2003) Maize BMS cultured cell lines survive with massive plastid gene loss. Curr Genet 44:104–113

    PubMed  CAS  Google Scholar 

  16. CameriniOtero RD, Hsieh P (1995) Homologous recombination proteins in prokaryotes and eukaryotes. Ann Rev Genet 29:509–552

    CAS  Google Scholar 

  17. Cannon GC, Heinhorst S (1990) Partial purification and characterization of a DNA helicase from chloroplasts of Glycine max. Plant Mol Biol 15:457–464

    PubMed  CAS  Google Scholar 

  18. Cannon GC, Hedrick LA, Heinhorst S (1995) Repair mechanisms of UV-induced DNA damage in soybean chloroplasts. Plant Mol Biol 29:1267–1277

    PubMed  CAS  Google Scholar 

  19. Cao J, Combs C, Jagendorf AT (1997) The chloroplast located homolog of bacterial DNA recombinase. Plant Cell Physiol 38:1319–1325

    PubMed  CAS  Google Scholar 

  20. Carrillo N, Bogorad L (1988) Chloroplast DNA replication in vitro: site-specific initiation from preferred templates. Nucl Acids Res 16:5603–5620

    PubMed  CAS  Google Scholar 

  21. Casjens S (1999) Evolution of the linear DNA replicons of the Borrelia spirochetes. Curr Opin Microbiol 2:529–534

    PubMed  CAS  Google Scholar 

  22. Cavalier-Smith T (1974) Palindromic base sequences and replication of eukaryote chromosome ends. Nature 250:467–470

    PubMed  CAS  Google Scholar 

  23. Cerutti H, Ibrahim HZ, Jagendorf AT (1993) Treatment of pea (Pisum sativum L) Protoplasts with DNA-damaging agents induces a 39-kilodalton chloroplast protein immunologically related to Escherichia coli Rec A. Plant Physiol 102:155–163

    PubMed  CAS  Google Scholar 

  24. Cerutti H, Johnson AM, Boynton JE, Gillham NW (1995) Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli Rec A. Mol Cell Biol 15:3003–3011

    PubMed  CAS  Google Scholar 

  25. Cerutti H, Osman M, Grandoni P, Jagendorf AT (1992) A homolog of Escherichia coli RecA protein in plastids of higher plants. Proc Natl Acad Sci USA 89:8068–8072

    PubMed  CAS  Google Scholar 

  26. Chang CH, Wu M (2000) The effects of transcription and RNA processing on the initiation of chloroplast DNA replication in Chlamydomonas reinhardtii. Mol Gen Genet 263:320–327

    PubMed  CAS  Google Scholar 

  27. Chen WL, Gaikwad A, Mukherjee SK, Choudhary NR, Kumar D, Tewari KK (1996) A 43 kDa DNA binding protein from the pea chloroplast interacts with and stimulates the cognate DNA polymerase. Nucl Acids Res 24:3953–3961

    PubMed  CAS  Google Scholar 

  28. Chiang KS, Sueoka N (1967) Replication of chloroplast DNA in Chlamydomonas reinhardi during vegetative cell cycle: its mode and regulation. Proc Natl Acad Sci USA 57:1506–1513

    PubMed  CAS  Google Scholar 

  29. Chiu WL, Sears BB (1992) Electron microscopic localization of replication origins in Oenothera chloroplast DNA. Mol Gen Genet 232:33–39

    PubMed  CAS  Google Scholar 

  30. Cho HS, Lee SS, Kim KD, Hwang I, Lim JS, Park YI, Pai HS (2004) DNA gyrase is involved in chloroplast nucleoid partitioning. Plant Cell 16:2665–2682

    PubMed  CAS  Google Scholar 

  31. Christensen AC, Lyznik A, Mohammed S, Elowsky CG, Elo A, Yule R, Mackenzie SA (2005) Dual-domain, dual-targeting organellar protein presequences in Arabidopsis can use non-AUG start codons. Plant Cell 17:2805–2816

    PubMed  CAS  Google Scholar 

  32. Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190

    PubMed  CAS  Google Scholar 

  33. Collin S, Ellis THN (1991) Evidence for the presence of hairpin chloroplast DNA molecules in barley cultivars. Curr Genet 20:253–258

    PubMed  CAS  Google Scholar 

  34. Corneille S, Lutz K, Svab Z, Maliga P (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J 27:171–178

    PubMed  CAS  Google Scholar 

  35. Corneille S, Lutz KA, Azhagiri AK, Maliga P (2003) Identification of functional lox sites in the plastid genome. Plant J 35:753–762

    PubMed  CAS  Google Scholar 

  36. Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Amer J Bot 75:1443–1458

    Google Scholar 

  37. Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ (2000) The importance of repairing stalled replication forks. Nature 404:37–41

    PubMed  CAS  Google Scholar 

  38. Cuzzoni E, Giordani C, Stampacchia O, Bolchi A, Malcevschi A, Ottonello S, Ferretti L, Sala F (1995) Presence of a chloroplast DNA sequence in an autonomous circular DNA molecule in cultures rice cell (Oryza sativa). Plant Cell Physiol 36:717–72

    PubMed  CAS  Google Scholar 

  39. Day A, Ellis THN (1984) Chloroplast DNA deletions associated with wheat plants regenerated from pollen: possible basis for maternal inheritance of chloroplasts. Cell 39:359–368

    PubMed  CAS  Google Scholar 

  40. Day A, Ellis THN (1985) Deleted forms of plastid DNA in albino plants from cereal anther culture. Curr Genet 9:671–678

    CAS  Google Scholar 

  41. Dehaas JM, Boot KJM, Haring MA, Kool AJ, Nijkamp HJJ (1986) A Petunia hybrida chloroplast DNA region, close to one of the inverted repeats, shows sequence homology with the Euglena gracilis chloroplast DNA region that carries the putative replication origin. Mol Gen Genet 202:48–54

    CAS  Google Scholar 

  42. Deng XW, Wing RA, Gruissem W (1989) The chloroplast genome exists in multimeric forms. Proc Natl Acad Sci USA 86:4156–4160

    PubMed  CAS  Google Scholar 

  43. Douglas SE, Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236–244

    PubMed  CAS  Google Scholar 

  44. Doyle JJ, Davis JI, Soreng RJ, Garvin D, Anderson MJ (1992) Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc Natl Acad Sci USA 89:7722–7726

    PubMed  CAS  Google Scholar 

  45. Draper CK, Hays JB (2000) Replication of chloroplast, mitochondrial and nuclear DNA during growth of unirradiated and UVB-irradiated Arabidopsis leaves. Plant J 23:255–265

    PubMed  CAS  Google Scholar 

  46. Drescher A, Ruf S, Calsa T, Carrer H, Bock R (2000) The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J 22:97–104

    PubMed  CAS  Google Scholar 

  47. Dufourmantel N, Dubald M, Matringe M, Canard H, Garcon F, Job C, Kay E, Wisniewski JP, Ferullo JM, Pelissier B, Sailland A, Tissot G (2007) Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotechnol J 5:118–133

    PubMed  CAS  Google Scholar 

  48. Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668

    PubMed  CAS  Google Scholar 

  49. Ellis THN, Day A (1986) A hairpin plastid genome in barley. EMBO J 5:2769–2774

    PubMed  CAS  Google Scholar 

  50. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting sub-cellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    PubMed  CAS  Google Scholar 

  51. Epp MD (1973) Nuclear gene-induced plastome mutations in Oenothera hookeri. I. Genetic analysis. Genetics 75:465–483

    PubMed  CAS  Google Scholar 

  52. Evans E, Alani E (2000) Roles for mismatch repair factors in regulating genetic recombination. Mol Cell Biol 20:7839–7844

    PubMed  CAS  Google Scholar 

  53. Fischer N, Stampacchia O, Redding K, Rochaix JD (1996) Selectable marker recycling in the chloroplast. Mol Gen Genet 251:373–380

    PubMed  CAS  Google Scholar 

  54. Fujie M, Kuroiwa H, Kawano S, Mutoh S, Kuroiwa T (1994) Behavior of organelles and their nucleoids in the shoot apical meristem during leaf development in Arabidopsis thaliana L. Planta 194:395–405

    CAS  Google Scholar 

  55. Fukata H, Mochida A, Maruyama N, Fukasawa H (1991) Chloroplast DNA topoisomerase I from cauliflower. J Biochem 109:127–131

    PubMed  CAS  Google Scholar 

  56. Futcher AB (1986) Copy number amplification of the 2-μm circle plasmid of Saccharomyces cerevisiae. J Theor Biol 119:197–204

    PubMed  CAS  Google Scholar 

  57. Gaikwad A, Hop DV, Mukherjee SK (2002) A 70-kDa chloroplast DNA polymerase from pea (Pisum sativum) that shows high processivity and displays moderate fidelity. Mol Genet Genomics 267:45–56

    PubMed  CAS  Google Scholar 

  58. Gilbert DM (2004) In search of the holy replicator. Nat Rev Mol Cell Biol 5:848–854

    PubMed  CAS  Google Scholar 

  59. Gillham NW (1974) Genetic analysis of chloroplast and mitochondrial genomes. Ann Rev Genet 8:347–391

    PubMed  CAS  Google Scholar 

  60. Gold B, Carrillo N, Tewari KK, Bogorad L (1987) Nucleotide sequence of a preferred maize chloroplast genome template for in vitro DNA synthesis. Proc Natl Acad Sci USA 84:194–198

    PubMed  CAS  Google Scholar 

  61. Goodman MF (2000) Coping with replication 'train wrecks' in Escherichia coli using Pol V, Pol II and RecA proteins. Trends Biochem Sci 25:189–195

    PubMed  CAS  Google Scholar 

  62. Grant D, Swinton DC, Chiang KS (1978) Differential patterns of mitochondrial, chloroplastic and nuclear-DNA synthesis in synchronous cell-cycle of Chlamydomonas reinhardtii. Planta 141:259–267

    CAS  Google Scholar 

  63. Hada M, Hino K, Buchholz G, Goss J, Wellmann E, Shin M (2000) Assay of DNA photolyase activity in spinach leaves in relation to cell compartmentation: evidence for lack of DNA photolyase in chloroplasts. Biosci Biotechnol Biochem 64:1288–1291

    PubMed  CAS  Google Scholar 

  64. Hagemann R (1976) Plastid distribution and plastid competition in higher plants and the induction of plastom mutations in higher plants by nitroso-urea compounts. In: Bücher T, Neupert W, Sebald W, Werner S (eds) Genetics and biogenesis of chloroplasts and mitochondria. Elsevier, Amsterdam, pp 331–338

    Google Scholar 

  65. Hajdukiewicz PTJ, Gilbertson L, Staub JM (2001) Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J 27:161–170

    PubMed  CAS  Google Scholar 

  66. Harada T, Ishikawa R, Niizeki M, Saito KI (1992) Pollen derived rice calli that have large deletions in plastid DNA do not require protein-synthesis in plastids for growth. Mol Gen Genet 233:145–150

    PubMed  CAS  Google Scholar 

  67. Hartung F, Puchta H (2006) The Rec Q gene family in plants. J Plant Physiol 163:287–296

    PubMed  CAS  Google Scholar 

  68. Hedrick LA, Heinhorst S, White MA, Cannon GC (1993) Analysis of soybean chloroplast DNA replication by 2-dimensional gel electrophoresis. Plant Mol Biol 23:779–792

    PubMed  CAS  Google Scholar 

  69. Heinhorst S, Cannon G, Weissbach A (1985) Plastid and nuclear-DNA synthesis are not coupled in suspension cells of Nicotiana tabacum. Plant Mol Biol 4:3–12

    CAS  Google Scholar 

  70. Heinhorst S, Cannon GC, Weissbach A (1990) Chloroplast and mitochondrial DNA polymerases from cultured soybean cells. Plant Physiol 92:939–945

    PubMed  CAS  Google Scholar 

  71. Herrmann RG, Bohnert HJ, Kowallik KV, Schmitt JM (1975) Size, conformation and purity of chloroplast DNA of some higher plants. Biochim Biophys Acta 378:305–317

    PubMed  CAS  Google Scholar 

  72. Hess WR, Hubschmann T, Börner T (1994) Ribosome deficient plastids of albostrians barley: extreme representatives of nonphotosynthetic plastids. Endocytobiosis Cell Res 10:65–80

    Google Scholar 

  73. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct transfer RNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194

    PubMed  CAS  Google Scholar 

  74. Howe CJ, Smith AG (1991) Plants without chlorophyll. Nature 349:109–109

    Google Scholar 

  75. Hubscher U, Nasheuer HP, Syvaoja JE (2000) Eukaryotic DNA polymerases, a growing family. Trends Biochem Sci 25:143–147

    PubMed  CAS  Google Scholar 

  76. Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nature Biotechnol 18:1172–1176

    CAS  Google Scholar 

  77. Jacob F, Cuzin F, Brenner S (1963) On regulation of DNA replication in bacteria. Cold Spring Harbor Symp Quant Biol 28:329–348

    CAS  Google Scholar 

  78. Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing Cyanobacterium anabaena sp strain PCC 7120. DNA Res 8:205–213

    PubMed  CAS  Google Scholar 

  79. Kavanagh TA, Thanh ND, Lao NT, McGrath N, Peter SO, Horvath EM, Dix PJ, Medgyesy P (1999) Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events. Genetics 152:1111–1122

    PubMed  CAS  Google Scholar 

  80. Kawata M, Harada T, Shimamoto Y, Oono K, Takaiwa F (1997) Short inverted repeats function as hotspots of intermolecular recombination giving rise to oligomers of deleted plastid DNAs (ptDNAs). Curr Genet 31:179–184

    PubMed  CAS  Google Scholar 

  81. Keim CA, Mosbaugh DW (1991) Identification and characterization of a 3′ to 5′ exonuclease Associated with spinach chloroplast DNA-polymerase. Biochemistry 30:11109–11118

    PubMed  CAS  Google Scholar 

  82. Kelchner SA, Wendel JF (1996) Hairpins create minute inversions in non-coding regions of chloroplast DNA. Curr Genet 30:259–262

    PubMed  CAS  Google Scholar 

  83. Khakhlova O, Bock R (2006) Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J 46:85–94

    PubMed  CAS  Google Scholar 

  84. Khazi FR, Edmondson AC, Nielsen BL (2003) An Arabidopsis homologue of bacterial Rec A that complements an E. coli rec A deletion is targeted to plant mitochondria. Mol Genet Genomics 269:454–463

    PubMed  CAS  Google Scholar 

  85. Kimura S, Sakaguchi K (2006) DNA repair in plants. Chem Rev 106:753–766

    PubMed  CAS  Google Scholar 

  86. Kimura S, Uchiyama Y, Kasai N, Namekawa S, Saotome A, Ueda T, Ando T, Ishibashi T, Oshige M, Furukawa T, Yamamoto T, Hashimoto J, Sakaguchi K (2002) A novel DNA polymerase homologous to Escherichia coli DNA polymerase I from a higher plant, rice (Oryza sativa L.). Nucl Acids Res 30:1585–1592

    PubMed  CAS  Google Scholar 

  87. Klaus SMJ, Huang FC, Golds TJ, Koop HU (2004) Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nature Biotechnol 22:225–229

    CAS  Google Scholar 

  88. Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjolander K, Gruissem W, Baginsky S (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362

    PubMed  CAS  Google Scholar 

  89. Kode V, Mudd EA, Iamtham S, Day A (2005) The tobacco accD gene is essential and is required for leaf development. Plant J 44:237–244

    PubMed  CAS  Google Scholar 

  90. Kode V, Mudd EA, Iamtham S, Day A (2006) Isolation of precise plastid deletion mutants by homology-based excision: a resource for site-directed mutagenesis, multi-gene changes and high-throughput plastid transformation. Plant J 46:901–909

    PubMed  CAS  Google Scholar 

  91. Kolodner R, Tewari KK (1972) Molecular-size and conformation of chloroplast deoxyribonucleic acid from pea leaves. J Biol Chem 247:6355–6364

    PubMed  CAS  Google Scholar 

  92. Kolodner RD, Tewari KK (1975) Chloroplast DNA from higher plants replicates by both Cairns and rolling circle mechanism. Nature 256:708–711

    PubMed  CAS  Google Scholar 

  93. Kolodner R, Tewari KK (1979) Inverted repeats in chloroplast DNA from higher plants. Proc Natl Acad Sci USA 76:41–45

    PubMed  CAS  Google Scholar 

  94. Koumandou VL, Nisbet RER, Barbrook AC, Howe CJ (2004) Dinoflagellate chloroplasts: where have all the genes gone? Trends Genet 20:261–267

    PubMed  CAS  Google Scholar 

  95. Kowalczykowski SC (2000) Initiation of genetic recombination and recombination-dependent replication. Trends Biochem Sci 25:156–165

    PubMed  CAS  Google Scholar 

  96. Kowallik KV, Stoebe B, Schaffran I, KrothPancic P, Freier U (1995) The chloroplast genome of a chlorophyll a+c-containing alga, Odontella sinensis. Plant Mol Biol Rep 13:336–342

    CAS  Google Scholar 

  97. Kreuzer KN (2000) Recombination-dependent DNA replication in phage T4. Trends Biochem Sci 25:165–173

    PubMed  CAS  Google Scholar 

  98. Kreuzer KN (2005) Interplay between DNA replication and recombination in prokaryotes. Ann Rev Microbiol 59:43–67

    CAS  Google Scholar 

  99. Kunnimalaiyaan M, Nielsen BL (1997a) Fine mapping of replication origins (oriA and oriB) in Nicotiana tabacum chloroplast DNA. Nucl Acids Res 25:3681–3686

    PubMed  CAS  Google Scholar 

  100. Kunnimalaiyaan M, Shi F, Nielsen BL (1997b) Analysis of the tobacco chloroplast DNA replication origin (oriB) downstream of the 23 S rRNA gene. J Mol Biol 268:273–283

    PubMed  CAS  Google Scholar 

  101. Kuroiwa T (1991) The replication, differentiation, and inheritance of plastids with emphasis on the concept of organelle nuclei. Int Rev Cytol 128:1–62

    CAS  Google Scholar 

  102. Lam E, Chua NH (1987) Chloroplast DNA gyrase and in vitro regulation of transcription by template topology and novobiocin. Plant Mol Biol 8:415–424

    CAS  Google Scholar 

  103. Lamppa GK, Bendich AJ (1979) Changes in chloroplast DNA levels during development of pea (Pisum sativum). Plant Physiol 64:126–130

    PubMed  CAS  Google Scholar 

  104. Lawrence ME, Possingham JV (1986) Microspectrofluorometric measurement of chloroplast DNA in dividing and expanding leaf cells of Spinacia oleracea. Plant Physiol 81:708–710

    PubMed  CAS  Google Scholar 

  105. Lelivelt CLC, McCabe MS, Newell CA, deSnoo CB, van Dun KMP, Birch-Machin I, Gray JC, Mills KHG, Nugent JM (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774

    PubMed  CAS  Google Scholar 

  106. Li WM, Ruf S, Bock R (2006) Constancy of organellar genome copy numbers during leaf development and senescence in higher plants. Mol Genet Genomics 275:185–192

    PubMed  CAS  Google Scholar 

  107. Lilly JW, Havey MJ, Jackson SA, Jiang JM (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13:245–254

    PubMed  CAS  Google Scholar 

  108. Liu NT, Jane WN, Tsay HS, Wu H, Chang WC, Lin CS (2007) Chloroplast genome aberration in micropropagation-derived albino Bambusa edulis mutants, ab1 and ab2. Plant Cell Tiss Org Culture 88:147–156

    CAS  Google Scholar 

  109. Lovett ST (2004) Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 52:1243–1253

    PubMed  CAS  Google Scholar 

  110. Lu Z, Kunnimalaiyaan M, Nielsen BL (1996) Characterization of replication origins flanking the 23S rRNA gene in tobacco chloroplast DNA. Plant Mol Biol 32:693–706

    PubMed  CAS  Google Scholar 

  111. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    PubMed  CAS  Google Scholar 

  112. Maul JE, Lilly JW, Cui LY, dePamphilis CW, Miller W, Harris EH, Stern DB (2002) The Chlamydomonas reinhardtti plastid chromosome: Islands of genes in a sea of repeats. Plant Cell 14:2659–2679

    PubMed  CAS  Google Scholar 

  113. McKown RL, Tewari KK (1984) Purification and properties of a pea chloroplast DNA polymerase. Proc Natl Acad Sci USA 81:2354–2358

    PubMed  CAS  Google Scholar 

  114. Medgyesy P, Fejes E, Maliga P (1985) Interspecific chloroplast recombination in a Nicotiana somatic hybrid. Proc Natl Acad Sci USA 82:6960–6964

    PubMed  CAS  Google Scholar 

  115. Meeker R, Nielsen B, Tewari KK (1988) Localization of replication origins in pea chloroplast DNA. Mol Cell Biol 8:1216–1223

    PubMed  CAS  Google Scholar 

  116. Miyamura S, Kuroiwa T, Nagata T (1990) Multiplication and differentiation of plastid nucleoids during development of chloroplasts and etioplasts from proplastids in Triticum aestivum. Plant Cell Physiol 31:597–602

    CAS  Google Scholar 

  117. Miyamura S, Nagata T, Kuroiwa T (1986) Quantitative fluorescence microscopy on dynamic changes of plastid nucleoids during wheat development. Protoplasma 133:66–72

    CAS  Google Scholar 

  118. Morgan A, Maliga P (1987) Rapid chloroplast segregation and recombination of mitochondrial DNA in Brassica cybrids. Mol Gen Genet 209:240–246

    PubMed  CAS  Google Scholar 

  119. Mori Y, Kimura S, Saotome A, Kasai N, Sakaguchi N, Uchiyama Y, Ishibashi T, Yamamoto T, Chiku H, Sakaguchi K (2005) Plastid DNA polymerases from higher plants, Arabidopsis thaliana. Biochem Biophys Res Comm 334:43–50

    PubMed  CAS  Google Scholar 

  120. Mühlbauer SK, Lossl A, Tzekova L, Zou ZR, Koop HU (2002) Functional analysis of plastid DNA replication origins in tobacco by targeted inactivation. Plant J 32:175–184

    PubMed  Google Scholar 

  121. Mukherjee SK, Reddy MK, Kumar D, Tewari KK (1994) Purification and characterization of a eukaryotic type I topoisomerase from pea chloroplast. J Biol Chem 269:3793–3801

    PubMed  CAS  Google Scholar 

  122. Muller HJ (1964) The relation of recombination to mutational advance. Mutation Res 1:2–9

    Google Scholar 

  123. Nakayama N, Arai N, Bond MW, Kaziro Y, Arai K (1984) Nucleotide sequence of dna B and the primary structure of the dna B protein from Escherichia coli. J Biol Chem 259:97–101

    PubMed  CAS  Google Scholar 

  124. Nakazato E, Fukuzawa H, Tabata S, Takahashi H, Tanaka K (2003) Identification and expression analysis of cDNA encoding a chloroplast recombination protein REC1, the chloroplast RecA homologue in Chlamydomonas reinhardtii. Biosci Biotechnol Biochem 67:2608–2613

    PubMed  CAS  Google Scholar 

  125. Nelson MJ, Green BR (2005) Double hairpin elements and tandem repeats in the non-coding region of Adenoides eludens chloroplast gene minicircles. Gene 358:102–110

    PubMed  CAS  Google Scholar 

  126. Newman SM, Boynton JE, Gillham NW, Randolphanderson BL, Johnson AM, Harris EH (1990) Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic-characterization of integration events. Genetics 126:875–888

    PubMed  CAS  Google Scholar 

  127. Newman SM, Harris EH, Johnson AM, Boynton JE, Gillham NW (1992) Nonrandom distribution of chloroplast recombination events in Chlamydomonas reinhardtii: evidence for a hotspot and an adjacent cold region. Genetics 132:413–429

    PubMed  CAS  Google Scholar 

  128. Nielsen BL, Rajasekhar VK, Tewari KK (1991) Pea chloroplast DNA primase: characterization and role in initiation of replication. Plant Mol Biol 16:1019–1034

    PubMed  CAS  Google Scholar 

  129. Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H, Tsunewaki K (2000) Chinese spring wheat (Triticum aestivum L.) chloroplast genome: Complete sequence and contig clones. Plant Mol Biol Rep 18:243–253

    CAS  Google Scholar 

  130. Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H, Tsunewaki K (2002) Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol Genet Genomics 266:740–746

    PubMed  CAS  Google Scholar 

  131. Ohtani T, Uchimiya H, Kato A, Harada H, Sugita M, Sugiura M (1984) Location and nucleotide-sequence of a tobacco chloroplast DNA segment capable of replication in yeast. Mol Gen Genet 195:1–4

    CAS  Google Scholar 

  132. Oldenburg DJ, Bendich AJ (1998) The structure of mitochondrial DNA from the liverwort, Marchantia polymorpha. J Mol Biol 276:745–758

    PubMed  CAS  Google Scholar 

  133. Oldenburg DJ, Bendich AJ (2001) Mitochondrial DNA from the liverwort Marchantia polymorpha: Circularly permuted linear molecules, head-to-tail concatemers, and a 5 ' protein. J Mol Biol 310:549–56

    PubMed  CAS  Google Scholar 

  134. Oldenburg DJ, Bendich AJ (2004a) Changes in the structure of DNA molecules and the amount of DNA per plastid during chloroplast development in maize. J Mol Biol 344:1311–1330

    PubMed  CAS  Google Scholar 

  135. Oldenburg DJ, Bendich AJ (2004b) Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. J Mol Biol 335:953–970

    PubMed  CAS  Google Scholar 

  136. Oldenburg DJ, Rowan BA, Zhao L, Watcher CL, Schleh M, Bendich AJ (2006) Loss or retention of chloroplast DNA in maize seedlings is affected by both light and genotype. Planta 225:41–55

    PubMed  CAS  Google Scholar 

  137. Palmer JD (1983) Chloroplast DNA exists in 2 orientations. Nature 301:92–93

    CAS  Google Scholar 

  138. Palmer JD (1990) Contrasting modes and tempos of genome evolution in land plant organelles. Trends Genet 6:115–120

    PubMed  CAS  Google Scholar 

  139. Palmer JD, Thompson WF (1982) Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29:537–550

    PubMed  CAS  Google Scholar 

  140. Pang QS, Hays JB, Rajagopal I (1992) A plant cDNA that partially complements Escherichia coli Rec A mutations predicts a polypeptide not strongly homologous to Rec A proteins. Proc Natl Acad Sci USA 89:8073–8077

    PubMed  CAS  Google Scholar 

  141. Pang QS, Hays JB, Rajagopal I (1993a) Two cDNAs from the plant Arabidopsis thaliana that partially restore recombination proficiency and DNA damage resistance to Escherichia coli mutants lacking recombination intermediate resolution activities. Nucl Acids Res 21:1647–1653

    PubMed  CAS  Google Scholar 

  142. Pang QS, Hays JB, Rajagopal I, Schaefer TS (1993b) Selection of Arabidopsis cDNAs that partially correct phenotypes of Escherichia coli DNA damage sensitive mutants and analysis of 2 plant cDNAs that appear to express UV specific dark repair activities. Plant Mol Biol 22:411–426

    PubMed  CAS  Google Scholar 

  143. Perry AS, Wolfe KH (2002) Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat. J Mol Evol 55:501–508

    PubMed  CAS  Google Scholar 

  144. Phinney BS, Thelen JJ (2005) Proteomic characterization of a triton-insoluble fraction from chloroplasts defines a novel group of proteins associated with macromolecular structures. J Proteome Res 4:497–506

    PubMed  CAS  Google Scholar 

  145. Przykorska A, Solecka K, Olszak K, Keith G, Nawrot B, Kuligowska E (2004) Wheat (Triticum vulgare) chloroplast nuclease ChSI exhibits 5 ' flap structure-specific endonuclease activity. Biochemistry 43:11283–11294

    PubMed  CAS  Google Scholar 

  146. Pyke KA, Marrison J, Leech RM (1989) Evidence for a Type-II topoisomerase in wheat chloroplasts. FEBS Letts 242:305–308

    CAS  Google Scholar 

  147. Qin ZJ, Cohen SN (2000) Long palindromes formed in Streptomyces by nonrecombinational intra-strand annealing. Genes Develop 14:1789–1796

    PubMed  CAS  Google Scholar 

  148. Raynaud C, Perennes C, Reuzeau C, Catrice O, Brown S, Bergounioux C (2005) Cell and plastid division are coordinated through the prereplication factor AtCDT1. Proc Natl Acad Sci USA 102:8216–8221

    PubMed  CAS  Google Scholar 

  149. Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132–140

    Google Scholar 

  150. Reece RJ, Maxwell A (1991) DNA gyrase - structure and function. Crit Rev Biochem Mol Biol 26:335–375

    PubMed  CAS  Google Scholar 

  151. Reith M, Munholland J (1995) Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13:333–335

    CAS  Google Scholar 

  152. Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucl Acids Res 34:4537–4545

    PubMed  CAS  Google Scholar 

  153. Rowan BA, Oldenburg DJ, Bendich AJ (2004) The demise of chloroplast DNA in Arabidopsis. Curr Genet 46:176–181

    PubMed  CAS  Google Scholar 

  154. Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    PubMed  CAS  Google Scholar 

  155. Rybchin VN, Svarchevsky AN (1999) The plasmid prophage N15: a linear DNA with covalently closed ends. Mol Microbiol 33:895–903

    PubMed  CAS  Google Scholar 

  156. Sakai A, Suzuki T, Nagata N, Sasaki N, Miyazawa Y, Saito C, Inada N, Nishimura Y, Kuroiwa T (1999) Comparative analysis of DNA synthesis activity in plastid-nuclei and mitochondrial-nuclei simultaneously isolated from cultured tobacco cells. Plant Sci 140:9–19

    CAS  Google Scholar 

  157. Sakai A, Takano H, Kuroiwa T (2004) Organelle nuclei in higher plants: Structure, composition, function, and evolution. Int Rev Cytol 238:59–118

    PubMed  CAS  Google Scholar 

  158. Sala F, Amileni AR, Parisi B, Spadari S (1980) A gamma-like DNA polymerase in spinach chloroplasts. Eur J Biochem 112:211–217

    PubMed  CAS  Google Scholar 

  159. Saotome A, Kimura S, Mori Y, Uchiyama Y, Morohashi K, Sakaguchi K (2006) Characterization of four Rec Q homologues from rice (Oryza sativa L. cv. Nipponbare). Biochem Biophys Res Commun 345:1283–1291

    PubMed  CAS  Google Scholar 

  160. Saski C, Lee SB, Daniell H, Wood TC, Tomkins J, Kim HG, Jansen RK (2005) Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. Plant Mol Biol 59:309–322

    PubMed  CAS  Google Scholar 

  161. Sato N, Terasawa K, Miyajima K, Kabeya Y (2003) Organization, developmental dynamics, and evolution of plastid nucleoids. Int Rev Cytol 232:217–262

    PubMed  CAS  Google Scholar 

  162. Scharff LB, Koop HU (2006) Linear molecules of tobacco ptDNA end at known replication origins and additional loci. Plant Mol Biol 62:611–621

    PubMed  CAS  Google Scholar 

  163. Scharff LB, Koop HU (2007) Targeted inactivation of the tobacco plastome origins of replication A and B. Plant J, in press

    Google Scholar 

  164. Sears BB (1998) Replication, recombination and repair in the chloroplast genetic system of Chlamydomonas. In: Rochaix JD, Goldschmidt-Clermont M, Merchant S (eds) The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Kluwer, Dordrecht-Boston-London, 115–138

    Google Scholar 

  165. Sears BB, Stoike LL, Chiu WL (1996) Proliferation of direct repeats near the Oenothera chloroplast DNA origin of replication. Mol Biol Evol 13:850–863

    PubMed  CAS  Google Scholar 

  166. Seow F, Sato S, Janssen CS, Riehle MO, Mukhopadhyay A, Phillips RS, Wilson RJM, Barrett MP (2005) The plastidic DNA replication enzyme complex of Plasmodium falciparum. Mol Biochem Parasitol 141:145–153

    PubMed  CAS  Google Scholar 

  167. Shaver JM, Oldenburg DJ, Bendich AJ (2006) Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta 224:72–82

    PubMed  CAS  Google Scholar 

  168. Shen P, Huang HV (1986) Homologous recombination in Escherichia coli dependence on substrate length and homology. Genetics 112:441–457

    PubMed  CAS  Google Scholar 

  169. Shikanai T, Shimizu K, Ueda K, Nishimura Y, Kuroiwa T, Hashimoto T (2001) The chloroplast clp P gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. Plant Cell Physiol 42:264–273

    PubMed  CAS  Google Scholar 

  170. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchishinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    PubMed  CAS  Google Scholar 

  171. Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PTJ, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    PubMed  CAS  Google Scholar 

  172. Siedlecki J, Zimmermann W, Weissbach A (1983) Characterization of a prokaryotic topoisomerase I activity in chloroplast cxtracts from spinach. Nucl Acids Res 11:1523–1536

    PubMed  CAS  Google Scholar 

  173. Singh BN, Sopory SK, Reddy MK (2004) Plant DNA topoisomerases: Structure, function, and cellular roles in plant development. Crit Rev Plant Sci 23:251–269

    CAS  Google Scholar 

  174. Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404

    PubMed  CAS  Google Scholar 

  175. Spencer D, Whitfeld PR (1969) Characteristics of spinach chloroplast DNA polymerase. Arch Biochem Biophy 132:477–488

    CAS  Google Scholar 

  176. Staub JM, Maliga P (1992) Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell 4:39–45

    PubMed  CAS  Google Scholar 

  177. Staub JM, Maliga P (1994) Extrachromosomal elements in tobacco plastids. Proc Natl Acad Sci USA 91:7468–7472

    PubMed  CAS  Google Scholar 

  178. Sternberg N, Hamilton D (1981) Bacteriophage-P1 site-specific recombination. I. Recombination between LoxP sites. J Mol Biol 150:467–486

    PubMed  CAS  Google Scholar 

  179. Stoike LL, Sears BB (1998) Plastome mutator-induced alterations arise in Oenothera chloroplast DNA through template slippage. Genetics 149:347–353

    PubMed  CAS  Google Scholar 

  180. Streisinger G, Edgar RS, Denhardt GH (1964) Chromosome structure in phage T4, I. circularity of linkage map. Proc Natl Acad Sci USA 51:775–779

    PubMed  CAS  Google Scholar 

  181. Suzuki H, Ingersoll J, Stern DB, Kindle KL (1997) Generation and maintenance of tandemly repeated extrachromosomal plasmid DNA in Chlamydomonas chloroplasts. Plant J 11:635–648

    PubMed  CAS  Google Scholar 

  182. Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    PubMed  CAS  Google Scholar 

  183. Svab Z, Maliga P (1993) High frequency plastid transformation in tobacco by selection for a chimeric aadA Gene. Proc Natl Acad Sci USA 90:913–917

    PubMed  CAS  Google Scholar 

  184. Szostak JW, Orrweaver TL, Rothstein RJ, Stahl FW (1983) The double strand break repair model for recombination. Cell 33:25–35

    PubMed  CAS  Google Scholar 

  185. Takeda Y, Hirokawa H, Nagata T (1992) The replication origin of proplastid DNA in cultured cells of tobacco. Mol Gen Genet 232:191–198

    PubMed  CAS  Google Scholar 

  186. Thompson RJ, Mosig G (1985) An ATP dependent supercoiling topoisomerase of Chlamydomonas reinhardtii affects accumulation of specific chloroplast transcripts. Nucleic Acids Res 13:873–891

    PubMed  CAS  Google Scholar 

  187. Tuteja N (2003) Plant DNA helicases: the long unwinding road. J Exp Bot 54:2201–2214

    PubMed  CAS  Google Scholar 

  188. Tuteja N, Phan TN (1998) A chloroplast DNA helicase II from pea that prefers fork-like replication structures. Plant Physiol 118:1029–1039

    PubMed  CAS  Google Scholar 

  189. VanWinkle-Swift KP (1980) A model for the rapid vegetative segregation of multiple chloroplast genomes in Chlamydomonas - assumptions and predictions of the model. Curr Genet 1:113–125

    Google Scholar 

  190. Velemínský J, Švachulová J, Šatava J (1980) Endonucleases for UV-irradiated and depurinated DNA in barley chloroplasts. Nucl Acids Res 8:1373–1381

    PubMed  Google Scholar 

  191. Waddell J, Wang XM, Wu M (1984) Electron microscopic localization of the chloroplast DNA replicative origins in Chlamydomonas reinhardii. Nucl Acids Res 12:3843–3856

    PubMed  CAS  Google Scholar 

  192. Wagner R, Pfannschmidt T (2006) Eukaryotic transcription factors in plastids: bioinformatic assessment and implications for the evolution of gene expression machineries in plants. Gene 381:62–70

    PubMed  CAS  Google Scholar 

  193. Wall MK, Mitchenall LA, Maxwell A (2004) Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria. Proc Natl Acad Sci USA 101:7821–7826

    PubMed  CAS  Google Scholar 

  194. Wang TSF (1991) Eukaryotic DNA polymerases. Ann Rev Biochem 60:513–552

    PubMed  CAS  Google Scholar 

  195. Wang Y, Saitoh Y, Sato T, Hidaka S, Tsutsumi K (2003) Comparison of plastid DNA replication in different cells and tissues of the rice plant. Plant Mol Biol 52:905–913

    PubMed  CAS  Google Scholar 

  196. Wang ZF, Yang JM, Nie ZQ, Wu M (1991) Purification and characterization of a gamma-like DNA-polymerase from Chlamydomonas reinhardtii. Biochemistry 30:1127–1131

    PubMed  CAS  Google Scholar 

  197. Williamson D (2002) Timeline-The curious history of yeast mitochondrial DNA. Nat Rev Genet 3:475–481

    PubMed  CAS  Google Scholar 

  198. Woelfle MA, Thompson RJ, Mosig G (1993) Roles of novobiocin sensitive topoisomerases in chloroplast DNA replication in Chlamydomonas reinhardtii. Nucl Acids Res 21:4231–4238

    PubMed  CAS  Google Scholar 

  199. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    PubMed  CAS  Google Scholar 

  200. Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652

    PubMed  CAS  Google Scholar 

  201. Wycliffe P, Sitbon F, Wernersson J, Ezcurra I, Ellerstrom M, Rask L (2005) Continuous expression in tobacco leaves of a Brassica napus PEND homologue blocks differentiation of plastids and development of palisade cells. Plant J 44:1–15

    PubMed  CAS  Google Scholar 

  202. Ye JS, Sayre RT (1990) Reduction of chloroplast DNA content in Solanum nigrum suspension cells by treatment with chloroplast DNA synthesis inhibitors. Plant Physiol 94:1477–1483

    PubMed  CAS  Google Scholar 

  203. Zoschke R, Liere K, Börner T (2007) From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J 50:710–722

    PubMed  CAS  Google Scholar 

  204. Zoubenko OV, Allison LA, Svab Z, Maliga P (1994) Efficient targeting of foreign genes into the tobacco plastid genome. Nucl Acids Res 22:3819–3824

    PubMed  CAS  Google Scholar 

  205. Zubko MK, Day A (1998) Stable albinism induced without mutagenesis: a model for ribosome-free plastid inheritance. Plant J 15:265–271

    PubMed  CAS  Google Scholar 

  206. Zubko MK, Day A (2002) Differential regulation of genes transcribed by nucleus-encoded plastid RNA polymerase, and DNA amplification, within ribosome- deficient plastids in stable phenocopies of cereal albino mutants. Mol Gen Genomics 267:27–37

    CAS  Google Scholar 

  207. Zubko MK, Zubko EI, van Zuilen K, Meyer P, Day A (2004) Stable transformation of petunia plastids. Transgenic Res 13:523–530

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Day .

Editor information

Ralph Bock

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Day, A., Madesis, P. (2007). DNA replication, recombination, and repair in plastids. In: Bock, R. (eds) Cell and Molecular Biology of Plastids. Topics in Current Genetics, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_2007_0231

Download citation

Publish with us

Policies and ethics