Skip to main content

The genome of the filamentous fungus Ashbya gossypii: annotation and evolutionary implications

  • Chapter
  • First Online:
Comparative Genomics

Part of the book series: Topics in Current Genetics ((TCG,volume 15))

Abstract

The 9.2 Mb genome of the filamentous fungus Ashbya gossypii consists of seven chromosomes carrying 4718 protein coding genes, 194 tRNA genes, at least 60 small RNA genes, and 40-50 copies of rRNA genes. With respect to both, the size and the number of genes, this presently represents the smallest known genome of a free-living eukaryote. Over 95% of the A. gossypii open reading frames encode proteins with homology to Saccharomyces cerevisiae proteins. In addition, 90% of A. gossypii genes show both, homology and a particular pattern of synteny (conservation of gene order), with the genome of budding yeast. Gene orders in the two species are not strictly co-linear because individual clusters of A. gossypii genes are always syntenic to two distinct S. cerevisiae chromosomal regions but frequently homologous genes are missing in either of the two regions. These gene clusters of ancient synteny (CLAS) were found to cover over 90% of both genomes. Specifically, 95% of the S. cerevisiae genes can be paired in duplicate blocks that match the gene order of single A. gossypii gene groups. The almost complete coverage of both genomes by clusters of ancient synteny provides compelling evidence that both species originate from a common ancestor and that the evolution of S. cerevisiae included a whole genome duplication subsequently followed by random deletions of one gene copy in 90% of the duplicated genes. The alignment of both genomes revealed a complete list of the 10% still remaining duplicated genes (twin genes) in today’s genome of S. cerevisiae. The analysis of this comprehensive set of ancient twin genes in S. cerevisiae suggests that their evolution is asynchronous. Finally, interpretation of the synteny pattern between the sixteen S. cerevisiae centromere regions and the homologous gene regions in A. gossypii suggests that the common ancestor of the two species most likely carried eight chromosomes. The postulated reduction to seven chromosomes in the A. gossypii lineage very likely marked a key event in the development of this filamentous yeast as a novel species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Alberti-Segui C, Dietrich F, Altmann-Johl R, Hoepfner D, Philippsen P (2001) Cytoplasmic dynein is required to oppose the force that moves nuclei towards the hyphal tip in the filamentous ascomycete Ashbya gossypii. J Cell Sci 114:975-986

    PubMed  CAS  Google Scholar 

  • 2. Altmann-Jöhl R, Philippsen P (1996) AgTHR4: a new selection marker for transformation of the filamentous fungus Ashbya gossypii, maps in a four-gene cluster that is conserved between A. gossypii and Saccharomyces cerevisiae. Mol Gen Genet 250:69-80

    Google Scholar 

  • 3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403-410

    PubMed  CAS  Google Scholar 

  • 4. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25-29

    Article  PubMed  CAS  Google Scholar 

  • 5. Ashby SF, Nowell W (1926) The fungi of stigmatomycosis. Ann Botany 40:69-84

    Google Scholar 

  • 6. Ayad-Durieux Y, Knechtle P, Goff S, Dietrich F, Philippsen P (2000) A PAK-like protein kinase is required for maturation of young hyphae and septation in the filamentous ascomycete Ashbya gossypii. J Cell Sci 113(Pt 24):4563-4575

    PubMed  CAS  Google Scholar 

  • 7. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2003) GenBank. Nucleic Acids Res 31:23-27

    Article  PubMed  CAS  Google Scholar 

  • 8. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) Nature 417:141-147

    Article  Google Scholar 

  • 9. Blandin G, Durrens P, Tekaia F, Aigle M, Bolotin-Fukuhara M, Bon E, Casaregola S, de Montigny J, Gaillardin C, Lepingle A (2000a) Genomic exploration of the hemiascomycetous yeasts: 4. The genome of Saccharomyces cerevisiae revisited. FEBS Lett 487:31-36

    Article  PubMed  CAS  Google Scholar 

  • 10. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453-1474

    Article  PubMed  CAS  Google Scholar 

  • 11. Bosco G, Haber JE (1998) Chromosome break-induced DNA replication leads to non-reciprocal translocations and telomere capture. Genetics 150:1037-1047

    PubMed  CAS  Google Scholar 

  • 12. Brachat A, Kilmartin JV, Wach A, Philippsen P (1998) Saccharomyces cerevisiae cells with defective spindle pole body outer plaques accomplish nuclear migration via half-bridge-organized microtubules. Mol Biol Cell 9:977-991

    PubMed  CAS  Google Scholar 

  • 13. Brachat S, Dietrich FS, Voegeli S, Zhang Z, Stuart L, Lerch A, Gates K, Gaffney T, Philippsen P (2003) Reinvestigation of the Saccharomyces cerevisiae genome annotation by comparison to the genome of a related fungus: Ashbya gossypii. Genome Biol 4:R45

    Article  PubMed  Google Scholar 

  • 14. Bauer Y, Knechtle P, Wendland J, Helfer H, Philippsen P, (2004) A Ras-like GTPase is involved in hyphal growth guidance in the filamentous fungus Ashbya gossypii. Mol Biol Cell 15:4622-4632

    Article  PubMed  CAS  Google Scholar 

  • 15. Chavez R, Fierro F, Gordillo F, Francisco Martin J, Eyzaguirre J (2001) Electrophoretic karyotype of the filamentous fungus Penicillium purpurogenum and chromosomal location of several xylanolytic genes. FEMS Microbiol Lett 205:379-383

    Article  PubMed  CAS  Google Scholar 

  • 16. Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, Jia Y, Juvik G, Roe T, Schroeder M, Weng S, Botstein D (1998) SGD: Saccharomyces Genome Database. Nucleic Acids Res 26:73-79

    Article  PubMed  CAS  Google Scholar 

  • 17. Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston R, Cohen BA, Johnston M (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301:71-76

    Article  PubMed  CAS  Google Scholar 

  • 18. Cohn M, McEachern MJ, Blackburn EH (1998) Telomeric sequence diversity within the genus Saccharomyces. Curr Genet 33:83-91

    Article  PubMed  CAS  Google Scholar 

  • 19. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537-544

    Article  PubMed  CAS  Google Scholar 

  • 20. Demain AL (1972) Riboflavin oversynthesis. Annu Rev Microbiol 26:369-388

    Article  PubMed  CAS  Google Scholar 

  • 21. Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, Mohr C, Steiner S, Luedi P, Pöhlmann R, Flavier A, Choi S, Wing RA, Goff SA, Hoheisel JD, Gaffney T, Philippsen P (2004) Ashbya gossypii - experimental evidence of a whole genome duplication in Saccharomyces cerevisiae. Science 304:304-307

    Article  PubMed  CAS  Google Scholar 

  • 22. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186-194

    PubMed  CAS  Google Scholar 

  • 23. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175-185

    PubMed  CAS  Google Scholar 

  • 24. Fischer G, James SA, Roberts IN, Oliver SG, Louis EJ (2000) Chromosomal evolution in Saccharomyces. Nature 405:451-454

    Article  PubMed  CAS  Google Scholar 

  • 25. Fischer G, Neuveglise C, Durrens P, Gaillardin C, Dujon B (2001) Evolution of gene order in the genomes of two related yeast species. Genome Res 11:2009-2019

    Article  PubMed  CAS  Google Scholar 

  • 26. Force A, Lynch M, Pickett FB, Amores A, Yan Y, Postlehwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531-1545

    PubMed  CAS  Google Scholar 

  • 27. Futcher B (1996) Cyclins and the wiring of the yeast cell cycle. Yeast 12:1635-1646

    Article  PubMed  CAS  Google Scholar 

  • 28. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859-868

    Article  PubMed  CAS  Google Scholar 

  • 29. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387-391

    Article  PubMed  CAS  Google Scholar 

  • 30. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546, 563-567

    Article  PubMed  CAS  Google Scholar 

  • 31. Haber JE, Thorburn PC, Rogers D (1984) Meiotic and mitotic behavior of dicentric chromosomes in Saccharomyces cerevisiae. Genetics 106:185-205

    PubMed  CAS  Google Scholar 

  • 32. Hieter P, Pridmore D, Hegemann J, Thomas M, Davis R, Philippsen P (1985) Functional selection and analysis of yeast centromeric DNA. Cell 42:913-921

    Article  PubMed  CAS  Google Scholar 

  • 33. Heus JJ, Zonneveld BJ, Steensma HY, Van den Berg JA (1990) Centromeric DNA of Kluyveromyces lactis. Curr Genet 18:517-522

    Article  PubMed  CAS  Google Scholar 

  • 34. Hermida L, Brachat S, Voegeli S, Philippsen P, Primig M (2005) The Ashbya Genome Database (AGD)-a tool for the yeast community and genome biologists. Database issue doi:10.1093/nar/gki009 33:D348-D352

    Google Scholar 

  • 35. Jäger D, Philippsen P (1989a) Stabilization of dicentric chromosomes in Saccharomyces cerevisiae by telomere addition to broken ends or by centromere deletion. EMBO J 8:247-254

    Google Scholar 

  • 36. Jäger D, Philippsen P (1989b) Many yeast chromosomes lack the telomere-specific Y' sequence. Mol Cell Biol 89:5754-5757

    Google Scholar 

  • 37. Kellis M, Patterson N, Endrizzi M, Birren BW, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241-254

    Article  PubMed  CAS  Google Scholar 

  • 38. Kellis M, Birren BW, Lander E (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617-624

    Article  PubMed  CAS  Google Scholar 

  • 39. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Danchin A, et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249-256

    Article  PubMed  CAS  Google Scholar 

  • 40. Kupfer DM, Reece CA, Clifton SW, Roe BA, Prade RA (1997) Multicellular ascomycetous fungal genomes contain more than 8000 genes. Fungal Genet Biol 21:364-372

    Article  PubMed  CAS  Google Scholar 

  • 41. Kurtzman CP, Robnett C (2003) Phylogenetic relationships among yeasts of the ”Saccharomyces complex” determined from multigene sequence analyses. FEMS Yeast Research 3:417-432

    Article  PubMed  CAS  Google Scholar 

  • 42. Langkjar RB, Nielsen ML, Daugaard PR, Liu W, Piskur J (2000) Yeast chromosomes have been significantly reshaped during their evolutionary history. J Mol Biol 304:271-288

    Article  CAS  Google Scholar 

  • 43. Langkjar RB, Cliften PF, Johnston M, Piskur J (2003) Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. Nature 421:848-852

    Article  CAS  Google Scholar 

  • 44. Llorente B, Malpertuy A, Blandin G, Artiguenave F, Wincker P, Dujon B (2000a) Genomic exploration of the hemiascomycetous yeasts: 12. Kluyveromyces marxianus var. marxianus. FEBS Lett 487:71-75

    Article  PubMed  CAS  Google Scholar 

  • 45. Llorente B, Malpertuy A, Neuveglise C, de Montigny J, Aigle M, Artiguenave F, Blandin G, Bolotin-Fukuhara M, Bon E, Brottier P, Casaregola S, Durrens P, Gaillardin C, Lepingle A, Ozier-Kalogeropoulos O, Potier S, Saurin W, Tekaia F, Toffano-Nioche C, Wesolowski-Louvel M, Wincker P, Weissenbach J, Souciet J, Dujon B (2000b) Genomic exploration of the hemiascomycetous yeasts: 18. Comparative analysis of chromosome maps and synteny with Saccharomyces cerevisiae. FEBS Lett 487:101-112

    Article  PubMed  CAS  Google Scholar 

  • 46. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955-964

    Article  PubMed  CAS  Google Scholar 

  • 47. Melnick L, Sherman F (1993) The gene clusters ARC and COR on chromosomes 5 and 10: respectively, of Saccharomyces cerevisiae share a common ancestry. J Mol Biol 233:372-388

    Article  PubMed  CAS  Google Scholar 

  • 48. Mohr C (1995) Genetic engineering of the filamentous fungus Ashbya gossypii: construction of a genomic library, isolation of genes for beta-isopropylmalate-dehydrogenase (LEU2) and a protein kinase (APK1) by heterologous complementation, and characterization of non-reverting mutants. PhD thesis. Applied microbiology. Universitaet Basel

    Google Scholar 

  • 49. National Center for Biotechnology Information. http://www.ncbi.nih.nlm.gov

    Google Scholar 

  • 50. Ness F, Aigle M (1995) RTM1: a member of a new family of telomeric repeated genes in yeast. Genetics 140:945-956

    PubMed  CAS  Google Scholar 

  • 51. Neurospora Sequencing Project. http://www-genome.wi.mit.edu

    Google Scholar 

  • 52. Nickas ME, Neiman AM (2002) Ady3p links spindle pole body function to spore wall synthesis in Saccharomyces cerevisiae. Genetics 160:1439-1450

    PubMed  CAS  Google Scholar 

  • 53. Ohno S (1970) Evolution by gene duplication. Springer-Verlag Heidelberg

    Google Scholar 

  • 54. Osiewacz HD, Ridder R (1991) Genome analysis of imperfect fungi: electrophoretic karyotyping and characterization of the nuclear gene coding for glyceraldehyde-3-phosphate dehydrogenase (gpd) of Curvularia lunata. Curr Genet 20:151-155

    Article  PubMed  CAS  Google Scholar 

  • 55. Panzeri L, Landonio L, Stotz A, Philippsen P (1985) Role of conserved sequence elements in yeast centromere DNA. EMBO J 4:1867-1874

    PubMed  CAS  Google Scholar 

  • 56. Pearson WR (1994) Using the FASTA program to search protein and DNA sequence databases. Methods Mol Biol 25:365-389

    PubMed  CAS  Google Scholar 

  • 57. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444-2448

    Article  PubMed  CAS  Google Scholar 

  • 58. Philippsen P, Kleine K, Pohlmann R, Dusterhoft A, Hamberg K, Hegemann JH, Obermaier B, Urrestarazu LA, Aert R, Albermann K, Altmann R, Andre B, Baladron V, Ballesta JP, Becam AM, Beinhauer J, Boskovic J, Buitrago MJ, Bussereau F, Coster F, Crouzet M, D'Angelo M, Dal Pero F, De Antoni A, Hani J et al. (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications. Nature 387:93-98

    PubMed  CAS  Google Scholar 

  • 59. Philippsen P, Kaufmann A, Schmitz H-P (2005) Homologues of yeast polarity genes control the development of multinucleated hyphae in Ashbya gossypii. Curr Opin Microbiol 8:370-377

    Article  PubMed  CAS  Google Scholar 

  • 60. Piskur J (2001) Origin of the duplicated regions in the yeast genomes. Trends Genet 17:302-303

    Article  PubMed  CAS  Google Scholar 

  • 61. Pöhlmann R (1996) Computational evalution of systematic and random genomic sequence data of the yeast Saccharomyces cerevisiae and the filamentous fungus Ashbya gossypii. PhD thesis. Applied Microbiology. Universitaet Basel

    Google Scholar 

  • 62. Prillinger H, Schweigkofler W, Breitenbach M, Briza P, Staudacher E, Lopandic K, Molnar O, Weigang F, Ibl M, Ellinger A (1997) Phytopathogenic filamentous (Ashbya, Eremothecium) and dimorphic fungi (Holleya, Nematospora) with needle-shaped ascospores as new members within the Saccharomycetaceae. Yeast 13:945-960

    Article  PubMed  CAS  Google Scholar 

  • 63. Primig M, Williams RM, Winzeler EA, Tevzadze GG, Conway AR, Hwang SY, Davis RW, Esposito RE (2000) The core meiotic transcriptome in budding yeasts. Nat Genet 26:415-423

    Article  PubMed  CAS  Google Scholar 

  • 64. Richardson HE, Wittenberg C, Cross F, Reed SI (1989) An essential G1 function for cyclin-like proteins in yeast. Cell 59:1127-1133

    Article  PubMed  CAS  Google Scholar 

  • 65. Rymond BC, Rosbash M (1992) The molecular and cellular biology of the yeast Saccharomyces; volume 2; gene expression. Cold Spring Harbor Laboratory Press

    Google Scholar 

  • 66. Saccharomyces Genome Database http://genome-www.stanford.edu/Saccharomyces/

    Google Scholar 

  • 67. Seoighe C, Wolfe KH (1998) Extent of genomic rearrangement after genome duplication in yeast. Proc Natl Acad Sci USA 95:4447-4452

    Article  PubMed  CAS  Google Scholar 

  • 68. Seoighe C, Wolfe KH (1999) Updated map of duplicated regions in the yeast genome. Gene 238:253-261

    Article  PubMed  CAS  Google Scholar 

  • 69. Singer MS, Gottschling DE (1994) TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266:404-409

    Article  PubMed  CAS  Google Scholar 

  • 70. Steiner S, Philippsen P (1994) Sequence and promoter analysis of the highly expressed TEF gene of the filamentous fungus Ashbya gossypii. Mol Gen Genet 242:263-271

    Article  PubMed  CAS  Google Scholar 

  • 71. Steiner S, Wendland J, Wright MC, Philippsen P (1995) Homologous recombination as the main mechanism for DNA integration and cause of rearrangements in the filamentous ascomycete Ashbya gossypii. Genetics 140:973-987

    PubMed  CAS  Google Scholar 

  • 72. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PA01: an opportunistic pathogen. Nature 406:959-964

    Article  PubMed  CAS  Google Scholar 

  • 73. Wendland J, Ayad-Durieux Y, Knechtle P, Rebischung C, Philippsen P (2000) PCR-based gene targeting in the filamentous fungus Ashbya gossypii. Gene 242:381-391

    Article  PubMed  CAS  Google Scholar 

  • 74. Wendland J, Philippsen P (2000) Determination of cell polarity in germinated spores and hyphal tips of the filamentous ascomycete Ashbya gossypii requires a rhoGAP homolog. J Cell Sci 113:1611-1621

    PubMed  CAS  Google Scholar 

  • 75. Wendland J, Philippsen P (2001) Cell polarity and hyphal morphogenesis are controlled by multiple rho-protein modules in the filamentous ascomycete Ashbya gossypii. Genetics 157:601-610

    PubMed  CAS  Google Scholar 

  • 76. Wendland J, Philippsen P (2002) An IQGAP-related protein, encoded by AgCYK1: is required for septation in the filamentous fungus Ashbya gossypii. Fungal Genet Biol 37:81

    Article  PubMed  CAS  Google Scholar 

  • 77. Wendland J, Pöhlmann R, Dietrich F, Steiner S, Mohr C, Philippsen P (1999) Compact organization of rRNA genes in the filamentous fungus Ashbya gossypii. Curr Genet 35:618-625

    Article  PubMed  CAS  Google Scholar 

  • 78. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708-713

    Article  PubMed  CAS  Google Scholar 

  • 79. Wolfe K (2004) Evolutionary genomics: yeasts accelerate beyond BLAST. Current Biol 14:R392-R394

    Article  CAS  Google Scholar 

  • 80. Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O'Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schafer M, Muller-Auer S, Gabel C, Fuchs M, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dreano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A, Thode G, Daga RR, Cruzado L, Jimenez J, Sanchez M, del Rey F, Benito J, Dominguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerrutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D, Barrell BG, Nurse P (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871-880

    Article  PubMed  CAS  Google Scholar 

  • 81. Wood V, Rutherford KM, Ivens A, Rajandream MA, Barrell B (2001) A reannotation of the Saccharomyces cerevisiae genome. Comp Func Genomics 2:143-154

    Article  CAS  Google Scholar 

  • 82. Wright MC, Philippsen P (1991) Replicative transformation of the filamentous fungus Ashbya gossypii with plasmids containing Saccharomyces cerevisiae ARS elements. Gene 109:99-105

    Article  PubMed  CAS  Google Scholar 

  • 83. Whiteway M, Oberholzer U (2004) Candida morphogenesis and host-pathogen interactions. Curr Opin Microbiol 7:350-357

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Per Sunnerhagen Jure Piskur

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Brachat, S., Dietrich, F., Voegeli, S., Gaffney, T., Philippsen, P. The genome of the filamentous fungus Ashbya gossypii: annotation and evolutionary implications. In: Sunnerhagen, P., Piskur, J. (eds) Comparative Genomics. Topics in Current Genetics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_114

Download citation

Publish with us

Policies and ethics