Skip to main content

Theoretical Understanding of Anisotropy in Molecular Nanomagnets

  • Chapter
  • First Online:
Molecular Nanomagnets and Related Phenomena

Part of the book series: Structure and Bonding ((STRUCTURE,volume 164))

Abstract

The study of magnetic anisotropy in metal complexes is at the forefront of current molecular magnetism research because it represents the key property for potential application of molecular materials in spintronics, memory storage, and quantum computing. The anisotropy adds an order of complexity to magnetic properties of complexes, requiring more refined experimental techniques and the use of theoretical tools, especially, of new ab initio approaches for their description. In this review, we discuss the physical reasons for magnetic anisotropy and the mechanisms of its appearance in different metal complexes. Differences in the manifestation of magnetic anisotropy between complexes with weak and strong spin–orbit coupling as well as between single-ion and polynuclear compounds will be emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ac:

Alternative current

Ac:

Acetyl

BS-DFT:

Broken-symmetry DFT

CASPT2:

Complete active space second-order perturbation theory

CASSCF:

Complete active space self-consistent field

COT:

Cyclooctatetraene

CPT:

Capped trigonal prisms

Cr2Dy 2 :

[CrIII 2DyIII 2(OMe)2(O2CPh)4(mdea)2(NO3)2]

DFT:

Density functional theory

Dy2 :

[Dy2(ovph)2Cl2(MeOH)3]

Fe8 :

[Fe8O2(OH)12(tacn)6]8+

H2ovph:

Pyridine-2-carboxylic acid [(2-hydroxy-3-methoxyphenyl)methylene] hydrazide

ITO:

Irreducible tensor operator

KD:

Kramers doublet

L:

N,N′,N″-Tris(2-hydroxy-3-methoxybenzylidene)-2-(aminomethyl)-2-methyl-1,3-propanediamine

Ln:

Lanthanide

mdeaH2 :

N-Methyldiethanolamine

Me:

Methyl

Mn12ac:

[Mn12O12(CH3COO)16(H2O)4]

Pc:

Phthalocyanine

Ph:

Phenyl

QTM:

Quantum tunneling of magnetization

R:

Radical

RASSI-SO:

Restricted active space state interaction for spin–orbit coupling

SCM:

Single-chain magnet

SIM:

Single-ion magnet

SMM:

Single-molecule magnet

tacn:

1,4,7-Triazacyclononane

TM:

Transition metal

ZFS:

Zero-field splitting

References

  1. Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Nature 365:141

    CAS  Google Scholar 

  2. Christou G, Gatteschi D, Hendrickson DN, Sessoli R (2000) Mater Res Bull 25:66

    CAS  Google Scholar 

  3. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, Oxford

    Google Scholar 

  4. Aromi G, Brechin EK (2006) In: Winpenny REP (ed) Single-molecule magnets and related phenomena, vol 122. Structre Bonding, p 1

    Google Scholar 

  5. Woodruff DN, Winpenny REP, Layfield RA (2013) Chem Rev 113:5110

    CAS  Google Scholar 

  6. Kahn O, Larionova J, Quahab L (1999) Chem Commun 11:945

    Google Scholar 

  7. Bencini A, Gatteschi D (1990) Electron paramagnetic resonance of exchange coupled systems. Springer, Berlin

    Google Scholar 

  8. Kahn O (1993) Molecular magnetism. Wiley-VCH, Weinheim

    Google Scholar 

  9. Chibotaru LF, Ungur L, Soncini A (2008) Angew Chem Int Ed 47:4126

    CAS  Google Scholar 

  10. Görller-Warland C, Binnemans K (1998) Spectral intensities of f-f transitions. In: Gschneidner KA Jr, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 25. Elsevier, Amsterdam, p 101

    Google Scholar 

  11. Bloor D, Copland GM (1972) Rep Prog Phys 35:1173

    CAS  Google Scholar 

  12. Furrer A, Waldmann O (2013) Rev Mod Phys 85:367

    CAS  Google Scholar 

  13. Mannini M, Pineider F, Danieli C, Totti F, Sorace L, Sainctavit PH, Arrio M-A, Otero E, Joly L, Cezar JC, Cornia A, Sessoli R (2010) Nature 468:417

    CAS  Google Scholar 

  14. Barra AL, Gatteschi D, Sessoli R (1996) Phys Rev B 56:8192

    Google Scholar 

  15. Abragam A (1961) The principles of nuclear magnetism. Clarendon, Oxford

    Google Scholar 

  16. Bernot K, Luzon J, Bogani L, Etienne M, Sangregorio C, Shanmugam M, Caneschi A, Sessoli R, Gatteschi D (2009) J Am Chem Soc 131:5573

    CAS  Google Scholar 

  17. Boulon M-E, Cucinotta G, Liu S-S, Jiang S-D, Ungur L, Chibotaru LF, Gao S, Sessoli R (2013) Chem Eur J 19:13726

    CAS  Google Scholar 

  18. Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y (2004) J Phys Chem B 108:11265

    CAS  Google Scholar 

  19. AlDamen MA, Clemente-Juan JM, Coronado E, Martí-Gastaldo C, Gaito-Ariño A (2008) J Am Chem Soc 130:8874

    CAS  Google Scholar 

  20. Aquilante F, Vico LD, Ferré N, Ghigo G, Malmqvist PÅ, Neográdi P, Pedersen TB, Pitoňák M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R (2010) J Comput Chem 31:224

    CAS  Google Scholar 

  21. Chibotaru LF, Ungur L (2012) J Chem Phys 137:064112

    CAS  Google Scholar 

  22. Weinberger P (2009) Magnetic anisotropies in nanostructured matter. CRC Press, Boca Raton

    Google Scholar 

  23. Néel L (1949) Annu Geophys 5:99

    Google Scholar 

  24. Coulon C, Miyasaka H, Clérac R (2006) Single-chain magnets: theoretical approach and experimental systems. In: Winpenny REP (ed) Single-molecule magnets and related phenomena, vol 122. Structure Bonding, p 163

    Google Scholar 

  25. Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Oxford University Press, Oxford

    Google Scholar 

  26. Landau LD, Lifshitz EM (1975) Quantum mechanics, 2nd edn. Pergamon, Oxford

    Google Scholar 

  27. Moriya T (1963) Weak ferromagnetism. In: Rado GT, Suhl H (eds) Magnetism, vol 1. Academic, New York, p 85

    Google Scholar 

  28. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College, Philadelphia

    Google Scholar 

  29. Villain J, Hartmann-Boutron F, Sessoli R, Rettori A (1994) Europhys Lett 27:159

    CAS  Google Scholar 

  30. Garanin DA, Chudnovsky EM (1997) Phys Rev B 56:11102

    CAS  Google Scholar 

  31. Leuenberger MN, Loss D (1999) Europhys Lett 46:692

    CAS  Google Scholar 

  32. Stoner EC, Wohlfarth EP (1948) Phil Trans Lond Ser A 240:599

    Google Scholar 

  33. Beown WF Jr (1963) Phys Rev 130:1677

    Google Scholar 

  34. Frenkel J, Dorfman J (1930) Nature 126:274

    Google Scholar 

  35. Kittel C (1946) Phys Rev 70:965

    CAS  Google Scholar 

  36. Thompson DA, Best JS (2000) IBM J Res Dev 44:311

    CAS  Google Scholar 

  37. Wernsdorfer W (2001) Classical and quantum magnetization reversal studied in nanometer-sized particles and clusters. In: Rice SA, Dinner AR (eds) Advance in chemical physics, vol 118, p 99

    Google Scholar 

  38. Bedanta S, Kleemann W (2009) J Phys D Appl Phys 42:013001

    Google Scholar 

  39. Al’tshuler SA, Kozyrev BM (1974) Electron paramagnetic resonance in compounds of transition elements. Wiley, New York

    Google Scholar 

  40. Chibotaru LF (2013) Ab initio methodologies for pseudospin Hamiltonians of anisotropic magnetic complexes. In: Rice SA, Dinner AR (eds) Advance in chemical physics, vol 153, p 397

    Google Scholar 

  41. Figgis BN, Hitchman MA (1999) Ligand field theory and its applications. Wiley-VCH, New York

    Google Scholar 

  42. Neese F (2001) Int J Quant Chem 83:104

    CAS  Google Scholar 

  43. Kaupp M, Bühl M, Malkin VG (eds) (2004) Calculation of NMR and EPR parameters. Wiley-VCH, Weinheim

    Google Scholar 

  44. Maganas D, Sottini S, Kyritsis P, Groenen EJJ, Neese F (2011) Inorg Chem 50:8741

    CAS  Google Scholar 

  45. Arratia-Pérez R, Hernandez-Acevedo L, Malli GL (2001) J Chem Phys 121:7743

    Google Scholar 

  46. Quiney HM, Belanzoni P (2002) Chem Phys Lett 353:253

    CAS  Google Scholar 

  47. Neese F, Solomon E (1998) Inorg Chem 37:6568

    CAS  Google Scholar 

  48. Pederson MR, Khanna SN (1999) Phys Rev B 60:9566

    CAS  Google Scholar 

  49. Postnikov AV, Kortus J, Pederson MR (2006) Phys Stat Sol B 243:2533

    CAS  Google Scholar 

  50. Atanasov M, Comba P, Daul CA (2008) Inorg Chem 47:2449

    CAS  Google Scholar 

  51. Webb SP, Gordon MS (1998) J Chem Phys 109:919

    CAS  Google Scholar 

  52. Maurice R, Bastardis R, de Graaf C, Suaud N, Mallah T, Guihery N (2009) J Chem Theor Comp 5:2977

    CAS  Google Scholar 

  53. Maurice R, de Graaf C, Guihery NJ (2010) Chem Phys 133:084307

    Google Scholar 

  54. Cremades E, Ruiz E (2011) Inorg Chem 50:4016

    CAS  Google Scholar 

  55. Maurice R, Sivalingam K, Ganyushin D, Guihery N, de Graaf C, Neese F (2011) Inorg Chem 50:6229

    CAS  Google Scholar 

  56. Atanasov M, Ganyushin D, Pantazis DA, Sivalingam K, Neese F (2011) Inorg Chem 50:7460

    CAS  Google Scholar 

  57. Takeda R, Yamanaka S, Yamaguchi K (2005) Int J Quant Chem 102:80

    CAS  Google Scholar 

  58. Takeda R, Yamanaka S, Shoji M, Yamaguchi K (2007) Int J Quant Chem 107:1328

    CAS  Google Scholar 

  59. Maurice R, Pradipto AM, Guihery N, Broer R, de Graaf C (2010) J Chem Theor Comp 6:3092

    CAS  Google Scholar 

  60. Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157

    CAS  Google Scholar 

  61. Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483

    CAS  Google Scholar 

  62. Aquilante F, De Vico L, Ferre N, Ghigo G, Malmqvist PÅ, Neogrady P, Pedersen TB, Pitonak M, Reiher M, Roos BO, Serrano-Andres L, Urban M, Veryazov V, Lindh R (2010) J Comp Chem 31:224

    CAS  Google Scholar 

  63. Hess BA, Marian CM, Wahlgren U, Gropen O (1996) Chem Phys Lett 251:365

    CAS  Google Scholar 

  64. Malmqvist PÅ, Roos BO, Schimmelpfennig B (2002) Chem Phys Lett 357:2

    Google Scholar 

  65. Chibotaru LF, Hendrickx MFA, Clima S, Larionova J, Ceulemans A (2005) J Phys Chem A 109:7251

    CAS  Google Scholar 

  66. Bolvin H (2006) Chemphyschem 7:1575

    CAS  Google Scholar 

  67. Petit S, Pilet G, Luneau D, Chibotaru LF, Ungur L (2007) Dalton Trans 4582

    Google Scholar 

  68. Chibotaru LF, Ungur L, Aronica C, Elmoll H, Pilet G, Luneau D (2008) J Am Chem Soc 130:12445

    CAS  Google Scholar 

  69. Novitchi G, Wernsdorfer W, Chibotaru LF, Costes J-P, Anson CE, Powell AK (2009) Angew Chem Int Ed 48:1614

    CAS  Google Scholar 

  70. Cucinotta G, Perfetti M, Luzon J, Etienne M, Car PE, Caneschi A, Calvez G, Bernot K, Sessoli R (2012) Angew Chem Int Ed 51:1606

    CAS  Google Scholar 

  71. Aravena D, Ruiz E (2013) Inorg Chem 52:12777

    Google Scholar 

  72. Chibotaru LF, Ceulemans A, Bolvin H (2008) Phys Rev Lett 101:033003

    CAS  Google Scholar 

  73. Notter FP, Bolvin H (2009) J Chem Phys 130:184310

    Google Scholar 

  74. Ungur L, Chibotaru L (2014) Computational modeling of the magnetic properties of lanthanide compounds. In: Layfield RA, Murugesu M (eds) Lanthanides and actinides in molecular magnetism. Wiley

    Google Scholar 

  75. Boca R (2004) Coord Chem Rev 248:757

    CAS  Google Scholar 

  76. Griffith JS (1971) The theory of transition metal ions. Cambridge University Press, Cambridge

    Google Scholar 

  77. Bethe HA, Salpeter EE (1957) Quantum mechanics of one- and two-electron atoms. Springer, Berlin

    Google Scholar 

  78. McWeeny R (1992) Methods of molecular quantum mechanics. Academic, London

    Google Scholar 

  79. Neese F (2007) J Chem Phys 127:164112

    Google Scholar 

  80. Rogez G, Rebilly JN, Barra AL, Sorace L, Blondin G, Kirchner N, Duran M, van Slageren J, Parsons S, Ricard L, Marvilliers A, Mallah T (2005) Angew Chem Int Ed 44:1876

    CAS  Google Scholar 

  81. Stevens KWH (1952) Proc Phys Soc A 65:209

    Google Scholar 

  82. Reu OS, Palii AV, Ostrovsky SM, Tregenna-Piggott PL, Klokishner SI (2012) Inorg Chem 51:10955

    CAS  Google Scholar 

  83. Ungur L, Chibotaru LF (2014) Nat Comm, submitted

    Google Scholar 

  84. Le Roy JJ, Jeletic M, Gorelsky SI, Korobkov I, Ungur L, Chibotaru LF, Murugesu M (2013) J Am Chem Soc 135:3502

    Google Scholar 

  85. Liu J-L, Chen Y-C, Zheng Y-Z, Lin W-Q, Ungur L, Wernsdorfer W, Chibotaru LF, Tong M-L (2013) Chem Sci 4:3310

    CAS  Google Scholar 

  86. Ungur L, Chibotaru LF (2011) Phys Chem Chem Phys 13:20086

    CAS  Google Scholar 

  87. Blagg RJ, Ungur L, Tuna F, Speak J, Comar P, Collison D, Wernsdorfer W, McInnes EJL, Chibotaru LF, Winpenny REP (2013) Nat Chem 5:673

    CAS  Google Scholar 

  88. Ungur L, Le Roy JJ, Korobkov I, Murugesu M, Chibotaru LF (2014) Angew Chem Int Ed 53:4413

    CAS  Google Scholar 

  89. Ishikawa N, Sugita M, Wernsdorfer W (2005) Angew Chem Int Ed 44:2931

    CAS  Google Scholar 

  90. Rinehart JD, Long JR (2011) Chem Sci 2:2078

    CAS  Google Scholar 

  91. Meihaus KR, Long JR (2013) J Am Chem Soc 135:17952

    CAS  Google Scholar 

  92. Magnani N, Apostolidis C, Morgenstern A, Colineau E, Griveau J-C, Bolvin H, Walter O, Caciuffo R (2011) Angew Chem Int Ed 50:1696

    CAS  Google Scholar 

  93. King DM, Tuna F, McMaster J, Lewis W, Blake AJ, McInnes EJL, Liddle ST (2013) Angew Chem Int Ed 52:4921

    CAS  Google Scholar 

  94. Meihaus KR, Rinehart JD, Long JR (2011) Inorg Chem 50:8484

    CAS  Google Scholar 

  95. Moro F, Mills DP, Liddle ST, van Slageren J (2013) Angew Chem Int Ed 52:3430

    CAS  Google Scholar 

  96. Harman WH, Harris TD, Freedman DE, Fong H, Chang A, Rinehart JD, Ozarowski A, Sougrati MT, Grandjean F, Long GJ, Long JR, Chang CJ (2010) J Am Chem Soc 132:18115

    CAS  Google Scholar 

  97. Zadrozny JM, Xiao DJ, Atanasov M, Long GJ, Grandjean F, Neese F, Long JR (2013) Nat Chem 5:577

    CAS  Google Scholar 

  98. Dreiser J, Pedersen KS, Schnegg A, Holldack K, Nehrkorn J, Sigrist M, Tregenna-Piggott P, Mutka H, Weihe H, Mironov VS, Bendix J, Waldmann O (2013) Chem Eur J 19:3693

    CAS  Google Scholar 

  99. Qian K, Huang X-C, Zhou C, You X-Z, Wang X-Y, Dunbar KR (2013) J Am Chem Soc 135:13302

    CAS  Google Scholar 

  100. Barra AL, Debrunner P, Gatteschi D, Schulz CE, Seesoli R (1996) Europhys Lett 35:133

    CAS  Google Scholar 

  101. Gatteschi D, Sorace L (2001) J Solid State Chem 159:253

    CAS  Google Scholar 

  102. Ungur L, Thewissen M, Costes J-P, Wernsdorfer W, Chibotaru LF (2013) Inorg Chem 52:6328

    CAS  Google Scholar 

  103. Vieru V, Ungur L, Chibotaru LF (2014), unpublished

    Google Scholar 

  104. Anderson PW (1959) Phys Rev 115:1

    Google Scholar 

  105. Guo Y-N, Xu G-F, Wernsdorfer W, Ungur L, Guo Y, Tang J, Zhang H-J, Chibotaru LF, Powell AK (2011) J Am Chem Soc 133:11948

    CAS  Google Scholar 

  106. Langley SK, Wielechowski DP, Vieru V, Chilton NF, Moubaraki B, Abrahams BF, Chibotaru LF, Murray KS (2013) Angew Chem Int Ed 52:12014

    CAS  Google Scholar 

  107. Rinck J, Novitchi G, Van den Heuvel W, Ungur L, Lan Y, Wernsdorfer W, Anson CE, Chibotaru LF, Powell AK (2010) Angew Chem Int Ed 49:7583

    CAS  Google Scholar 

  108. Rinehart JD, Fang M, Evans WJ, Long JR (2011) Nat Chem 3:538

    CAS  Google Scholar 

  109. Rinehart JD, Fang M, Evans WJ, Long JR (2011) J Am Chem Soc 133:14236

    CAS  Google Scholar 

  110. Yamaguchi T, Costes J-P, Kishima Y, Kojima M, Sunatsuki Y, Bréfuel N, Tuchagues J-P, Vendier L, Wernsdorfer W (2010) Inorg Chem 49:9125

    CAS  Google Scholar 

  111. Pedersen KS, Ungur L, Sigrist M, Sundt A, Schau-Magnussen M, Vieru V, Mutka H, Rols S, Weihe H, Waldmann O, Chibotaru LF, Bendix J, Dreiser J (2014) Chem Sci 5:1650

    CAS  Google Scholar 

  112. Marx R, Moro F, Dörfel M, Ungur L, Waters M, Jiang SD, Orlita M, Taylor J, Frey W, Chibotaru LF, van Slageren J (2014) Chem Sci 5:3287

    CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Liviu Ungur for the long-term collaboration on the theoretical description of magnetic anisotropy in molecular nanomagnets and Veaceslav Vieru for technical assistance. This work was supported by Methusalem and INPAC grants at KU Leuven and by FWO grants of Flemish Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liviu F. Chibotaru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chibotaru, L.F. (2014). Theoretical Understanding of Anisotropy in Molecular Nanomagnets. In: Gao, S. (eds) Molecular Nanomagnets and Related Phenomena. Structure and Bonding, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2014_171

Download citation

Publish with us

Policies and ethics