Skip to main content

Modulation of Excitation by Metabotropic Glutamate Receptors

  • Chapter
  • First Online:
Inhibitory Regulation of Excitatory Neurotransmission

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 44))

Abstract

Metabotropic glutamate receptors, in contrast to ionotropic glutamate receptors, do not form ion channels but instead affect intracellular chemical messenger systems. They couple via GTP-binding proteins (“G-proteins”) to a variety of effectors such as ion channels and thus give glutamate, the major excitatory transmitter in the CNS, the ability to modulate processes involved in excitatory synaptic transmission. Therefore, excitatory synaptic transmission is regulated not only by the conventional GABAergic but also by the glutamatergic mechanisms themselves. Many metabotropic glutamate receptors are localized outside the immediate vicinity of transmitter release sites, thereby setting specific requirements for their activation, such as cooperation between synapses, burst activity, and glial involvement in the regulation of ambient glutamate levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Brain Res Rev 29:83–120

    Article  PubMed  CAS  Google Scholar 

  2. Arnth-Jensen N, Jabaudon D, Scanziani M (2002) Cooperation between independent hippocampal synapses is controlled by glutamate uptake. Nat Neurosci 5:325–331

    Article  PubMed  CAS  Google Scholar 

  3. Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 22:9134–9141

    PubMed  CAS  Google Scholar 

  4. Bandrowski AE, Huguenard JR, Prince DA (2003) Baseline glutamate levels affect group I and II mGluRs in layer V pyramidal neurons of rat sensorimotor cortex. J Neurophysiol 89:1308–1316

    Article  PubMed  CAS  Google Scholar 

  5. Barbour B (2001) An evaluation of synapse independence. J Neurosci 20:7969–7984

    Google Scholar 

  6. Baskys A, Malenka RC (1991) Agonists at metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus. J Physiol 444:687–701

    PubMed  CAS  Google Scholar 

  7. Batchelor AM, Knöpfel T, Gasparini F, Garthwaite J (1997) Pharmacological characterization of synaptic transmission through mGluRs in rat cerebellar slices. Neuropharmacology 36:401–403

    Article  PubMed  CAS  Google Scholar 

  8. Benquet P, Gee CE, Gerber U (2002) Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J Neurosci 22:9679–9686

    PubMed  CAS  Google Scholar 

  9. Bergles DE, Diamond JS, Jahr CE (1999) Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol 9:293–298

    Article  PubMed  CAS  Google Scholar 

  10. Billups B, Graham BP, Wong AY, Forsythe ID (2005) Unmasking group III metabotropic glutamate autoreceptor function at excitatory synapses in the rat CNS. J Physiol 565:885–896

    Article  PubMed  CAS  Google Scholar 

  11. Brown SP, Brenowitz SD, Regehr WG (2003) Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nat Neurosci 6:1048–1057

    Article  PubMed  CAS  Google Scholar 

  12. Brown SP, Safo PK, Regehr WG (2004) Endocannabinoids inhibit transmission at granule cell to Purkinje cell synapses by modulating three types of presynaptic calcium channels. J Neurosci 24:5623–5631

    Article  PubMed  CAS  Google Scholar 

  13. Capogna M (2004) Distinct properties of presynaptic group II and III metabotropic glutamate receptor-mediated inhibition of perforant pathway-CA1 EPSCs. Eur J Neurosci 19:2847–2858

    Article  PubMed  Google Scholar 

  14. Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75:889–907

    Article  PubMed  CAS  Google Scholar 

  15. Charpak S, Gahwiler BH, Do KQ, Knöpfel T (1990) Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature 347:765–767

    Article  PubMed  CAS  Google Scholar 

  16. Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19:163–171

    Article  PubMed  CAS  Google Scholar 

  17. Conti F, Weinberg RJ (1999) Shaping excitation at glutamatergic synapses. Trends Neurosci 22:451–458

    Article  PubMed  CAS  Google Scholar 

  18. Corti C, Aldegheri L, Somogyi P, Ferraguti F (2002) Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience 110:403–420

    Article  PubMed  CAS  Google Scholar 

  19. Coutinho V, Knöpfel T (2002) Metabotropic glutamate receptors: electrical and chemical signaling properties. Neuroscientist 8:551–561

    Article  PubMed  CAS  Google Scholar 

  20. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  21. Daniel H, Crepel F (2001) Control of Ca2+ influx by cannabinoid and metabotropic glutamate receptors in rat cerebellar cortex requires K(+) channels. J Physiol 537:793–800

    Article  PubMed  CAS  Google Scholar 

  22. Derjean D, Bertrand S, Le Masson G, Landry M, Morisset V, Nagy F (2003) Dynamic balance of metabotropic inputs causes dorsal horn neurons to switch functional states. Nat Neurosci 6:274–281

    Article  PubMed  CAS  Google Scholar 

  23. Diamond JS (2002) A broad view of glutamate spillover. Nat Neurosci 5:291–292

    Article  PubMed  CAS  Google Scholar 

  24. Dutar P, Petrozzino JJ, Vu HM, Schmidt MF, Perkel DJ (2000) Slow synaptic inhibition mediated by metabotropic glutamate receptor activation of GIRK channels. J Neurophysiol 84:2284–2290

    PubMed  CAS  Google Scholar 

  25. Evans DI, Jones RS, Woodhall G (2001) Differential actions of PKA and PKC in the regulation of glutamate release by group III mGluRs in the entorhinal cortex. J Neurophysiol 85:571–579

    PubMed  CAS  Google Scholar 

  26. Faas GC, Adwanikar H, Gereau RW, Saggau P (2002) Modulation of presynaptic calcium transients by metabotropic glutamate receptor activation: a differential role in acute depression of synaptic transmission and long-term depression. J Neurosci 22:6885–6890

    PubMed  CAS  Google Scholar 

  27. Fagni L, Chavis P, Ango F, Bockaert J (2000) Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci 23:80–88

    Article  PubMed  CAS  Google Scholar 

  28. Fiacco TA, McCarthy KD (2004) Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci 24:722–732

    Article  PubMed  CAS  Google Scholar 

  29. Fiorillo CD, Williams JT (1998) Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 394:78–82

    Article  PubMed  CAS  Google Scholar 

  30. Forsythe ID, Clements JD (1990) Presynaptic glutamate receptors depress excitatory monosynaptic transmission between mouse hippocampal neurones. J Physiol 429:1–16

    PubMed  CAS  Google Scholar 

  31. Gerber G, Zhong J, Youn D, Randic M (2000) Group II and group III metabotropic glutamate receptor agonists depress synaptic transmission in the rat spinal cord dorsal horn. Neuroscience 100:393–406

    Article  PubMed  CAS  Google Scholar 

  32. Grishin AA, Gee CE, Gerber U, Benquet P (2004) Differential calcium-dependent modulation of NMDA currents in CA1 and CA3 hippocampal pyramidal cells. J Neurosci 24:350–355

    Article  PubMed  CAS  Google Scholar 

  33. Heidinger V, Manzerra P, Wang XQ, Strasser U, Yu SP, Choi DW, Behrens MM (2002) Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through the Pyk2/Src-family kinase pathway in cortical neurons. J Neurosci 22:5452–5461

    PubMed  CAS  Google Scholar 

  34. Hermans E, Challiss RA (2001) Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 359:465–484

    Article  PubMed  CAS  Google Scholar 

  35. Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743

    Article  PubMed  CAS  Google Scholar 

  36. Heuss C, Gerber U (2000) G-protein-independent signaling by G-protein-coupled receptors. Trends Neurosci 23:469–475

    Article  PubMed  CAS  Google Scholar 

  37. Huang YH, Sinha SR, Tanaka K, Rothstein JD, Bergles DE (2004) Astrocyte glutamate transporters regulate metabotropic glutamate receptor-mediated excitation of hippocampal interneurons. J Neurosci 24:4551–4559

    Article  PubMed  CAS  Google Scholar 

  38. Ikeda H, Murase K (2004) Glial nitric oxide-mediated long-term presynaptic facilitation revealed by optical imaging in rat spinal dorsal horn. J Neurosci 24:9888–9896

    Article  PubMed  CAS  Google Scholar 

  39. Jones RS, Woodhall GL (2005) Background synaptic activity in rat entorhinal cortical neurones: differential control of transmitter release by presynaptic receptors. J Physiol 562:107–120

    Article  PubMed  CAS  Google Scholar 

  40. Knöpfel T, Kuhn R, Allgeier H (1995) Metabotropic glutamate receptors: novel targets for drug development. J Med Chem 38:1417–1426

    Article  PubMed  Google Scholar 

  41. Koerner JF, Cotman CW (1981) Micromolar l-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex. Brain Res 216:192–198

    Article  PubMed  CAS  Google Scholar 

  42. Kreitzer AC, Regehr WG (2001) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29:717–727

    Article  PubMed  CAS  Google Scholar 

  43. Kushmerick C, Price GD, Taschenberger H, Puente N, Renden R, Wadiche JI, Duvoisin RM, Grandes P, von Gersdorff H (2004) Retroinhibition of presynaptic Ca2+ currents by endocannabinoids released via postsynaptic mGluR activation at a calyx synapse. J Neurosci 24:5955–5965

    Article  PubMed  CAS  Google Scholar 

  44. Lacey CJ, Pothecary CA, Salt TE (2005) Modulation of retino-collicular transmission by Group III metabotropic glutamate receptors at different ages during development. Neuropharmacology 49(Suppl):26–34

    Article  PubMed  CAS  Google Scholar 

  45. Liang YC, Huang CC, Hsu KS (2005) Characterization of long-term potentiation of primary afferent transmission at trigeminal synapses of juvenile rats: essential role of subtype 5 metabotropic glutamate receptors. Pain 114:417–428

    Article  PubMed  CAS  Google Scholar 

  46. Losonczy A, Somogyi P, Nusser Z (2003) Reduction of excitatory postsynaptic responses by persistently active metabotropic glutamate receptors in the hippocampus. J Neurophysiol 89:1910–1919

    Article  PubMed  CAS  Google Scholar 

  47. Mangiavacchi S, Wolf ME (2004) Stimulation of N-methyl-d-aspartate receptors, AMPA receptors or metabotropic glutamate receptors leads to rapid internalization of AMPA receptors in cultured nucleus accumbens neurons. Eur J Neurosci 20:649–657

    Article  PubMed  Google Scholar 

  48. Manzoni O, Michel JM, Bockaert J (1997) Metabotropic glutamate receptors in the rat nucleus accumbens. Eur J Neurosci 9:1514–1523

    Article  PubMed  CAS  Google Scholar 

  49. Martin LJ, Blackstone CD, Huganir RL, Price DL (1992) Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 9:259–270

    Article  PubMed  CAS  Google Scholar 

  50. Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349:760–765

    Article  PubMed  CAS  Google Scholar 

  51. Mateos JM, Benitez R, Elezgarai I, Azkue JJ, Lazaro E, Osorio A, Bilbao A, Donate F, Sarria R, Conquet F, Ferraguti F, Kuhn R, Knöpfel T, Grandes P (2000) Immunolocalization of the mGluR1b splice variant of the metabotropic glutamate receptor 1 at parallel fiber–Purkinje cell synapses in the rat cerebellar cortex. J Neurochem 74:1301–1309

    Article  PubMed  CAS  Google Scholar 

  52. Matsukawa H, Wolf AM, Matsushita S, Joho RH, Knöpfel T (2003) Motor dysfunction and altered synaptic transmission at the parallel fiber–Purkinje cell synapse in mice lacking potassium channels Kv3.1 and Kv3.3. J Neurosci 23:7677–7684

    PubMed  CAS  Google Scholar 

  53. Mutoh H, Yuan Q, Knöpfel T (2005) Long-term depression at olfactory nerve synapses. J Neurosci 25:4252–4259

    Article  PubMed  CAS  Google Scholar 

  54. Nicoletti F, Bruno V, Copani A, Casabona G, Knöpfel T (1996) Metabotropic glutamate receptors: a new target for the therapy of neurodegenerative disorders? Trends Neurosci 19:267–271

    Article  PubMed  CAS  Google Scholar 

  55. Otis TS, Brasnjo G, Dzubay JA, Pratap M (2004) Interactions between glutamate transporters and metabotropic glutamate receptors at excitatory synapses in the cerebellar cortex. Neurochem Int 45:537–544

    Article  PubMed  CAS  Google Scholar 

  56. Park YK, Galik J, Ryu PD, Randic M (2004) Activation of presynaptic group I metabotropic glutamate receptors enhances glutamate release in the rat spinal cord substantia gelatinosa. Neurosci Lett 361:220–224

    Article  PubMed  CAS  Google Scholar 

  57. Price CJ, Karayannis T, Pal BZ, Capogna M (2005) Group II and III mGluRs-mediated presynaptic inhibition of EPSCs recorded from hippocampal interneurons of CA1 stratum lacunosum moleculare. Neuropharmacology 49(Suppl):45–56

    Article  PubMed  CAS  Google Scholar 

  58. Reichelt W, Knöpfel T (2002) Glutamate uptake controls expression of a slow postsynaptic current mediated by mGluRs in cerebellar Purkinje cells. J Neurophysiol 87:1974–1980

    PubMed  CAS  Google Scholar 

  59. Rusakov DA, Kullmann DM (1998) Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J Neurosci 18:3158–3170

    PubMed  CAS  Google Scholar 

  60. Scanziani M (2002) Competing on the edge. Trends Neurosci 25:282–283

    Article  PubMed  CAS  Google Scholar 

  61. Scanziani M, Gahwiler BH, Charpak S (1998) Target cell-specific modulation of transmitter release at terminals from a single axon. Proc Natl Acad Sci USA 95:12004–12009

    Article  PubMed  CAS  Google Scholar 

  62. Shen Y, Linden DJ (2005) Long-term potentiation of neuronal glutamate transporters. Neuron 46:715–722

    Article  PubMed  CAS  Google Scholar 

  63. Shigemoto R, Kulik A, Roberts JD, Ohishi H, Nusser Z, Kaneko T, Somogyi P (1996) Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone. Nature 381:523–525

    Article  PubMed  CAS  Google Scholar 

  64. Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17:7503–7522

    PubMed  CAS  Google Scholar 

  65. Snyder EM, Philpot BD, Huber KM, Dong X, Fallon JR, Bear MF (2001) Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat Neurosci 4:1079–1085

    Article  PubMed  CAS  Google Scholar 

  66. Sodickson DL, Bean BP (1998) Neurotransmitter activation of inwardly rectifying potassium current in dissociated hippocampal CA3 neurons: interactions among multiple receptors. J Neurosci 18:8153–8162

    PubMed  CAS  Google Scholar 

  67. Sykova E (2005) Glia and volume transmission during physiological and pathological states. J Neural Transm 112:137–147

    Article  PubMed  CAS  Google Scholar 

  68. Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S (1992) A family of metabotropic glutamate receptors. Neuron 8:169–179

    Article  PubMed  CAS  Google Scholar 

  69. Tyszkiewicz JP, Gu Z, Wang X, Cai X, Yan Z (2004) Group II metabotropic glutamate receptors enhance NMDA receptor currents via a protein kinase C-dependent mechanism in pyramidal neurones of rat prefrontal cortex. J Physiol 554:765–777

    Article  PubMed  CAS  Google Scholar 

  70. Varma N, Carlson GC, Ledent C, Alger BE (2001) Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J Neurosci 21:RC188

    PubMed  CAS  Google Scholar 

  71. Watkins JC (2000) l-glutamate as a central neurotransmitter: looking back. Biochem Soc Trans 28:297–309

    Article  PubMed  CAS  Google Scholar 

  72. White AM, Kylanpaa RA, Christie LA, McIntosh SJ, Irving AJ, Platt B (2003) Presynaptic group I metabotropic glutamate receptors modulate synaptic transmission in the rat superior colliculus via 4-AP sensitive K+ channels. Br J Pharmacol 140:1421–1433

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Knöpfel .

Editor information

Mark G. Darlison

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knöpfel, T., Uusisaari, M. (2007). Modulation of Excitation by Metabotropic Glutamate Receptors. In: Darlison, M.G. (eds) Inhibitory Regulation of Excitatory Neurotransmission. Results and Problems in Cell Differentiation, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2007_035

Download citation

Publish with us

Policies and ethics