Skip to main content

Electrical Synapses – Gap Junctions in the Brain

  • Chapter
  • First Online:
Cell Communication in Nervous and Immune System

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 43))

Abstract

In the nervous system, interneuronal communication can occur via indirect or direct transmission. The mode of indirect communication involves chemical synapses, in which transmitters are released into the extracellular space to subsequently bind to the postsynaptic cell membrane. Direct communication is mediated by electrical synapses, and will be the focus of this review.

The most prevalent group of electrical synapses are neuronal gap junctions (both terms are used interchangeably in this article), which directly connect the intracellular space of two cells by gap junction channels. The structural components of gap junction channels in the nervous system are connexin proteins, and, as recently identified, pannexin proteins.

Connexin gap junction channels enable the intercellular, bidirectional transport of ions, metabolites, second messengers and other molecules smaller than 1 kD. More than 20 connexin genes have been found in the mouse and human genome. With the cloning of connexin36 (Cx36), a connexin protein with predominantly neuronal expression, the biochemical correlate of electrotonic transmission between neurons was identified. We outline the distribution of Cx36 as well as two other neuronal connexins (Cx57 and Cx45) in the nervous system, describing their spatial and temporal expression patterns. One focus in this review was the retina, as it shows many and diverse electrical synapses whose connexin components have been identified in fish and mammals. In view of the function of neuronal gap junctions, the network of inhibitory interneurons will be reviewed in detail, focussing on the hippocampus.

Although in vivo data on pannexin proteins are still restricted to information on mRNA expression, electrophysiological data and the expression pattern in the nervous system have been included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Ubaidi MR, White TW, Ripps H, Poras I, Avner P, Gomes D, Bruzzone R (2000) Functional properties, developmental regulation, and chromosomal localization of murine connexin36, a gap-junctional protein expressed preferentially in retina and brain. J Neurosci Res 59:813–826

    PubMed  CAS  Google Scholar 

  2. Altevogt BM, Paul DL (2004) Four classes of intercellular channels between glial cells in the CNS. J Neurosci 24:4313–4323

    PubMed  CAS  Google Scholar 

  3. Altevogt BM, Kleopa KA, Postma FR, Scherer SS, Paul DL (2002) Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J Neurosci 22:6458–6470

    PubMed  CAS  Google Scholar 

  4. Andrew RD, MacVicar BA, Dudek FE, Hatton GI (1981) Dye transfer through gap junctions between neuroendocrine cells of rat hypothalamus. Science 211:1187–1189

    PubMed  CAS  Google Scholar 

  5. Baker R, Llinas R (1971) Electrotonic coupling between neurones in the rat mesencephalic nucleus. J Physiol 212:45–63

    PubMed  CAS  Google Scholar 

  6. Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68

    PubMed  CAS  Google Scholar 

  7. Baranova A, Ivanov D, Petrash N, Pestova A, Skoblov M, Kelmanson I, Shagin D, Nazarenko S, Geraymovych E, Litvin O, Tiunova A, Born TL, Usman N, Staroverov D, Lukyanov S, Panchin Y (2004) The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 83:706–716

    PubMed  CAS  Google Scholar 

  8. Barron DJ, Valdimarsson G, Paul DL, Kidder GM (1989) Connexin32, a gap junction protein, is a persistent oogenetic product through preimplantation development of the mouse. Dev Genet 10:318–323

    PubMed  CAS  Google Scholar 

  9. Belliveau DJ, Naus CC (1994) Cortical type 2 astrocytes are not dye coupled nor do they express the major gap junction genes found in the central nervous system. Glia 12:24–34

    PubMed  CAS  Google Scholar 

  10. Belliveau DJ, Naus CC (1995) Cellular localization of gap junction mRNAs in developing rat brain. Dev Neurosci 17:81–96

    PubMed  CAS  Google Scholar 

  11. Belliveau DJ, Kidder GM, Naus CC (1991) Expression of gap junction genes during postnatal neural development. Dev Genet 12:308–317

    PubMed  CAS  Google Scholar 

  12. Belluardo N, Trovato-Salinaro A, Mudo G, Hurd YL, Condorelli DF (1999) Structure, chromosomal localization, and brain expression of human Cx36 gene. J Neurosci Res 57:740–752

    PubMed  CAS  Google Scholar 

  13. Belluardo N, Mudo G, Trovato-Salinaro A, Le Gurun S, Charollais A, Serre-Beinier V, Amato G, Haefliger JA, Meda P, Condorelli DF (2000) Expression of connexin36 in the adult and developing rat brain. Brain Res 865:121–138

    PubMed  CAS  Google Scholar 

  14. Bennett MV (1997) Gap junctions as electrical synapses. J Neurocytol 26:349–366

    PubMed  CAS  Google Scholar 

  15. Bennett MV, Crain SM, Grundfest H (1959) Electrophysiology of supramedullary neurons in Spheroides maculatus. II. Properties of the electrically excitable membrane. J Gen Physiol 43:189–219

    PubMed  CAS  Google Scholar 

  16. Bennett MVL (1977) Electrical transmission: a functional analysis and comparison with chemical transmission. M.D. Williams and Wilkins, Baltimore

    Google Scholar 

  17. Berthoud VM, Singh R, Minogue PJ, Ragsdale CW, Beyer EC (2004) Highly restricted pattern of connexin36 expression in chick somite development. Anat Embryol (Berl) 209:11–18

    CAS  Google Scholar 

  18. Blue ME, Parnavelas JG (1983) The formation and maturation of synapses in the visual cortex of the rat. I. Qualitative analysis. J Neurocytol 12:599–616

    PubMed  CAS  Google Scholar 

  19. Bruzzone R, White TW, Paul DL (1996) Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238:1–27

    PubMed  CAS  Google Scholar 

  20. Bruzzone R, Barbe MT, Jakob NJ, Monyer H (2005) Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 92:1033–1043

    PubMed  CAS  Google Scholar 

  21. Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 100:13644–13649

    PubMed  CAS  Google Scholar 

  22. Buhl DL, Harris KD, Hormuzdi SG, Monyer H, Buzsaki G (2003) Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. J Neurosci 23:1013–1018

    PubMed  CAS  Google Scholar 

  23. Buzsaki G (2001) Electrical wiring of the oscillating brain. Neuron 31:342–344

    PubMed  CAS  Google Scholar 

  24. Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340

    PubMed  CAS  Google Scholar 

  25. Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    PubMed  CAS  Google Scholar 

  26. Buzsaki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287:139–171

    PubMed  CAS  Google Scholar 

  27. Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K (1992) High-frequency network oscillation in the hippocampus. Science 256:1025–1027

    PubMed  CAS  Google Scholar 

  28. Chandross KJ, Kessler JA, Cohen RI, Simburger E, Spray DC, Bieri P, Dermietzel R (1996) Altered connexin expression after peripheral nerve injury. Mol Cell Neurosci 7:501–518

    PubMed  CAS  Google Scholar 

  29. Christie JM, Bark C, Hormuzdi SG, Helbig I, Monyer H, Westbrook GL (2005) Connexin36 mediates spike synchrony in olfactory bulb glomeruli. Neuron 46:761–772

    PubMed  CAS  Google Scholar 

  30. Condorelli DF, Belluardo N, Trovato-Salinaro A, Mudo G (2000) Expression of Cx36 in mammalian neurons. Brain Res Brain Res Rev 32:72–85

    PubMed  CAS  Google Scholar 

  31. Condorelli DF, Trovato-Salinaro A, Mudo G, Mirone MB, Belluardo N (2003) Cellular expression of connexins in the rat brain: neuronal localization, effects of kainate-induced seizures and expression in apoptotic neuronal cells. Eur J Neurosci 18:1807–1827

    PubMed  Google Scholar 

  32. Condorelli DF, Mudo G, Trovato-Salinaro A, Mirone MB, Amato G, Belluardo N (2002) Connexin-30 mRNA is up-regulated in astrocytes and expressed in apoptotic neuronal cells of rat brain following kainate-induced seizures. Mol Cell Neurosci 21:94–113

    PubMed  CAS  Google Scholar 

  33. Condorelli DF, Parenti R, Spinella F, Trovato Salinaro A, Belluardo N, Cardile V, Cicirata F (1998) Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. Eur J Neurosci 10:1202–1208

    PubMed  CAS  Google Scholar 

  34. Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418

    PubMed  CAS  Google Scholar 

  35. Connors BW, Benardo LS, Prince DA (1983) Coupling between neurons of the developing rat neocortex. J Neurosci 3:773–782

    PubMed  CAS  Google Scholar 

  36. De Zeeuw CI, Chorev E, Devor A, Manor Y, Van Der Giessen RS, De Jeu MT, Hoogenraad CC, Bijman J, Ruigrok TJ, French P, Jaarsma D, Kistler WM, Meier C, Petrasch-Parwez E, Dermietzel R, Sohl G, Gueldenagel M, Willecke K, Yarom Y (2003) Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level. J Neurosci 23:4700–4711

    PubMed  Google Scholar 

  37. Deans MR, Gibson JR, Sellitto C, Connors BW, Paul DL (2001) Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31:477–485

    PubMed  CAS  Google Scholar 

  38. Deans MR, Volgyi B, Goodenough DA, Bloomfield SA, Paul DL (2002) Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36:703–712

    PubMed  CAS  Google Scholar 

  39. Degen J, Meier C, Van Der Giessen RS, Sohl G, Petrasch-Parwez E, Urschel S, Dermietzel R, Schilling K, De Zeeuw CI, Willecke K (2004) Expression pattern of lacZ reporter gene representing connexin36 in transgenic mice. J Comp Neurol 473:511–525

    PubMed  CAS  Google Scholar 

  40. Dermietzel R, Meier C (2005) Gap junction expression in brain tissues with focus on development. In: Winterhager E (ed) Gap junctions in development and disease. Springer, Berlin Heidelberg New York, pp 83–110

    Google Scholar 

  41. Dermietzel R, Traub O, Hwang TK, Beyer E, Bennett MV, Spray DC, Willecke K (1989) Differential expression of three gap junction proteins in developing and mature brain tissues. Proc Natl Acad Sci USA 86:10148–10152

    PubMed  CAS  Google Scholar 

  42. Dermietzel R, Gao Y, Scemes E, Vieira D, Urban M, Kremer M, Bennett MV, Spray DC (2000a) Connexin43 null mice reveal that astrocytes express multiple connexins. Brain Res Brain Res Rev 32:45–56

    PubMed  CAS  Google Scholar 

  43. Dermietzel R, Kremer M, Paputsoglu G, Stang A, Skerrett IM, Gomes D, Srinivas M, Janssen-Bienhold U, Weiler R, Nicholson BJ, Bruzzone R, Spray DC (2000b) Molecular and functional diversity of neural connexins in the retina. J Neurosci 20:8331–8343

    PubMed  CAS  Google Scholar 

  44. Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76:2049–2070

    PubMed  CAS  Google Scholar 

  45. Dowling JE (1991) Retinal neuromodulation: the role of dopamine. Vis Neurosci 7:87–97

    PubMed  CAS  Google Scholar 

  46. Draguhn A, Traub RD, Schmitz D, Jefferys JG (1998) Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394:189–192

    PubMed  CAS  Google Scholar 

  47. Dykes IM, Freeman FM, Bacon JP, Davies JA (2004) Molecular basis of gap junctional communication in the CNS of the leech Hirudo medicinalis. J Neurosci 24:886–894

    PubMed  CAS  Google Scholar 

  48. Faber DS, Korn H (1989) Electrical field effects: their relevance in central neural networks. Physiol Rev 69:821–863

    PubMed  CAS  Google Scholar 

  49. Feigenspan A, Teubner B, Willecke K, Weiler R (2001) Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina. J Neurosci 21:230–239

    PubMed  CAS  Google Scholar 

  50. Feigenspan A, Janssen-Bienhold U, Hormuzdi S, Monyer H, Degen J, Sohl G, Willecke K, Ammermuller J, Weiler R (2004) Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. J Neurosci 24:3325–3334

    PubMed  CAS  Google Scholar 

  51. Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci 36:1983–1994

    PubMed  CAS  Google Scholar 

  52. Frisch C, De Souza-Silva MA, Sohl G, Guldenagel M, Willecke K, Huston JP, Dere E (2005) Stimulus complexity dependent memory impairment and changes in motor performance after deletion of the neuronal gap junction protein connexin36 in mice. Behav Brain Res 157:177–185

    PubMed  CAS  Google Scholar 

  53. Fujimoto K (1995) Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J Cell Sci 108 (Pt 11):3443-3449

    Google Scholar 

  54. Furshpan EJ, Potter DD (1957) Mechanism of nerve-impulse transmission at a crayfish synapse. Nature 180:342–343

    PubMed  CAS  Google Scholar 

  55. Furshpan EJ, Potter DD (1959) Transmission at the giant motor synapses of the crayfish. J Physiol 145:289–325

    PubMed  CAS  Google Scholar 

  56. Furshpan EJ, Furukawa T (1962) Intracellular and extracellular responses of the several regions of the Mauthner cell of the goldfish. J Neurophysiol 25:732–771

    PubMed  CAS  Google Scholar 

  57. Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402:72–75

    PubMed  CAS  Google Scholar 

  58. Galarreta M, Hestrin S (2001) Electrical synapses between GABA-releasing interneurons. Nat Rev Neurosci 2:425–433

    PubMed  CAS  Google Scholar 

  59. Giaume C, Venance L (1995) Gap junctions in brain glial cells and development. Perspect Dev Neurobiol 2:335–345

    PubMed  CAS  Google Scholar 

  60. Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402:75–79

    PubMed  CAS  Google Scholar 

  61. Gibson JR, Beierlein M, Connors BW (2005) Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4. J Neurophysiol 93:467–480

    PubMed  Google Scholar 

  62. Giepmans BN (2004) Gap junctions and connexin-interacting proteins. Cardiovasc Res 62:233–245

    PubMed  CAS  Google Scholar 

  63. Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702

    PubMed  CAS  Google Scholar 

  64. Grundfest H (1959) General physiology and pharmacology of synapses and some implications for the mammalian central nervous system. J Nerv Ment Dis 128:473–496

    PubMed  CAS  Google Scholar 

  65. Guldenagel M, Sohl G, Plum A, Traub O, Teubner B, Weiler R, Willecke K (2000) Expression patterns of connexin genes in mouse retina. J Comp Neurol 425:193–201

    PubMed  CAS  Google Scholar 

  66. Guldenagel M, Ammermuller J, Feigenspan A, Teubner B, Degen J, Sohl G, Willecke K, Weiler R (2001) Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci 21:6036–6044

    PubMed  CAS  Google Scholar 

  67. Gulisano M, Parenti R, Spinella F, Cicirata F (2000) Cx36 is dynamically expressed during early development of mouse brain and nervous system. Neuroreport 11:3823–3828

    PubMed  CAS  Google Scholar 

  68. Gulyas AI, Hajos N, Freund TF (1996) Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J Neurosci 16:3397–3411

    PubMed  CAS  Google Scholar 

  69. Halasy K, Buhl EH, Lorinczi Z, Tamas G, Somogyi P (1996) Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus. Hippocampus 6:306–329

    PubMed  CAS  Google Scholar 

  70. Hampson EC, Vaney DI, Weiler R (1992) Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J Neurosci 12:4911–4922

    PubMed  CAS  Google Scholar 

  71. Haverkamp S, Wassle H (2000) Immunocytochemical analysis of the mouse retina. J Comp Neurol 424:1–23

    PubMed  CAS  Google Scholar 

  72. Hombach S, Janssen-Bienhold U, Sohl G, Schubert T, Bussow H, Ott T, Weiler R, Willecke K (2004) Functional expression of connexin57 in horizontal cells of the mouse retina. Eur J Neurosci 19:2633–2640

    PubMed  Google Scholar 

  73. Honma S, De S, Li D, Shuler CF, Turman JE Jr (2004) Developmental regulation of connexins 26, 32, 36, and 43 in trigeminal neurons. Synapse 52:258–271

    PubMed  CAS  Google Scholar 

  74. Hormuzdi SG, Pais I, LeBeau FE, Towers SK, Rozov A, Buhl EH, Whittington MA, Monyer H (2001) Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31:487–495

    PubMed  CAS  Google Scholar 

  75. Hua VB, Chang AB, Tchieu JH, Kumar NM, Nielsen PA, Saier MH Jr. (2003) Sequence and phylogenetic analyses of 4 TMS junctional proteins of animals: connexins, innexins, claudins and occludins. J Membr Biol 194:59–76

    PubMed  CAS  Google Scholar 

  76. Jefferys JG (1995) Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol Rev 75:689–723

    PubMed  CAS  Google Scholar 

  77. Jefferys JG, Traub RD, Whittington MA (1996) Neuronal networks for induced 40 Hz rhythms. Trends Neurosci 19:202–208

    PubMed  CAS  Google Scholar 

  78. Kalderon N, Epstein ML, Gilula NB (1977) Cell-to-cell communication and myogenesis. J Cell Biol 75:788–806

    PubMed  CAS  Google Scholar 

  79. Kandler K, Katz LC (1998) Coordination of neuronal activity in developing visual cortex by gap junction-mediated biochemical communication. J Neurosci 18:1419–1427

    PubMed  CAS  Google Scholar 

  80. Katsumaru H, Kosaka T, Heizmann CW, Hama K (1988) Gap junctions on GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus (CA1 region). Exp Brain Res 72:363–370

    PubMed  CAS  Google Scholar 

  81. Keeter JS, Pappas GD, Model PG (1975) Inter- and intramyotomal gap junctions in the axolotl embryo. Dev Biol 45:21–33

    PubMed  CAS  Google Scholar 

  82. Kistler WM, De Jeu MT, Elgersma Y, Van Der Giessen RS, Hensbroek R, Luo C, Koekkoek SK, Hoogenraad CC, Hamers FP, Gueldenagel M, Sohl G, Willecke K, De Zeeuw CI (2002) Analysis of Cx36 knockout does not support tenet that olivary gap junctions are required for complex spike synchronization and normal motor performance. Ann NY Acad Sci 978:391–404

    PubMed  CAS  Google Scholar 

  83. Kita H, Kosaka T, Heizmann CW (1990) Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain Res 536:1–15

    PubMed  CAS  Google Scholar 

  84. Kleopa KA, Orthmann JL, Enriquez A, Paul DL, Scherer SS (2004) Unique distributions of the gap junction proteins connexin29, connexin32, and connexin47 in oligodendrocytes. Glia 47:346–357

    PubMed  Google Scholar 

  85. Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84:381–388

    PubMed  CAS  Google Scholar 

  86. Landesman Y, White TW, Starich TA, Shaw JE, Goodenough DA, Paul DL (1999) Innexin-3 forms connexin-like intercellular channels. J Cell Sci 112 (Pt 14):2391–2396

    Google Scholar 

  87. Landis DM, Reese TS, Raviola E (1974) Differences in membrane structure between excitatory and inhibitory components of the reciprocal synapse in the olfactory bulb. J Comp Neurol 155:67–91

    PubMed  CAS  Google Scholar 

  88. Landisman CE, Long MA, Beierlein M, Deans MR, Paul DL, Connors BW (2002) Electrical synapses in the thalamic reticular nucleus. J Neurosci 22:1002–1009

    PubMed  CAS  Google Scholar 

  89. Lee EJ, Han JW, Kim HJ, Kim IB, Lee MY, Oh SJ, Chung JW, Chun MH (2003) The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina. Eur J Neurosci 18:2925–2934

    PubMed  Google Scholar 

  90. Li X, Lynn BD, Olson C, Meier C, Davidson KG, Yasumura T, Rash JE, Nagy JI (2002) Connexin29 expression, immunocytochemistry and freeze-fracture replica immunogold labelling (FRIL) in sciatic nerve. Eur J Neurosci 16:795–806

    PubMed  Google Scholar 

  91. Llinas R, Ribary U (1993) Coherent 40-Hz oscillation characterizes dream state in humans. Proc Natl Acad Sci USA 90:2078–2081

    PubMed  CAS  Google Scholar 

  92. Llinas R, Baker R, Sotelo C (1974) Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol 37:560–571

    PubMed  CAS  Google Scholar 

  93. Lo Turco JJ, Kriegstein AR (1991) Clusters of coupled neuroblasts in embryonic neocortex. Science 252:563–566

    PubMed  CAS  Google Scholar 

  94. Long MA, Landisman CE, Connors BW (2004) Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus. J Neurosci 24:341–349

    PubMed  CAS  Google Scholar 

  95. Long MA, Deans MR, Paul DL, Connors BW (2002) Rhythmicity without synchrony in the electrically uncoupled inferior olive. J Neurosci 22:10898–10905

    PubMed  CAS  Google Scholar 

  96. MacVicar BA, Dudek FE (1980) Dye coupling between CA3 pyramidal cells in slices of rat hippocampus. Brain Res 196:494–497

    PubMed  CAS  Google Scholar 

  97. MacVicar BA, Dudek EF (1981) Electronic coupling between pyrymidal cells: A direct demonstration in rat hippocampal slices. Science 213:782–785

    PubMed  CAS  Google Scholar 

  98. MacVicar BA, Jahnsen H (1985) Uncoupling of CA3 pyramidal neurons by propionate. Brain Res 330:141–145

    PubMed  CAS  Google Scholar 

  99. MacVicar BA, Ropert N, Krnjevíc K (1982) Dye-coupling between pyramidal cells of rat hippocampus in vivo. Brain Res 238:239–244

    PubMed  CAS  Google Scholar 

  100. Maier N, Guldenagel M, Sohl G, Siegmund H, Willecke K, Draguhn A (2002) Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice. J Physiol 541:521–528

    PubMed  CAS  Google Scholar 

  101. Mann-Metzer P, Yarom Y (1999) Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. J Neurosci 19:3298–3306

    PubMed  CAS  Google Scholar 

  102. Massa PT, Mugnaini E (1982) Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: a freeze-fracture study. Neuroscience 7:523–538

    PubMed  CAS  Google Scholar 

  103. Maxeiner S, Kruger O, Schilling K, Traub O, Urschel S, Willecke K (2003) Spatiotemporal transcription of connexin45 during brain development results in neuronal expression in adult mice. Neuroscience 119:689–700

    PubMed  CAS  Google Scholar 

  104. Maxeiner S, Dedek K, Janssen-Bienhold U, Ammermuller J, Brune H, Kirsch T, Pieper M, Degen J, Kruger O, Willecke K, Weiler R (2005) Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission. J Neurosci 25:566–576

    PubMed  CAS  Google Scholar 

  105. McLachlin JR, Kidder GM (1986) Intercellular junctional coupling in preimplantation mouse embryos: effect of blocking transcription or translation. Dev Biol 117:146–155

    PubMed  CAS  Google Scholar 

  106. Meier C, Petrasch-Parwez E, Habbes HW, Teubner B, Guldenagel M, Degen J, Sohl G, Willecke K, Dermietzel R (2002) Immunohistochemical detection of the neuronal connexin36 in the mouse central nervous system in comparison to connexin36-deficient tissues. Histochem Cell Biol 117:461–471

    PubMed  CAS  Google Scholar 

  107. Menichella DM, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2003) Connexins are critical for normal myelination in the CNS. J Neurosci 23:5963–5973

    PubMed  CAS  Google Scholar 

  108. Micevych PE, Abelson L (1991) Distribution of mRNAs coding for liver and heart gap junction proteins in the rat central nervous system. J Comp Neurol 305:96–118

    PubMed  CAS  Google Scholar 

  109. Micevych PE, Popper P, Hatton GI (1996) Connexin 32 mRNA levels in the rat supraoptic nucleus: up-regulation prior to parturition and during lactation. Neuroendocrinology 63:39–45

    PubMed  CAS  Google Scholar 

  110. Michelson HB, Wong RK (1994) Synchronization of inhibitory neurones in the guinea-pig hippocampus in vitro. J Physiol 477 (Pt 1):35–45

    Google Scholar 

  111. Mills SL, Massey SC (1995) Differential properties of two gap junctional pathways made by AII amacrine cells. Nature 377:734–737

    PubMed  CAS  Google Scholar 

  112. Mills SL, O'Brien JJ, Li W, O'Brien J, Massey SC (2001) Rod pathways in the mammalian retina use connexin 36. J Comp Neurol 436:336–350

    PubMed  CAS  Google Scholar 

  113. Miltner WH, Braun C, Arnold M, Witte H, Taub E (1999) Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397:434–436

    PubMed  CAS  Google Scholar 

  114. Montoro RJ, Yuste R (2004) Gap junctions in developing neocortex: a review. Brain Res Brain Res Rev 47:216–226

    PubMed  CAS  Google Scholar 

  115. Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev 32:29–44

    PubMed  CAS  Google Scholar 

  116. Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Brain Res Rev 47:191–215

    PubMed  CAS  Google Scholar 

  117. Nagy JI, Ionescu AV, Lynn BD, Rash JE (2003) Connexin29 and connexin32 at oligodendrocyte and astrocyte gap junctions and in myelin of the mouse central nervous system. J Comp Neurol 464:356–370

    PubMed  CAS  Google Scholar 

  118. Nagy JI, Li X, Rempel J, Stelmack G, Patel D, Staines WA, Yasumura T, Rash JE (2001) Connexin26 in adult rodent central nervous system: demonstration at astrocytic gap junctions and colocalization with connexin30 and connexin43. J Comp Neurol 441:302–323

    PubMed  CAS  Google Scholar 

  119. O'Brien J, al-Ubaidi MR, Ripps H (1996) Connexin 35: a gap-junctional protein expressed preferentially in the skate retina. Mol Biol Cell 7:233–243

    PubMed  Google Scholar 

  120. O'Brien J, Bruzzone R, White TW, Al-Ubaidi MR, Ripps H (1998) Cloning and expression of two related connexins from the perch retina define a distinct subgroup of the connexin family. J Neurosci 18:7625–7637

    PubMed  Google Scholar 

  121. Odermatt B, Wellershaus K, Wallraff A, Seifert G, Degen J, Euwens C, Fuss B, Bussow H, Schilling K, Steinhauser C, Willecke K (2003) Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J Neurosci 23:4549–4559

    PubMed  CAS  Google Scholar 

  122. Oguro K, Jover T, Tanaka H, Lin Y, Kojima T, Oguro N, Grooms SY, Bennett MV, Zukin RS (2001) Global ischemia-induced increases in the gap junctional proteins connexin 32 (Cx32) and Cx36 in hippocampus and enhanced vulnerability of Cx32 knock-out mice. J Neurosci 21:7534–7542

    PubMed  CAS  Google Scholar 

  123. Panchin Y, Kelmanson I, Matz M, Lukyanov K, Usman N, Lukyanov S (2000) A ubiquitous family of putative gap junction molecules. Curr Biol 10:R473–474

    PubMed  CAS  Google Scholar 

  124. Peinado A, Yuste R, Katz LC (1993) Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 10:103–114

    PubMed  CAS  Google Scholar 

  125. Pereda AE, Nairn AC, Wolszon LR, Faber DS (1994) Postsynaptic modulation of synaptic efficacy at mixed synapses on the Mauthner cell. J Neurosci 14:3704–3712

    PubMed  CAS  Google Scholar 

  126. Pereda AE, Rash JE, Nagy JI, Bennett MV (2004) Dynamics of electrical transmission at club endings on the Mauthner cells. Brain Res Brain Res Rev 47:227–244

    PubMed  CAS  Google Scholar 

  127. Phelan P, Starich TA (2001) Innexins get into the gap. Bioessays 23:388–396

    PubMed  CAS  Google Scholar 

  128. Phelan P, Stebbings LA, Baines RA, Bacon JP, Davies JA, Ford C (1998) Drosophila Shaking-B protein forms gap junctions in paired Xenopus oocytes. Nature 391:181–184

    PubMed  CAS  Google Scholar 

  129. Piccolino M, Neyton J, Gerschenfeld HM (1984) Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3′:5′-monophosphate in horizontal cells of turtle retina. J Neurosci 4:2477–2488

    PubMed  CAS  Google Scholar 

  130. Pinault D, Deschenes M (1992) Control of 40-Hz firing of reticular thalamic cells by neurotransmitters. Neuroscience 51:259–268

    PubMed  CAS  Google Scholar 

  131. Pinching AJ, Powell TP (1971) The neuropil of the glomeruli of the olfactory bulb. J Cell Sci 9:347–377

    PubMed  CAS  Google Scholar 

  132. Pottek M, Schultz K, Weiler R (1997) Effects of nitric oxide on the horizontal cell network and dopamine release in the carp retina. Vision Res 37:1091–1102

    PubMed  CAS  Google Scholar 

  133. Rash JE, Staehelin LA (1974) Freeze-cleave demonstration of gap junctions between skeletal myogenic cells in vivo. Dev Biol 36:455–461

    PubMed  CAS  Google Scholar 

  134. Rash JE, Yasumura T, Dudek FE (1998) Ultrastructure, histological distribution, and freeze-fracture immunocytochemistry of gap junctions in rat brain and spinal cord. Cell Biol Int 22:731–749

    PubMed  CAS  Google Scholar 

  135. Rash JE, Yasumura T, Dudek FE, Nagy JI (2001a) Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci 21:1983–2000

    PubMed  CAS  Google Scholar 

  136. Rash JE, Dudek FE, Yasumura T, Davidson K, Furman CS, Nagy JI (2001b) Identification of cells expressing Cx43, Cx30, Cx26 Cx32 and Cx36 in gap junctions of rat brain and spinal cord. Cell Comm Adhesion:1–344

    Google Scholar 

  137. Rash JE, Staines WA, Yasumura T, Patel D, Furman CS, Stelmack GL, Nagy JI (2000) Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43. Proc Natl Acad Sci USA 97:7573–7578

    PubMed  CAS  Google Scholar 

  138. Rash JE, Pereda A, Kamasawa N, Furman CS, Yasumura T, Davidson KG, Dudek FE, Olson C, Li X, Nagy JI (2004) High-resolution proteomic mapping in the vertebrate central nervous system: Close proximity of connexin35 to NMDA glutamate receptor clusters and co-localization of connexin36 with immunoreactivity for zonula occludens protein-1 (ZO-1). J Neurocytol 33:131–151

    PubMed  CAS  Google Scholar 

  139. Ray A, Zoidl G, Weickert S, Wahle P, Dermietzel R (2005) Site-specific and developmental expression of pannexin 1 in the mouse nervous system. Eur J Neurosci 21:3277–3290

    PubMed  Google Scholar 

  140. Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ (1999) Perception's shadow: long-distance synchronization of human brain activity. Nature 397:430–433

    PubMed  CAS  Google Scholar 

  141. Roerig B, Feller MB (2000) Neurotransmitters and gap junctions in developing neural circuits. Brain Res Brain Res Rev 32:86–114

    PubMed  CAS  Google Scholar 

  142. Rorig B, Sutor B (1996) Regulation of gap junction coupling in the developing neocortex. Mol Neurobiol 12:225–249

    PubMed  CAS  Google Scholar 

  143. Rorig B, Klausa G, Sutor B (1995) Dye coupling between pyramidal neurons in developing rat prefrontal and frontal cortex is reduced by protein kinase A activation and dopamine. J Neurosci 15:7386–7400

    PubMed  CAS  Google Scholar 

  144. Rozental R, Morales M, Mehler MF, Urban M, Kremer M, Dermietzel R, Kessler JA, Spray DC (1998) Changes in the properties of gap junctions during neuronal differentiation of hippocampal progenitor cells. J Neurosci 18:1753–1762

    PubMed  CAS  Google Scholar 

  145. Scherer SS, Deschenes SM, Xu YT, Grinspan JB, Fischbeck KH, Paul DL (1995) Connexin32 is a myelin-related protein in the PNS and CNS. J Neurosci 15:8281–8294

    PubMed  CAS  Google Scholar 

  146. Schmalbruch H (1982) Skeletal muscle fibers of newborn rats are coupled by gap junctions. Dev Biol 91:485–490

    PubMed  CAS  Google Scholar 

  147. Schmitz D, Schuchmann S, Fisahn A, Draguhn A, Buhl EH, Petrasch-Parwez E, Dermietzel R, Heinemann U, Traub RD (2001) Axo-axonal coupling. a novel mechanism for ultrafast neuronal communication. Neuron 31:831–840

    PubMed  CAS  Google Scholar 

  148. Schubert T, Degen J, Willecke K, Hormuzdi SG, Monyer H, Weiler R (2005) Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse retina. J Comp Neurol 485:191–201

    PubMed  CAS  Google Scholar 

  149. Serre-Beinier V, Le Gurun S, Belluardo N, Trovato-Salinaro A, Charollais A, Haefliger JA, Condorelli DF, Meda P (2000) Cx36 preferentially connects beta-cells within pancreatic islets. Diabetes 49:727–734

    PubMed  CAS  Google Scholar 

  150. Sik A, Penttonen M, Ylinen A, Buzsaki G (1995) Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J Neurosci 15:6651–6665

    PubMed  CAS  Google Scholar 

  151. Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    PubMed  CAS  Google Scholar 

  152. Sloper JJ (1972) Gap junctions between dendrites in the primate neocortex. Brain Res 44:641–646

    PubMed  CAS  Google Scholar 

  153. Sohl G, Maxeiner S, Willecke K (2005) Expression and functions of neuronal gap junctions. Nat Rev Neurosci 6:191–200

    PubMed  Google Scholar 

  154. Sohl G, Degen J, Teubner B, Willecke K (1998) The murine gap junction gene connexin36 is highly expressed in mouse retina and regulated during brain development. FEBS Lett 428:27–31

    PubMed  CAS  Google Scholar 

  155. Sohl G, Odermatt B, Maxeiner S, Degen J, Willecke K (2004) New insights into the expression and function of neural connexins with transgenic mouse mutants. Brain Res Brain Res Rev 47:245–259

    PubMed  CAS  Google Scholar 

  156. Somogyi P, Nunzi MG, Gorio A, Smith AD (1983) A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells. Brain Res 259:137–142

    PubMed  CAS  Google Scholar 

  157. Sotelo C, Llinas R (1972) Specialized membrane junctions between neurons in the vertebrate cerebellar cortex. J Cell Biol 53:271–289

    PubMed  CAS  Google Scholar 

  158. Spray DC, Dermietzel R (1995) X-linked dominant Charcot-Marie-Tooth disease and other potential gap-junction diseases of the nervous system. Trends Neurosci 18:256–262

    PubMed  CAS  Google Scholar 

  159. Srinivas M, Rozental R, Kojima T, Dermietzel R, Mehler M, Condorelli DF, Kessler JA, Spray DC (1999) Functional properties of channels formed by the neuronal gap junction protein connexin36. J Neurosci 19:9848–9855

    PubMed  CAS  Google Scholar 

  160. Stebbings LA, Todman MG, Phelan P, Bacon JP, Davies JA (2000) Two Drosophila innexins are expressed in overlapping domains and cooperate to form gap-junction channels. Mol Biol Cell 11:2459–2470

    PubMed  CAS  Google Scholar 

  161. Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685

    PubMed  CAS  Google Scholar 

  162. Steriade M, Amzica F, Contreras D (1996) Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. J Neurosci 16:392–417

    PubMed  CAS  Google Scholar 

  163. Teubner B, Degen J, Sohl G, Guldenagel M, Bukauskas FF, Trexler EB, Verselis VK, De Zeeuw CI, Lee CG, Kozak CA, Petrasch-Parwez E, Dermietzel R, Willecke K (2000) Functional expression of the murine connexin 36 gene coding for a neuron-specific gap junctional protein. J Membr Biol 176:249–262

    PubMed  CAS  Google Scholar 

  164. Traub RD, Bibbig A (2000) A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons. J Neurosci 20:2086–2093

    PubMed  CAS  Google Scholar 

  165. Traub RD, Schmitz D, Jefferys JG, Draguhn A (1999) High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions. Neuroscience 92:407–426

    PubMed  CAS  Google Scholar 

  166. Traub RD, Whittington MA, Colling SB, Buzsaki G, Jefferys JG (1996) Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J Physiol 493(Pt 2):471–484

    Google Scholar 

  167. Traub RD, Spruston N, Soltesz I, Konnerth A, Whittington MA, Jefferys GR (1998) Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity. Prog Neurobiol 55:563–575

    PubMed  CAS  Google Scholar 

  168. Traub RD, Bibbig A, Fisahn A, LeBeau FE, Whittington MA, Buhl EH (2000) A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur J Neurosci 12:4093–4106

    PubMed  CAS  Google Scholar 

  169. Traub RD, Kopell N, Bibbig A, Buhl EH, LeBeau FE, Whittington MA (2001) Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J Neurosci 21:9478–9486

    PubMed  CAS  Google Scholar 

  170. Traub RD, Pais I, Bibbig A, LeBeau FE, Buhl EH, Hormuzdi SG, Monyer H, Whittington MA (2003) Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations. Proc Natl Acad Sci USA 100:1370–1374

    PubMed  CAS  Google Scholar 

  171. Vandecasteele M, Glowinski J, Venance L (2005) Electrical synapses between dopaminergic neurons of the substantia nigra pars compacta. J Neurosci 25:291–298

    PubMed  CAS  Google Scholar 

  172. Vaney DI (1999) Neuronal coupling in the central nervous system: lessons from the retina. Novartis Found Symp 219:113–125; discussion 125–133

    Google Scholar 

  173. Venance L, Rozov A, Blatow M, Burnashev N, Feldmeyer D, Monyer H (2000) Connexin expression in electrically coupled postnatal rat brain neurons. Proc Natl Acad Sci USA 97:10260–10265

    PubMed  CAS  Google Scholar 

  174. Watanabe A (1958) The interaction of electrical activity among neurons of lobster cardiac ganglion. Jpn J Physiol 8:305–318

    PubMed  CAS  Google Scholar 

  175. Waxman SG, Black JA (1984) Freeze-fracture ultrastructure of the perinodal astrocyte and associated glial junctions. Brain Res 308:77–87

    PubMed  CAS  Google Scholar 

  176. Weickert S, Ray A, Zoidl G, Dermietzel R (2005) Expression of neural connexins and pannexin1 in the hippocampus and inferior olive: a quantitative approach. Brain Res Mol Brain Res 133:102–109

    PubMed  CAS  Google Scholar 

  177. Weiler R, Pottek M, He S, Vaney DI (2000) Modulation of coupling between retinal horizontal cells by retinoic acid and endogenous dopamine. Brain Res Brain Res Rev 32:121–129

    PubMed  CAS  Google Scholar 

  178. White TW, Deans MR, O'Brien J, Al-Ubaidi MR, Goodenough DA, Ripps H, Bruzzone R (1999) Functional characteristics of skate connexin35, a member of the gamma subfamily of connexins expressed in the vertebrate retina. Eur J Neurosci 11:1883–1890

    PubMed  CAS  Google Scholar 

  179. Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737

    PubMed  CAS  Google Scholar 

  180. Ylinen A, Bragin A, Nadasdy Z, Jando G, Szabo I, Sik A, Buzsaki G (1995) Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15:30–46

    PubMed  CAS  Google Scholar 

  181. Yuste R, Peinado A, Katz LC (1992) Neuronal domains in developing neocortex. Science 257:665–669

    PubMed  CAS  Google Scholar 

  182. Zoidl G, Dermietzel R (2002) On the search for the electrical synapse: a glimpse at the future. Cell Tissue Res 310:137–142

    PubMed  Google Scholar 

  183. Zoidl G, Meier C, Petrasch-Parwez E, Zoidl C, Habbes HW, Kremer M, Srinivas M, Spray DC, Dermietzel R (2002) Evidence for a role of the N-terminal domain in subcellular localization of the neuronal connexin36 (Cx36). J Neurosci Res 69:448–465

    PubMed  CAS  Google Scholar 

  184. Zoidl G, Bruzzone R, Weickert S, Kremer M, Zoidl C, Mitropoulou G, Srinivas M, Spray DC, Dermietzel R (2004) Molecular cloning and functional expression of zfCx52.6: a novel connexin with hemichannel-forming properties expressed in horizontal cells of the zebrafish retina. J Biol Chem 279:2913–2921

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Helga Schulze for expertly done figures. The authors also wish to thank John E. Rash for intense and stimulating scientific discussions. Work in the laboratory was supported by grants of the German research foundation to R.D. (SFB 509 and DE292/11-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carola Meier .

Editor information

Eckart D. Gundelfinger Constanze I. Seidenbecher Burkhart Schraven

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meier, C., Dermietzel, R. (2006). Electrical Synapses – Gap Junctions in the Brain. In: Gundelfinger, E.D., Seidenbecher, C.I., Schraven, B. (eds) Cell Communication in Nervous and Immune System. Results and Problems in Cell Differentiation, vol 43. Springer, Berlin, Heidelberg . https://doi.org/10.1007/400_013

Download citation

Publish with us

Policies and ethics