Skip to main content
Log in

Effect of additive noise on phase measurement in digital holographic microscopy

  • 3DR Express
  • Published:
3D Research

Abstract

Digital holographic microscopy is a quantitative phase measurement technique that can provide nanometer resolution of the thickness or surface profile of an object. We analyze the influence of additive noise in the hologram plane on the accuracy of phase measurement. We analyze Gaussian distributed and Poisson distributed shot noise in the camera plane and we develop a model for quantifying the phase error in the reconstructed phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Carl, B. Kemper, G. Wernicke, G. von Bally (2004) Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. Appl Opt. 43:6536–6544

    Article  Google Scholar 

  2. B. Kemper, G. von Bally (2008) Digital holographic microscopy for live cell applications and technical inspection. Appl Opt. 47:A52–A61

    Article  Google Scholar 

  3. P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge (2005) Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt Lett. 30:468–470

    Article  Google Scholar 

  4. G. Pedrini, P. Fröning, H. Tiziani, F. Mendoza Santoyo (1999) Shape measurement of microscopic structures using digital holograms. Opt Comm. 164:257–268

    Article  Google Scholar 

  5. J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, C. Depeursinge (2008) Axial sub-nanometer accuracy in digital holographic microscopy. Meas Sci Tech. 19:074, 007

    Article  Google Scholar 

  6. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, N. Aspert (2006) Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram. Opt Exp. 14:4300–4306

    Article  Google Scholar 

  7. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, S. Nicola (2007) Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram. Appl Phys Lett. 90:041,104

    Article  Google Scholar 

  8. W. Davenport, W. Root (1958) An introduction to the theory of random signals and noise. McGraw-Hill New York.

  9. M. Gross, M. Atlan (2007) Digital holography with ultimate sensitivity. Opt Lett. 32:909–911

    Article  Google Scholar 

  10. M. Yamamoto, H. Yamamoto, Y. Hayasaki (2009) Photon-counting digital holography under ultraweak illumination. Opt Lett. 34:1081–1083

    Article  Google Scholar 

  11. F. Charrière, T. Colomb, F. Montfort, E. Cuche, P. Marquet, C. Depeursinge (2006) Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy. Appl Opt. 45:7667–7673

    Article  Google Scholar 

  12. F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, C. Depeursinge (2007) Influence of shot noise on phase measurement accuracy in digital holographic microscopy. Opt Express. 15:8818–8831

    Article  Google Scholar 

  13. J. Stone (2004) Independent Component Analysis: A Tutorial Introduction. The MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  14. T. Colomb, F. Montfort, C. Depeursinge (2008) Small Reconstruction Distance in convolution formalism. Digital Holography and Three-Dimensional Imaging.

  15. BM. Hennelly, JT. Sheridan (2005) Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. J Opt Soc Am A. 22:917–927

    Article  MathSciNet  Google Scholar 

  16. J. Goodman (2007) Speckle phenomena in optics: theory and applications. Roberts & Co.

  17. D. Middleton (1960) An introduction to statistical communication theory. McGraw-Hill New York.

  18. H. Gudbjartsson, S. Patz (1995) The Rician distribution of noisy MRI data. Mag Res Med. 34:910–914

    Article  Google Scholar 

  19. B. Lathi (1995) Modern digital and analog communication systems. Oxford University Press, Inc. New York, NY, USA.

    Google Scholar 

  20. SS. Jiang, AA. Sawchuk (1986) Noise updating repeated wiener filter and other adaptive noise smoothing filters using local image statistics. Appl Opt. 25:2326–2337

    Article  Google Scholar 

  21. J. Ahrens, U. Dieter (1974) Computer methods for sampling from gamma, beta, poisson and bionomial distributions. Computing. 12:223–246

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitesh Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, N., Hennelly, B. Effect of additive noise on phase measurement in digital holographic microscopy. 3D Res 2, 6 (2011). https://doi.org/10.1007/3DRes.01(2011)6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/3DRes.01(2011)6

Keywords

Navigation